A Fractal Model of Effective Thermal Conductivity of Porous Materials Considering Tortuosity
Abstract
:1. Introduction
2. Model Establishment
2.1. Weight Coefficients in Terms of Tortuosity
2.2. Fractal Theory for Porous Media
2.3. The ETC Model for Porous Materials
3. Model Validation
4. Analysis and Discussion
4.1. The Correlation of the Microstructure Parameters
4.1.1. Tortuosity and Tortuous Fractal Dimension
4.1.2. Area Fractal Dimension
4.2. Influence of Microstructure Parameters on the ETC
4.2.1. Influence of Porosity on the ETC
4.2.2. Influence of Tortuosity and Tortuous Fractal Dimension on the ETC
4.2.3. Influence of Pore Diameter Distribution on the ETC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
At | total cross-sectional area of the porous materials from minimum to maximum pores |
Df | area fractal dimension |
DT | tortuous fractal dimension |
Lt | the actual length of the fluid path |
L0 | the characteristic length in the direction of the macroscopic driving potential gradient i.e., the length along the heat flow |
N | total number of pores with a diameter greater than Φ |
W | the weight coefficient of the component of the porous materials thermal conductivity model |
ε | porosity of the porous materials |
λ1 | thermal conductivity of the solid matrix |
λ2 | thermal conductivity of the liquid/gas in pores |
λs | series thermal conductivity |
λp | parallel thermal conductivity |
λe | series-parallel thermal conductivity |
λe,m | effective thermal conductivity |
τ | tortuosity |
Φmin | the minimum pore diameter of the porous materials |
Φmax | the maximum pore diameter of the porous materials |
Φ | pore diameter of the porous materials |
∆T | the temperature difference between both sides of the cross-section of a representative unit |
References
- Clauser, C. Heat Transport Processes in the Earth’s Crust. Surv. Geophys. 2009, 30, 163–191. [Google Scholar] [CrossRef]
- Maxwell, J.C.A. A Treatise on Electricity and Magnetism. Nature 1954, 7, 478–480. [Google Scholar]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Der Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Landauer, R. The Electrical Resistance of Binary Metallic Mixtures. J. Appl. Phys. 1952, 23, 779–784. [Google Scholar] [CrossRef]
- Kong, F.; Zhang, Q. Effect of heat and mass coupled transfer combined with freezing process on building exterior envelope. Energy Build. 2013, 62, 486–495. [Google Scholar] [CrossRef]
- Qian, L.; Pang, X.; Zhou, J.; Yang, J.; Lin, S.; Hui, D. Theoretical model and finite element simulation on the effective thermal conductivity of particulate composite materials. Compos. Part B Eng. 2016, 116, 291–297. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, B.; Zhang, D.; Zou, M. A self-similarity model for effective thermal conductivity of porous media. J. Phys. D Appl. Phys. 2003, 36, 2157. [Google Scholar] [CrossRef]
- Ma, Y.T.; Zhang, D.M.; Zou, M.Q. Fractal geometry model for effective thermal conductivity of three-phase porous media. J. Appl. Phys. 2004, 95, 6426–6434. [Google Scholar] [CrossRef] [Green Version]
- Dongliang, L.I.; Jianwei, D.U.; Song, H.E.; Liang, D.Q.; Zhao, X.Y.; Yang, X.Y. Measurement and modeling of the effective thermal conductivity for porous methane hydrate samples. Sci. China Chem. 2012, 55, 373–379. [Google Scholar]
- Jin, H.-Q.; Yao, X.-L.; Fan, L.-W.; Xu, X.; Yu, Z.-T. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: Effects of moisture content. Int. J. Heat Mass Transf. 2016, 92, 589–602. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, P.; Qiu, S.; Rao, B.; Yu, B. A generalized thermal conductivity model for unsaturated porous media with fractal geometry. Int. J. Heat Mass Transf. 2020, 152, 119540. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.; Liu, Y.; Dengjia, J. A model for the effective thermal conductivity of moist porous building materials based on fractal theory. Int. J. Heat Mass Transf. 2018, 125, 387–399. [Google Scholar] [CrossRef]
- Yu, B.; Ping, C. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 2002, 45, 2983–2993. [Google Scholar] [CrossRef]
- Miao, T.; Cheng, S.; Chen, A.; Yu, B. Analysis of axial thermal conductivity of dual-porosity fractal porous media with random fractures. Int. J. Heat Mass Transf. 2016, 102, 884–890. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wheeler, J.A. The Fractal Geometry of Nature. Am. J. Phys. 1983, 51, 468. [Google Scholar] [CrossRef]
- Pia, G.; Casnedi, L.; Ricciu, R.; Besalduch, L.A.; Cocco, O.; Murru, A.; Meloni, P.; Sanna, U. Thermal properties of porous stones in cultural heritage: Experimental findings and predictions using an intermingled fractal units model. Energy Build. 2016, 118, 232–239. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Fan, H. A fractal modal for evaluating heat conduction in porous media. J. Therm. Sci. Technol. 2002, 1, 28–31. [Google Scholar]
- Peng, X.; Yu, B.; Yun, M.; Zou, M. Heat conduction in fractal tree-like branched networks. Int. J. Heat Mass Transf. 2006, 49, 3746–3751. [Google Scholar]
- Huang, Z.; Zhai, D.; Gao, X.; Xu, T.; Fang, Y.; Zhang, Z. Theoretical study on effective thermal conductivity of salt/expanded graphite composite material by using fractal method. Appl. Therm. Eng. 2015, 86, 309–317. [Google Scholar] [CrossRef]
- You, L.; Cai, J.; Kang, Y.; Luo, L. A Fractal Approach to Spontaneous Imbibition Height in Natural Porous Media. Int. J. Mod. Phys. C Comput. Phys. Phys. Comput. 2013, 24, 1350063. [Google Scholar] [CrossRef]
- Shi, Y.; Yassin, M.R.; Dehghanpour, H. A Modified Model for Spontaneous Imbibition of Wetting Phase into Fractal Porous Media. Colloids Surf. A Physicochem. Eng. Asp. 2017, 543, 64–75. [Google Scholar] [CrossRef]
- Tan, X.H.; Jiang, L.; Li, X.P.; Li, Y.Y.; Zhang, K. A complex model for the permeability and porosity of porous media. Chem. Eng. Sci. 2017, 172, 230–238. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Zhao, J.; Xie, S.; Jiang, H. A Novel Porous Media Permeability Model Based on Fractal Theory and Ideal Particle Pore-Space Geometry Assumption. Energies 2020, 13, 510. [Google Scholar] [CrossRef]
- Cai, J.; Wei, W.; Hu, X.; Wood, D.A. Electrical conductivity models in saturated porous media: A review. Earth Sci. Rev. 2017, 171, 419–433. [Google Scholar] [CrossRef]
- Meng, H.; Shi, Q.; Liu, T.; Liu, F.; Chen, P. The Percolation Properties of Electrical Conductivity and Permeability for Fractal Porous Media. Energies 2019, 12, 1085. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Li, J. Some Fractal Characters of Porous Media. Fractals 2001, 09, 365–372. [Google Scholar] [CrossRef]
- Jing, P. Effect of Pore Features of Autoclaved Aerated Concrete on Thermal Conductivity. Master’s Thesis, North China University of Water Resources and Electric Power, Zhengzhou, China, 2018. [Google Scholar]
- Shen, X. Study on Coupled Heat and Moisture Transfer Characteristics in Building Envelope with Freezing and Thawing Process. Ph.D. Thesis, Chongqing University, Chongqing, China, 2018. [Google Scholar]
- Kou, J.; Liu, Y.; Wu, F.; Fan, J.; Lu, H.; Xu, Y. Fractal analysis of effective thermal conductivity for three-phase (unsaturated) porous media. J. Appl. Phys. 2009, 106, 054905–054911. [Google Scholar] [CrossRef] [Green Version]
- Hu, A.; Yu, M.; Chen, H.; Xu, B.; Fan, X. A Method for Prediction of Thermal Conductivity of Homogeneously Stacked Small Particles. Int. J. Thermophys. 2015, 36, 2535–2547. [Google Scholar] [CrossRef]
- Koponen, A.; Kataja, M.; Timonen, J. Permeability and effective porosity of porous media. Phys. Rev. E 1997, 56, 3319–3325. [Google Scholar] [CrossRef]
Model | Mechanism | Math Expression |
---|---|---|
Series | ||
Parallel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, C.; Cui, W.; Li, L. A Fractal Model of Effective Thermal Conductivity of Porous Materials Considering Tortuosity. Energies 2023, 16, 271. https://doi.org/10.3390/en16010271
Zhan C, Cui W, Li L. A Fractal Model of Effective Thermal Conductivity of Porous Materials Considering Tortuosity. Energies. 2023; 16(1):271. https://doi.org/10.3390/en16010271
Chicago/Turabian StyleZhan, Chen, Wenzhi Cui, and Longjian Li. 2023. "A Fractal Model of Effective Thermal Conductivity of Porous Materials Considering Tortuosity" Energies 16, no. 1: 271. https://doi.org/10.3390/en16010271
APA StyleZhan, C., Cui, W., & Li, L. (2023). A Fractal Model of Effective Thermal Conductivity of Porous Materials Considering Tortuosity. Energies, 16(1), 271. https://doi.org/10.3390/en16010271