Modern Use of Prosumer Energy Regulation Capabilities for the Provision of Microgrid Flexibility Services
Abstract
:1. Introduction
Renewable Energy Sources
2. Statistical Analysis of Recent Research on the Flexibility of Microgrids
Methodology
3. Results
Ongoing Research Topic on Field of Flexibility Service
4. Discussion and Conclusions
- Developing the principles of a business model for the provision of photovoltaic regulatory resources for the provision of flexibility services to local power grids, including the interaction of local user groups within a microgrid or energy communities.
- Developing a trusted communication technology to implement regulation and track the path of energy resources used in the process of providing flexibility services.
- Development of an IT system to support the billing system for flexibility services provided using prosumer installations.
- Use of computational intelligence methods to automate the management of flexible energy resources inside a microgrid or energy community, including the introduction of a peer-to-peer billing model and techniques for predicting available energy volume for flexibility services.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BES | Battery energy storage |
cosφ | Power factor |
DSO | Distribution system operator |
ESS | Electricity supply system |
GW | Gigawatt (power unit) |
IoT | Internet of things |
LV | Low-voltage |
P | Electric power |
P2P | Peer-to-peer |
NPS/PPS | National/Polish Power System |
PV | Photovoltaic (installation) |
Q | Reactive power |
RES | Renewable energy source |
NC RfG | Network Codes Requirements for Generators |
TD | Technical documentation |
U | Supply voltage |
V2G, V2H | Vehicle-to-grid, vehicle-to-home |
References
- Mikołajuk, H.; Zatorska, M.; Stępniak, E.; Wrońska, I.; Gawlewski, K. Statistical Information on Electricity No. 9 (345)—September 2022. 2022. Available online: https://www.are.waw.pl/badania-statystyczne/wynikowe-informacje-statystyczne/publikacje-miesieczne (accessed on 23 November 2022).
- CENELEC European Standards EN50549-1:2019; Requirements for Generating Plants to Be Connected in Parallel with Distribution Networks—Part 1: Connection to a LV Distribution Network—Generating Plants up to and Including Type B. CENELEC: Brussels, Belgium, 2019.
- Daneshvar, M.; Mohammadi-Ivatloo, B.; Zare, K.; Anvari-Moghaddam, A. Optimal Stochastic Water-Energy Nexus Management for Cooperative Prosumers in Modern Multi-Energy Networks. In Proceedings of the 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2022, Prague, Czech Republic, 28 June–1 July 2022. [Google Scholar]
- Laoharojanaphand, V.; Ongsakul, W. Virtual Battery Storage Service Using Hydropower Plant with Co-Located Floating Solar and Wind Generation. Sustain. Energy Technol. Assess. 2021, 47, 101531. [Google Scholar] [CrossRef]
- Luta, D.N.; Raji, A.K. A 2 MW Grid-Tied Fuel Cell Inverter under a Single Loop Control Scheme. In Proceedings of the Proceedings—30th Southern African Universities Power Engineering Conference, SAUPEC 2022, Durban, South Africa, 25–27 January 2022. [Google Scholar]
- Soto, E.A.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Peer-to-Peer Energy Trading: A Review of the Literature. Appl. Energy 2021, 283, 116268. [Google Scholar] [CrossRef]
- Andresen, C.A.; Sale, H.; Degefa, M.Z. Sizing Electric Battery Storage System for Prosumer Villas. In Proceedings of the SEST 2020—3rd International Conference on Smart Energy Systems and Technologies, Istanbul, Turkey, 7–9 September 2020. [Google Scholar]
- Brecl, K.; Topic, M. Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions. Energies 2018, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-P.; Han, D.; Won, D. Grid-Oriented Coordination Strategy of Prosumers Using Game-Theoretic Peer-to-Peer Trading Framework in Energy Community. Appl. Energy 2022, 326, 119980. [Google Scholar] [CrossRef]
- Henn, S.; Wenzel, T.; Osterhage, T.; Müller, D. A Game Theory Based Optimal Operation Strategy for Neighborhoods. In Proceedings of the ECOS 2021—34th International Conference on Efficency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Taormina, Italy, 4–6 July 2021; pp. 299–309. [Google Scholar]
- Gough, M.; Santos, S.F.; Javadi, M.; Castro, R.; Catalão, J.P.S. Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis. Energies 2020, 13, 2710. [Google Scholar] [CrossRef]
- Guedes, W.; Deotti, L.; Dias, B.; Soares, T.; de Oliveira, L.W. Community Energy Markets with Battery Energy Storage Systems: A General Modeling with Applications. Energies 2022, 15, 7714. [Google Scholar] [CrossRef]
- Zhang, Z.; Lehmal, C.; Hackl, P.; Schuerhuber, R.; Zuo, J. Study of the Dynamic Performance Boundaries of a Converter’s Energy Storage Device. Elektrotechnik Und Inf. 2022, 139, 682–692. [Google Scholar] [CrossRef]
- Hashemipour, N.; Crespo del Granado, P.; Aghaei, J. Dynamic Allocation of Peer-to-Peer Clusters in Virtual Local Electricity Markets: A Marketplace for EV Flexibility. Energy 2021, 236, 121428. [Google Scholar] [CrossRef]
- Hernández, J.C.; Sanchez-Sutil, F.; Muñoz-Rodríguez, F.J.; Baier, C.R. Optimal Sizing and Management Strategy for PV Household-Prosumers with Self-Consumption/Sufficiency Enhancement and Provision of Frequency Containment Reserve. Appl. Energy 2020, 277, 115529. [Google Scholar] [CrossRef]
- Saini, V.K.; Singh, R.; Mahto, D.K.; Kumar, R.; Mathur, A. Learning Approach for Energy Consumption Forecasting in Residential Microgrid. In Proceedings of the 2022 IEEE Kansas Power and Energy Conference, KPEC 2022, Manhattan, KS, USA, 25–26 April 2022. [Google Scholar]
- Khorasany, M.; Najafi-Ghalelou, A.; Razzaghi, R. A Framework for Joint Scheduling and Power Trading of Prosumers in Transactive Markets. IEEE Trans. Sustain. Energy 2021, 12, 955–965. [Google Scholar] [CrossRef]
- Nizami, M.S.H.; Hossain, M.J.; Amin, B.M.R.; Fernandez, E. A Residential Energy Management System with Bi-Level Optimization-Based Bidding Strategy for Day-Ahead Bi-Directional Electricity Trading. Appl. Energy 2020, 261, 114322. [Google Scholar] [CrossRef]
- Ghaebi Panah, P.; Hooshmand, R.-A.; Gholipour, M.; Macana, C.A.; Guerrero, J.M.; Vasquez, J.C. A Cost-Effective Disturbance Governance Framework for Low-Inertia Autonomous Microgrids. Sustain. Energy Technol. Assess. 2021, 48, 101640. [Google Scholar] [CrossRef]
- Nizami, S.; Tushar, W.; Hossain, M.J.; Yuen, C.; Saha, T.; Poor, H.V. Transactive Energy for Low Voltage Residential Networks: A Review. Appl. Energy 2022, 323, 119556. [Google Scholar] [CrossRef]
- Saviuc, I.; Milis, K.; Peremans, H.; van Passel, S. A Cross-European Analysis of the Impact of Electricity Pricing on Battery Uptake in Residential Microgrids with Photovoltaic Units. J. Sustain. Dev. Energy Water Environ. Syst. 2021, 9, 1080368. [Google Scholar] [CrossRef]
- Tsao, Y.-C.; Dedimas Beyene, T.; Gebeyehu, S.G.; Kuo, T.-C. Renewable Power Distribution Networks Considering Dynamic-Differential Pricing, Carbon Trading, and Solid Waste Recycling: A Fuzzy Programming Approach. Int. J. Electr. Power Energy Syst. 2023, 144, 108521. [Google Scholar] [CrossRef]
- Plamanescu, R.; Dumitrescu, A.-M.; Albu, M.; Suryanarayanan, S. A Hybrid Hilbert-Huang Method for Monitoring Distorted Time-Varying Waveforms. Energies 2021, 14, 1864. [Google Scholar] [CrossRef]
- Plamanescu, R.; Dumitrescu, A.-M.; Albu, M.; Suryanarayanan, S. Monitoring LV Prosumers Operation Using Hilbert-Huang Method. In Proceedings of the UPEC 2020—2020 55th International Universities Power Engineering Conference, Torino, Italy, 1–4 September 2020. [Google Scholar]
- Olivares-Rojas, J.C.; Reyes-Archundia, E.; Gutierrez-Gnecchi, J.A.; Molina-Moreno, I.; Cerda-Jacobo, J.; Mendez-Patino, A. A Transactive Energy Model for Smart Metering Systems Using Blockchain. CSEE J. Power Energy Syst. 2021, 7, 943–953. [Google Scholar] [CrossRef]
- Neagu, B.C.; Grigoras, G. A Data-Mining-Based Methodology to Identify the Behavioural Characteristics of Prosumers within Active Distribution Networks. In Proceedings of the 2020 International Symposium on Fundamentals of Electrical Engineering, ISFEE 2020, Bucharest, Romania, 5–7 November 2020. [Google Scholar]
- van Leeuwen, G.; AlSkaif, T.; Gibescu, M.; van Sark, W. An Integrated Blockchain-Based Energy Management Platform with Bilateral Trading for Microgrid Communities. Appl. Energy 2020, 263, 114613. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Guo, Q.; Nojavan, S. Pumped Hydro Energy Storage Arbitrage in the Day-Ahead Market in Smart Grid Using Stochastic p-Robust Optimization Method. Sustain. Cities Soc. 2021, 75, 103274. [Google Scholar] [CrossRef]
- Hernández, J.C.; Gomez-Gonzalez, M.; Sanchez-Sutil, F.; Jurado, F. Optimization of Battery/Supercapacitor-Based Photovoltaic Household-Prosumers Providing Self-Consumption and Frequency Containment Reserve as Influenced by Temporal Data Granularity. J. Energy Storage 2021, 36, 102366. [Google Scholar] [CrossRef]
- Singh, K.; Singh, A. Behavioural Modelling for Personal and Societal Benefits of V2G/V2H Integration on EV Adoption. Appl. Energy 2022, 319, 119265. [Google Scholar] [CrossRef]
- Mumbere, S.K.; Matsumoto, S.; Fukuhara, A.; Bedawy, A.; Sasaki, Y.; Zoka, Y.; Yorino, N.; Tanioka, Y. An Energy Management System for Disaster Resilience in Islanded Microgrid Networks. In Proceedings of the 2021 IEEE PES/IAS PowerAfrica, PowerAfrica 2021, Virtual, 23–27 August 2021. [Google Scholar]
- Hou, P.; Yang, G.; Hu, J.; Douglass, P.J.; Xue, Y. A Distributed Transactive Energy Mechanism for Integrating PV and Storage Prosumers in Market Operation. Engineering 2022, 12, 171–182. [Google Scholar] [CrossRef]
- Medved’, D.; Kolcun, M.; Pavlík, M.; Beňa, L.; Mešter, M. Analysis of Prosumer Behavior in the Electrical Network. Energies 2021, 14, 8212. [Google Scholar] [CrossRef]
- Huang, Q.; Amin, W.; Umer, K.; Gooi, H.B.; Eddy, F.Y.S.; Afzal, M.; Shahzadi, M.; Khan, A.A.; Ahmad, S.A. A Review of Transactive Energy Systems: Concept and Implementation. Energy Rep. 2021, 7, 7804–7824. [Google Scholar] [CrossRef]
- Botelho, D.F.; Dias, B.H.; de Oliveira, L.W.; Soares, T.A.; Rezende, I.; Sousa, T. Innovative Business Models as Drivers for Prosumers Integration—Enablers and Barriers. Renew. Sustain. Energy Rev. 2021, 144, 111057. [Google Scholar] [CrossRef]
Source | Weather Dependency | Power Adjustment Range | Connection Level | Flexibility in Microgrids and Controllability |
---|---|---|---|---|
photovoltaic installation | yes | full power range | individual prosumer and group supply | available (power balance control) |
wind turbine | yes | limited from above and below | distribution network, group supply | none (can be turned on and off) |
hydroelectricity | some extent | full power range | distribution network | available (quick adjuster) |
hydrogen fuel cell | no | full power range | data not available | available (quick adjuster) |
geothermal energy | no | full power range | distribution network | n/a |
biomass, biogas | some extent | from about 60% of rated power | individual and agricultural prosumer, distribution network, group supply | available, from the minimum parameters of the alternator |
Main Direction of Research | Number of Papers |
---|---|
energy community and peer-to-peer | 99 |
flexibility services | 96 |
| 68 |
| 55 |
| 15 |
| 7 |
trading policy | 70 |
| 68 |
| 27 |
| 10 |
blockchain, security | 25 |
Internet of things | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostrowska, A.; Sikorski, T.; Burgio, A.; Jasiński, M. Modern Use of Prosumer Energy Regulation Capabilities for the Provision of Microgrid Flexibility Services. Energies 2023, 16, 469. https://doi.org/10.3390/en16010469
Ostrowska A, Sikorski T, Burgio A, Jasiński M. Modern Use of Prosumer Energy Regulation Capabilities for the Provision of Microgrid Flexibility Services. Energies. 2023; 16(1):469. https://doi.org/10.3390/en16010469
Chicago/Turabian StyleOstrowska, Anna, Tomasz Sikorski, Alessandro Burgio, and Michał Jasiński. 2023. "Modern Use of Prosumer Energy Regulation Capabilities for the Provision of Microgrid Flexibility Services" Energies 16, no. 1: 469. https://doi.org/10.3390/en16010469
APA StyleOstrowska, A., Sikorski, T., Burgio, A., & Jasiński, M. (2023). Modern Use of Prosumer Energy Regulation Capabilities for the Provision of Microgrid Flexibility Services. Energies, 16(1), 469. https://doi.org/10.3390/en16010469