Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Gassing towards Electrical Stress and Ionization
2.2. Gassing towards Thermal Stress
2.3. Stray Gassing
2.4. Test Methods and Interpretation Used for Dissolved Gas Analysis
3. Discussion
3.1. Mechanism of Gas Evolution for Different Insulating Fluids
3.1.1. Gassing Tendency in Mineral Oil
3.1.2. Gassing Tendency in Silicone Oil and Ester Fluids
3.1.3. Gassing Tendency in Mixed Insulating Fluid
3.1.4. Impact of Additives on Gassing Tendency
3.1.5. Impact of Stray Gassing on Dissolved Gas Analysis
3.2. Effect of Regeneration towards Dissolved Gas Analysis
4. Conclusions and Future Scope
- The identification of gases formed in different insulating fluids under electrical and thermal stresses should be performed as per the standards postulated with separate interpretation guide established for mineral oil and alternative fluids for transformer applications. To identify and isolate the stray gassing from coinciding with the actual faults occurring inside the transformers, the experiments should be performed under lower temperatures of around 90–200 °C. Additionally, among the different interpretation schemes used for the identification of faults, the Duval pentagon method is the most prominent technique that considers the concentration of all gases compared to Duval triangle method which considers only three prominent gases (CH4, C2H2 and C2H4).
- The hydrogen atoms formed due to primary decomposition in the insulating fluids is responsible for the formation of other hydrocarbons. Additionally, the quantity of oxygen level in transformer can accelerate the degradation of insulating paper resulting in carbon monoxide at lower temperatures and carbon dioxide at higher temperatures.
- Based on the aromatic content present in the insulating fluid, the gases formed can either get absorbed or evolved. Due to this characteristics, mineral oil containing aromatic hydrocarbons and natural ester containing polyolefins in their chemical composition results in positive gassing tendency compared to synthetic ester which shows the negative gassing tendency.
- The aromaticity of insulating fluids can be related to the gassing tendency whereas the additives, such as BHT and DBP, which are aromatic hindered phenolic structure shows a negative correlation with field strength. This phenomenon holds good not only for mineral oil, but also for the alternative fluids used for transformer operation.
- The stray gassing phenomenon can be formed due to the usage of non-inhibited oils, addition of passivators, oxygen concentration levels, and water content in the insulating fluids. In addition, the reclamation of aged insulating fluids can reduce the gassing tendency, but a special care must be taken by the insulating engineers on the sulphur content that is getting exchanged during the process and the level of antioxidants before reusing them inside the transformers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEC. Power Transformers-Part 11: Dry-Type Transformers; IEC 60076:2018; IEC: Geneva, Switzerland, 2018. [Google Scholar]
- Wimmer, J.; Tanner, M.R.; Nunn, T.; Kern, J. Dry-type transformers: Specification, installation, and operational impacts in a marine environment. IEEE Ind. Appl. Mag. 2013, 19, 68–75. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard Test Code for Dry-Type Distribution and Power Transformers; IEEE C57.12.91 (Revision of IEEE Std C57.12.91-2011); IEEE: Piscataway, NY, USA, 2021; pp. 1–102. [Google Scholar]
- Camilli, G.; Littlejohn, L.G.; Wooldridge, W.A. Internal Fault Characteristics of Gas-Insulated Transformers. Trans. Am. Inst. Electr. Eng. Part III Power Appar. Syst. 1959, 78, 1779–1783. [Google Scholar] [CrossRef]
- Chu, F.Y. SF6 decomposition in gas-insulated equipment. IEEE Trans. Electr. Insul. 1986, 5, 693–725. [Google Scholar] [CrossRef]
- Prevost, T.A.; Oommen, T.V. Cellulose insulation in oil-filled power transformers: Part I-history and development. IEEE Electr. Insul. Mag. 2006, 22, 28–35. [Google Scholar] [CrossRef]
- Morrison, E.L. Evaluation of the thermal stability of electrical insulating paper. IEEE Trans. Electr. Insul. 1968, 3, 76–82. [Google Scholar] [CrossRef]
- Safiddine, L.; Hadj-Ziane Zafour, A.; Fofana, I.; Skender, A.; Guerbas, F.; Boucherit, A. Transformer oil reclamation by combining several strategies enhanced by the use of four adsorbents. IET Gener. Transm. Distrib. 2017, 11, 2912–2920. [Google Scholar] [CrossRef]
- Borja, J.; Taleon, D.M.; Auresenia, J.; Gallardo, S. Polychlorinated biphenyls and their biodegradation. Process Biochem. 2005, 40, 1999–2013. [Google Scholar] [CrossRef]
- Fitzgerald, E.F.; Standfast, S.J.; Youngblood, L.G.; Melius, J.M.; Janerich, D.T. Assessing the health effects of potential exposure to PCBs, dioxins, and furans from electrical transformer fires: The Binghamton State Office Building medical surveillance program. Arch. Environ. Health 1986, 41, 368–376. [Google Scholar] [CrossRef]
- Fernández, I.; Ortiz, A.; Delgado, F.; Renedo, C.; Perez, S. Comparative evaluation of alternative fluids for power transformers. Electr. Power Syst. Res. 2013, 98, 58–69. [Google Scholar] [CrossRef]
- Kuwahara, H.; Tsuruta, K.; Munemurs, H.; Ishii, T.; Shiomi, H. Partial discharge characteristics of silicone liquids. IEEE Trans. Electr. Insul. 1976, 11, 86–91. [Google Scholar] [CrossRef]
- Rouse, T.O. Mineral insulating oil in transformers. IEEE Electr. Insul. Mag. 1998, 14, 6–16. [Google Scholar] [CrossRef]
- Scatiggio, F.; Tumiatti, V.; Maina, R.; Tumiatti, M.; Pompili, M.; Bartnikas, R. Corrosive sulfur induced failures in oil-filled electrical power transformers and shunt reactors. IEEE Trans. Power Deliv. 2009, 24, 1240–1248. [Google Scholar] [CrossRef]
- Tokunaga, J.; Nikaido, M.; Koide, H.; Hikosaka, T. Palm fatty acid ester as biodegradable dielectric fluid in transformers: A review. IEEE Electr. Insul. Mag. 2019, 35, 34–46. [Google Scholar] [CrossRef]
- N’cho, J.S.; Fofana, I.; Hadjadj, Y.; Beroual, A. Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers. Energies 2016, 9, 367. [Google Scholar] [CrossRef]
- Rao, U.M.; Sood, Y.R.; Jarial, R.K. Ester dielectrics: Current perspectives and future challenges. IETE Tech. Rev. 2017, 34, 448–459. [Google Scholar] [CrossRef]
- Mehta, D.M.; Kundu, P.; Chowdhury, A.; Lakhiani, V.K.; Jhala, A.S. A review on critical evaluation of natural ester vis-a-vis mineral oil insulating liquid for use in transformers: Part 1. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 873–880. [Google Scholar] [CrossRef]
- Lashbrook, M. Ester Fluids for Power Transformers at> 100Kv. Transform. Mag. 2014, 1, 14–19. [Google Scholar]
- Asano, R.; Page, S.A. Reducing environmental impact and improving safety and performance of power transformers with natural ester dielectric insulating fluids. IEEE Trans. Ind. Appl. 2013, 50, 134–141. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.D. Streamer characteristic and breakdown in synthetic and natural ester transformer liquids under standard lightning impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 285–294. [Google Scholar] [CrossRef]
- CIGRE Working Group A 2.35. Experiences in Service with New Insulating Liquids; CIGRE: Paris, France, 2010; ISBN 978-2-85873-124-4. [Google Scholar]
- Lyutikova, M.; Korobeynikov, S.; Rao, U.M.; Fofana, I. Mixed Insulating Liquids with Mineral Oil for High Voltage Transformer Applications: A Review. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 454–461. [Google Scholar] [CrossRef]
- Hamdi, A.; Fofana, I.; Djillali, M. Stability of mineral oil and oil–ester mixtures under thermal ageing and electrical discharges. IET Gener. Transm. Distrib. 2017, 11, 2384–2392. [Google Scholar] [CrossRef]
- Pierce, L.W. An investigation of the thermal performance of an oil filled transformer winding. IEEE Trans. Power Deliv. 1992, 7, 1347–1358. [Google Scholar] [CrossRef]
- Loiselle, L.; Fofana, I.; Sabau, J.; Magdaleno-Adame, S.; Olivares-Galvan, J.C. Comparative studies of the stability of various fluids under electrical discharge and thermal stresses. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2491–2499. [Google Scholar] [CrossRef]
- Oommen, T.V.; Prevost, T.A. Cellulose insulation in oil-filled power transformers: Part II maintaining insulation integrity and life. IEEE Electr. Insul. Mag. 2006, 22, 2006. [Google Scholar] [CrossRef]
- Wang, M.; Vandermaar, A.J.; Srivastava, K.D. Review of condition assessment of power transformers in service. IEEE Electr. Insul. Mag. 2002, 18, 12–25. [Google Scholar] [CrossRef]
- Hadjadj, Y.; Fofana, I.; Sabau, J.; Briosso, E. Assessing insulating oil degradation by means of turbidity and UV/Vis spectrophotometry measurements. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2653–2660. [Google Scholar] [CrossRef]
- Talhi, M.; Fofana, I.; Flazi, S. Impact of various stresses on the streaming electrification of transformer oil. J. Electrostat 2016, 79, 25–32. [Google Scholar] [CrossRef]
- Saha, T.K. Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Florkowski, M.; Furgał, J.; Kuniewski, M. Propagation of overvoltages in the form of impulse, chopped and oscillating waveforms in transformer windings—Time and frequency domain approach. Energies 2020, 13, 304. [Google Scholar] [CrossRef] [Green Version]
- Murthy, A.S.; Azis, N.; Jasni, J.; Othman, M.L.; Yousof, M.F.M.; Martin, D.; Talib, M. Investigation of the impact of a standard lightning impulse on the structure of an 11/0.415 kV distribution transformer. Electr. Power Syst. Res. 2022, 202, 107588. [Google Scholar] [CrossRef]
- Nakane, R.; Okubo, H.; Kato, K. HVDC electrical insulation performance based on charge activity in oil-pressboard composite insulation structures. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 576–583. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Li, S.; Zhu, Y.; Cui, H.; Yan, W.; Ge, Z.; Abu-Siada, A. Effect of AC-voltage harmonics on oil impregnated paper in transformer bushings. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 26–32. [Google Scholar] [CrossRef]
- IEC. Gassing of Electrical Insulating Liquids under Electrical Stress and Ionization; IEC 60628:1985; IEC: Geneva, Switzerland, 1985. [Google Scholar]
- ASTM. Standard Test Method for Gassing of Electrical Insulating Liquids Under Electrical Stress and Ionization; D2300-08; ASTM: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Standard Test Method for Stability of Insulating Oils of Petroleum Origin under Electrical Discharge; ASTM D6180-05; ASTM International: West Conshohocken, PA, USA, 2005.
- N’cho, J.S.; Fofana, I.; Beroual, A.; Aka-Ngnui, T.; Sabau, J. The gassing tendency of various insulating fluids under electrical discharge. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1616–1625. [Google Scholar] [CrossRef]
- Arakelian, V.G.; Fofana, I. Physicochemical aspects of gassing of insulating liquids under electrical stress. IEEE Electr. Insul. Mag. 2009, 25, 43–51. [Google Scholar] [CrossRef]
- Pradhan, M.K. Assessment of the status of insulation during thermal stress accelerated experiments on transformer prototypes. IEEE Trans. Dielectr. Electr. Insul 2006, 13, 227–237. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Determination of Gassing Characteristics of Insulating Liquids Under Thermal Stress; D7150; ASTM: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Kweon., D.; Kim, Y. Interpretation of turn-to-turn insulation fault by dissolved gas analysis. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1560–1566. [Google Scholar] [CrossRef]
- Grisaru, M. Transformer maintenance: Hydrogen–the most measured and monitored transformer parameter. Transform. Mag. 2018, 5, 42–49. [Google Scholar]
- Actis, R.; Maina, R.; Tumiatti, V. Diagnostics of HV bushings through oil sampling and analysis: Experience with GSU transformers. Transform. Mag. 2017, 4, 142–147. [Google Scholar]
- CIGRE D1-01/A2.11. Recent Developments in DGA Interpretation; Convenor, M.D., Ed.; CIGRE Technical Brochure # 296; CIGRE: Paris, France, June 2006. [Google Scholar]
- ASTM. Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography; D3612-2; ASTM: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Malik, H.; Mishra, S. Application of gene expression programming (GEP) in power transformers fault diagnosis using DGA. IEEE Trans. Ind. Appl. 2016, 52, 4556–4565. [Google Scholar] [CrossRef]
- IEC. Mineral Oil-Filled Electrical Equipment in Service—Guidance on the Interpretation of Dissolved and Free Gases Analysis; IEC 60599:2015; IEC: Geneva, Switzerland, 2015. [Google Scholar]
- IEEE. IEEE Guide for the Interpretation of Gases Generated in Silicone-Immersed Transformers; IEEE C57.146; IEEE: Piscataway, NY, USA, 2006; pp. 1–25. [Google Scholar]
- IEEE. IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers; IEEE Std C57.104-2019 (Revision of IEEE Std C57.104-2008); IEEE: Piscataway, NJ, USA, 2019; pp. 1–98. [Google Scholar]
- IEEE. IEEE Guide for Interpretation of Gases Generated in Natural Ester and Synthetic Ester-Immersed Transformers; IEEE Std. C57.155-2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–52. [Google Scholar]
- Sun, H.C.; Huang, Y.C.; Huang, C.M. A review of dissolved gas analysis in power transformers. Energy Procedia 2012, 14, 1220–1225. [Google Scholar] [CrossRef] [Green Version]
- Akbari, A.; Setayeshmehr, A.; Borsi, H.; Gockenbach, E.; Fofana, I. Intelligent agent-based system using dissolved gas analysis to detect incipient faults in power transformers. IEEE Electr. Insul. Mag. 2010, 26, 27–40. [Google Scholar] [CrossRef]
- Sharma, N.K.; Tiwari, P.K.; Sood, Y.R. Review of artificial intelligence techniques application to dissolved gas analysis on power transformer. Int. J. Electr. Comput. Eng. 2011, 3, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Rao, U.M.; Fofana, I.; Rajesh, K.N.V.P.S.; Picher, P. Identification and Application of Machine Learning Algorithms for Transformer Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1828–1835. [Google Scholar] [CrossRef]
- Fofana, I.; Bouaïcha, A.; Farzaneh, M.; Sabau, J.; Bussières, D.; Robertson, E.B. Decay products in the liquid insulation of power transformers. IET Electr. Power Appl. 2010, 4, 177–184. [Google Scholar] [CrossRef]
- Johnson, D.L. Insulating Oil Qualification and Acceptance Tests from a User’s Perspective. In Electrical Insulating Oils; STP998; ASTM International: West Conshohocken, PA, USA, 1988. [Google Scholar]
- Vahidi, B.; Teymouri, A. Quality Confirmation Tests for Power Transformer Insulation Systems, 1st ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Sabau, J.; Stokhuyzen, R. The side effects of gassing in transmission power transformers. In Proceedings of the IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Victoria, BC, Canada, 15–18 October 2000; pp. 264–267. [Google Scholar]
- Höhlein-Atanasova, I.; Frotscher, R. Carbon oxides in the interpretation of dissolved gas analysis in transformers and tap changers. IEEE Electr. Insul. Mag. 2010, 26, 22–26. [Google Scholar] [CrossRef]
- Chakravorti, S.; Dey, D.; Chatterjee, B. Recent Trends in the Condition Monitoring of Transformers, 1st ed.; Springer: London, UK, 2013. [Google Scholar]
- Chatterton, W.J.; Goudie, J.L. An update on silicone transformer fluid: Specification, manufacturing, maintenance and end of life options. In Proceedings of the IEEE International Symposium on Electrical Insulation, Anaheim, CA, USA, 5 April 2000; pp. 412–416. [Google Scholar]
- Prasojo, R.A.; Gumilang, H.; Maulidevi, N.U.; Soedjarno, B.A. A fuzzy logic model for power transformer faults’ severity determination based on gas level, gas rate, and dissolved gas analysis interpretation. Energies 2020, 13, 1009. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, X.; Yi, X.; Li, S.; Hinshaw, J.V. Gas generation in natural ester and mineral oil under partial discharge and sparking faults. IEEE Electr. Insul. Mag. 2013, 29, 62–70. [Google Scholar] [CrossRef]
- Casserly, E. The Relationship Between the Physical, Chemical, and Functional Properties of Insulating Liquids. In Proceedings of the IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar]
- Perrier, C.; Beroual, A. Experimental investigations on insulating liquids for power transformers: Mineral, ester, and silicone oils. IEEE Electr. Insul. Mag. 2009, 25, 6–13. [Google Scholar] [CrossRef]
- Fofana, I.; Wasserberg, V.; Borsi, H.; Gockenbach, E. Challenge of mixed insulating liquids for use in high-voltage transformers. 1. Investigation of mixed liquids. IEEE Electr. Insul. Mag. 2002, 18, 18–31. [Google Scholar] [CrossRef]
- Sierota, A.; Rungis, J. Electrical insulating oils. I. Characterization and pre-treatment of new transformer oils. IEEE Electr. Insul. Mag. 1995, 11, 8–20. [Google Scholar] [CrossRef]
- Beroual, A.; Zahn, M.; Badent, A.; Kist, K.; Schwabe, A.J.; Yamashita, H.; Yamazawa, K.; Danikas, M.; Chadband, W.D.; Torshin, Y. Propagation and structure of streamers in liquid dielectrics. IEEE Electr. Insul. Mag. 1998, 14, 6–17. [Google Scholar] [CrossRef] [Green Version]
- ASTM. Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus; D3487; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Okabe, S.; Kohtoh, M.; Amimoto, T. Suppression of increase in electrostatic charging tendency of insulating oil by aging used for power transformer insulation. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 294–301. [Google Scholar] [CrossRef]
- Li, J.; He, Z.; Bao, L.; Yang, L. Influences of corrosive sulfur on copper wires and oil-paper insulation in transformers. Energies 2011, 4, 1563–1573. [Google Scholar] [CrossRef]
- Wan, T.; Qian, H.; Zhou, Z.; Gong, S.K.; Hu, X.; Feng, B. Suppressive mechanism of the passivator irgamet 39 on the corrosion of copper conductors in transformers. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 454–459. [Google Scholar] [CrossRef]
- Amalanathan, A.J.; Sarathi, R.; Prakash, S.; Mishra, A.K.; Gautam, R.; Vinu, R. Investigation on thermally aged natural ester oil for real-time monitoring and analysis of transformer insulation. High Volt. 2020, 5, 209–217. [Google Scholar] [CrossRef]
- Raymon, A.; Pakianathan, P.S.; Rajamani, M.P.E.; Karthik, R. Enhancing the critical characteristics of natural esters with antioxidants for power transformer applications. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 899–912. [Google Scholar] [CrossRef]
- Clarke, S.A.; Reynolds, E.H. The influence of the constitution of oils upon their gassing under electric stress. Dielectrics 1963, 1, 26–44. [Google Scholar]
- Yasufuku, S.; Inuishi, Y. Relatioships between aromaticity of synthetic dielectric fluids and their electrical properties. J. Electrost. 1982, 12, 601–608. [Google Scholar] [CrossRef]
- Dukhi, V.; Bissessur, A.; Ngila, C.J.; Ijumba, N.M. The Determination of Kinetic Parameters of Transformer Oil and its Blends by Thermal Analysis. Int. J. Emerg. Electr. Power Syst. 2012, 13, 1–11. [Google Scholar] [CrossRef]
- Ghani, S.A.; Noorden, Z.A.; Muhamad, N.A.; Zainuddin, H.; Chua Abdullah, M.I.H.; Chairul, I.S. Dielectric Strength Improvement of Natural Ester Insulation Oil via Mixed Antioxidants: Taguchi Approach. Int. J. Electr. Comput. Eng. 2017, 7, 650. [Google Scholar] [CrossRef] [Green Version]
- Sundkvist, K. Oil dependent gas formation in transformer oil. Naphthenics 2002, 1, 10. [Google Scholar]
- CIGRE WG A2-32. Copper Sulphide in Transformer Insulation; CIGRE: Paris, France, April 2009. [Google Scholar]
- Tomita, H.; Ito, T. Effect of molecular structures of insulating oil on Stray Gassing. In Proceedings of the IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, Italy, 23–27 June 2019; pp. 1–4. [Google Scholar]
- Atanasova-Hohlein, I. Stray gassing cases of insulating liquids in HV equipment. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2718–2722. [Google Scholar] [CrossRef]
- Eeckhoudt, S.; Autru, S.; Lerat, L. Stray gassing of transformer insulating oils: Impact of materials, oxygen content, additives, incubation time and temperature, and its relationship to oxidation stability. IEEE Electr. Insul. Mag. 2017, 33, 27–32. [Google Scholar] [CrossRef]
- Atanasova-Höhlein, I. Influence of copper on gassing properties of transformer insulating liquids. IEEE Electr. Insul. Mag. 2019, 35, 15–22. [Google Scholar] [CrossRef]
- Martin, D.; Lelekakis, N.; Wijaya, J.; Duval, M.; Saha, T. Investigations into the stray gassing of oils in the fault diagnosis of transformers. IEEE Trans. Power Deliv. 2014, 29, 2369–2374. [Google Scholar] [CrossRef]
- Hohlein, I. Unusual cases of gassing in transformers in service. IEEE Electr. Insul. Mag. 2006, 22, 24–27. [Google Scholar] [CrossRef]
- Duval, M. The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers. IEEE Electr. Insul. Mag. 2008, 24, 22–29. [Google Scholar] [CrossRef]
- Zhang, X.; Gockenbach, E. Asset-management of transformers based on condition monitoring and standard diagnosis. IEEE Electr. Insul. Mag. 2008, 24, 26–40. [Google Scholar] [CrossRef]
- Wilhelm, H.M.; Stocco, G.B.; Batista, S.G. Reclaiming of in-service natural ester-based insulating fluids. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 128–134. [Google Scholar] [CrossRef]
- IEEE. IEEE Guide for the Reclamation of Mineral Insulating Oil and Criteria for Its Use; IEEE C57.637 (Revision of IEEE Std 637-1985); IEEE: Piscataway, NY, USA, 2015; pp. 1–38. [Google Scholar]
- Velasquez, R.M.A.; Lara, J.V.M. Corrosive Sulphur effect in power and distribution transformers failures and treatments. Eng. Fail. Anal. 2018, 92, 240–267. [Google Scholar] [CrossRef]
- Ab Ghani, S.; Muhamad, N.A.; Zainuddin, H. Performance of palm shell activated carbon as an alternative adsorbent for reclamation of used transformer oil. ARPN J. Eng. Appl. Sci. 2006, 10, 10752–10758. [Google Scholar]
- Raymon, A.; Karthik, R. Reclaiming aged transformer oil with activated bentonite and enhancing reclaimed and fresh transformer oils with antioxidants. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 548–555. [Google Scholar] [CrossRef]
- Safiddine, L.; Zafour, H.Z.; Rao, U.M.; Fofana, I. Regeneration of transformer insulating fluids using membrane separation technology. Energies 2019, 12, 368. [Google Scholar] [CrossRef] [Green Version]
- N’cho, J.S.; Fofana, I.; Beroual, A.; Aka-Ngnui, T.; Sabau, J. Aged oils reclamation: Facts and arguments based on laboratory studies. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1583–1592. [Google Scholar] [CrossRef]
Methods Used for Gassing | Mineral Oil | Natural Ester | Synthetic Ester |
---|---|---|---|
IEC 60628 (µL/min) [66] | 21 | −80 | 25 |
Gas volume (ml) due to localised heating [26] | 15 | 2 | 6 |
Stray gassing (H2 and C2H6) (ppm) [67] | 10, 5 | 970, 550 | 85, 96 |
TDCG (ppm) due to arcing and hotspot | 1100, 2000 | 1500, 1700 | 4950, 4000 |
Duval triangle for electrical fault [18] | - | Fault zones in mineral oil could be used | Fault zones in mineral oil could be used |
Duval triangle for thermal fault [18] | - | T1 zone in mineral oil should be modified | T1 zone in mineral oil should be modified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amalanathan, A.J.; Sarathi, R.; Zdanowski, M.; Vinu, R.; Nadolny, Z. Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications. Energies 2023, 16, 488. https://doi.org/10.3390/en16010488
Amalanathan AJ, Sarathi R, Zdanowski M, Vinu R, Nadolny Z. Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications. Energies. 2023; 16(1):488. https://doi.org/10.3390/en16010488
Chicago/Turabian StyleAmalanathan, Arputhasamy Joseph, Ramanujam Sarathi, Maciej Zdanowski, Ravikrishnan Vinu, and Zbigniew Nadolny. 2023. "Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications" Energies 16, no. 1: 488. https://doi.org/10.3390/en16010488
APA StyleAmalanathan, A. J., Sarathi, R., Zdanowski, M., Vinu, R., & Nadolny, Z. (2023). Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications. Energies, 16(1), 488. https://doi.org/10.3390/en16010488