Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential
Abstract
:1. Introduction
2. Fundamentals of Thermal Disintegration
- -
- Low-temperature, occurring at temperatures below 100 °C (35–100 °C);
- -
- High-temperature, occurring at temperatures above 100 °C (100–275 °C).
3. Biogas Potential of Thermally Disintegrated Sewage Sludge
No. | Sewage Sludge | Temperature and Time of Disintegration | Anaerobic Digestion Conditions | Effects | Source |
---|---|---|---|---|---|
1 | PS | 175 °C, 30 min | continuous fermentation HRT 15 d, 35 °C | production of CH4 252 mL/g COD | [28] |
2 | WAS | CH4 production increase from 115 to 186 mL/g COD (62%) | |||
3 | WAS | CH4 production increase from 205 to 234 mL/g COD (14%) | |||
4 | WAS | 175 °C, 60 min | continuous fermentation HRT 5 d, 35 °C | biogas production increase from 108 to 216 mL/g COD (100%) | [35] |
5 | WAS | 180 °C, 60 min | batch fermentation, 8 d, 37 °C | CH4 production increase (90%) | [18] |
6 | WAS | 160 °C | wastewater treatment plant, HRT 15 d | biogas production increase (60%) | [70] |
7 | WAS | 121 °C, 30 min | batch fermentation, 7 d, 37 °C | biogas production increase from 3657 to 4843 mL/g d.m. (32%) | [49] |
8 | WAS | 170 °C, 60 min | batch fermentation, 24 d, 35 °C | biogas production increase (45%) | [50] |
9 | WAS | 170 °C, 60 min | continuous fermentation HRT 20 d, 35 °C | CH4 production increase from 88 to 142 mL/g COD (61%) | |
10 | WAS | 160 °C, 30 min | Wastewater treatment plant, HRT 15 d, 35 °C | reducing of suspension concentration (45%) | [71] |
11 | WAS | 175 °C, 40 min | continuous fermentation HRT 2.9 d, 37 °C | reducing of suspension concentration (65%) | [45] |
12 | WAS | 170 °C, 30 min | continuous fermentation HRT 20 d, 35 °C | CH4 production increase from 145 to 256 mL/g d.m. (51%) | [72] |
13 | WAS | 170 °C, 30 min | batch fermentation, 24 d, 35 °C | CH4 production increase from 221 to 333 mL/g COD (76%) | |
14 | WAS | 170 °C, 30 min, 7 bar | batch fermentation | CH4 production increase (50%) | [73] |
15 | Mixed PS + WAS | 120 °C, 60 min | continuous fermentation HRT 20 d, 36 °C | CH4 production increase from 350 to 420 mL/g d.m. (20%) | [16] |
16 | Mixed PS + WAS | 170 °C, 1 min, 0.8 MPa | batch fermentation, 20 d | biogas production increase (49%) | [43] |
17 | Mixed PS + WAS | 140 °C, 1 min, 0.6 MPa | wastewater treatment plant, 53–55 °C | biogas production increase from 507 to 599 mL/g d.m. (18%) | [74] |
4. Indicators for Assessing the Degree of Disintegration
- -
- Fragmentation of solid phase particles (change of particle size and particle size distribution, change of rheological properties, change of COD fraction) which is primarily the result of breaking the cell membranes of microorganisms and releasing organic substances into the liquid phase;
- -
- Decrease in hydrolysis time of biopolymers by extracellular enzymes, which are formed and excreted by fermentative microorganisms.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stouthamer, A.H. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek 1973, 39, 545–565. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.H.; Thomsen, T.R.; Nielsen, J.L. Bacterial composition of activated sludge—Importance for floc and sludge properties. Water Sci. Technol. 2004, 49, 71–78. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; van Loosedrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2006; ISBN 9781780402369. [Google Scholar] [CrossRef]
- Batstone, D.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, S.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V. Anaerobic digestion model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Yujie, F.; Hornung, U.; Dahmen, N. Hydrothermal liquefaction of sewage sludge for biofuel application: A review on fundamentals, current challenges and strategie. Biomass Bioenergy 2022, 165, 106570. [Google Scholar] [CrossRef]
- Myszograj, S. Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste. Energies 2019, 12, 3880. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Yang, X.; Wang, Z.; Zhou, J.; You, X. Impact of hydrothermal pre-treatment on the anaerobic digestion of different solid–liquid ratio sludges and kinetic analysis. RSC Adv. 2019, 9, 19104–19113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, W.; Xu, H.; Lu, D.; Zhou, Y. Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: Mechanism, challenges and solutions. Bioresour. Technol. 2022, 344, 126248. [Google Scholar] [CrossRef]
- Myszograj, S. The influence of thermo-chemical treatment of primary sludge on methane fermentation process. In Environmental Protection into the Future; Bień, J.J., Nowak, W., Eds.; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2007; pp. 228–237. [Google Scholar]
- Kor-Bicakci, G.; Eskicioglu, C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion. Renew. Sustain. Energy Rev. 2019, 110, 423–443. [Google Scholar] [CrossRef]
- Kuglarz, M.; Karakashev, D.; Angelidaki, I. Microwave and thermal pretreatment as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants. Bioresour. Technol. 2013, 134, 290–297. [Google Scholar] [CrossRef]
- Pilli, S.; Pandey, A.K.; Katiyar, A.; Pandey, K.; Tyagi, R.D. Pre-treatment technologies to enhance anaerobic digestion. In Sustainable Sewage Sludge Management and Resource Efficiency; Taşeli, B.K., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Smith, G.; Göransson, J. Generation of an effective internal carbon source for denitrification through thermal hydrolysis of pre-precipitated sludge. Water Sci. Technol. 1992, 25, 211–218. [Google Scholar] [CrossRef]
- Barlindhaug, J.; Odegaard, H. Thermal hydrolysis for the production of carbon source for denitrification. Water Sci. Technol. 1996, 34, 371–378. [Google Scholar] [CrossRef]
- Djandja, O.S.; Yin, L.-X.; Wang, Z.-C.; Duan, P.-G. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process Saf. Environ. Protect. 2021, 151, 101–127. [Google Scholar] [CrossRef]
- Barjenbruch, M.; Hoffmann, H.; Tränker, J. Minimizing of foaming in digesters by pre-treatment of the surplus sludge. Water Sci. Technol. 1999, 42, 235–242. [Google Scholar] [CrossRef]
- Kepp, U.; Solheim, O.E. Meeting increased demands on sludge quality—Experience with full scale plant for thermal disintegration. In Proceedings of the 9th World Congress, Anaerobic Conversion for Sustainability, Antwerpen, Belgium, 2–6 September 2001. [Google Scholar]
- Tanaka, S.; Kobayashi, T.; Kamiyama, K.; Bildan, M.L. Effects of thermochemical pre-treatment on the anaerobic digestion of waste activated sludge. Water Sci. Technol. 1997, 8, 209–215. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Kennedy, K.J.; Thibault, G.; Droste, R.L. Microwave enhanced digestion of aerobic SBR sludge. Water SA 2007, 33, 0378–4738. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Hernando, M.; Vinardell, S.; Labanda, J.; Llorens, J. Effect of ultrasonication on waste activated sludge rheological properties and process economics. Water Res. 2022, 208, 117855. [Google Scholar] [CrossRef]
- Thomas, L.; Jungschaffer, G.; Sprössler, B. Improved sludge dewatering by enzymatic treatment. Water Sci. Technol. 1993, 28, 189–192. [Google Scholar] [CrossRef]
- Guellil, A.M.; Boualam, H.; Quiquampoix, P.; Ginestet, P.; Audic, J.; Block, C. Hydrolysis of wastewater colloidal enzymes extracted from activated sludge flocs. Water Sci. Technol. 2001, 43, 33–40. [Google Scholar] [CrossRef]
- Gao, W. Freezing as a combined wastewater sludge pretreatment and conditioning method. Desalination 2011, 268, 170–173. [Google Scholar] [CrossRef]
- Liu, S.; Zhua, N.; Li, L. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment. Chem. Eng. J. 2011, 174, 564–570. [Google Scholar] [CrossRef]
- Bauman-Kaszubska, H.; Sikorski, M. The impact of selected sewage treatment methods on the change in parameters of sewage sludge originating from municipal sewage treatment plants. J. Ecol. Eng. 2018, 19, 199–207. [Google Scholar] [CrossRef]
- Ferrer, I.; Ponsab, S.; Vazquezc, F.; Font, X. Increasing biogas production by thermal sludge pretreatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 2008, 42, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Haug, R.T.; Stuckey, D.C.; Gossett, J.M.; Mac Carty, P.L. Effect of thermal pretreatment on digestibility and dewaterability of organic sludges. J. Water Pollut. Control. 1978, 50, 73–85. [Google Scholar]
- Kepp, U.; Machenbach, I.; Weisz, N.; Solheim, O.E. Enhanced stabilization of sewage sludge through thermal hydrolysis, 3 years of experience with full-scale plant. Water Sci. Technol. 2000, 42, 89–96. [Google Scholar] [CrossRef]
- Neyens, E.; Baeyens, J. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. 2003, 98, 51–67. [Google Scholar] [CrossRef]
- Gahlot, P.; Balasundaram, G.; Tyagi, V.K.; Atabani, A.E.; Suthar, S.; Kazmi, A.A.; Štěpanec, L.; Juchelková, D.; Kumar, A. Principles and potential of thermal hydrolysis of sewage sludge to enhance anaerobic digestion. Environ Res. 2022, 214, 113856. [Google Scholar] [CrossRef]
- Sawayama, S.; Inoue, S.; Ogi, T.; Yokoyama, S. Thermochemical anaerobic treatment of dewatered sewage sludge. J. Ferment. Bioeng. 1995, 79, 300–302. [Google Scholar] [CrossRef]
- Dote, Y.; Yokoyama, S.; Minowa, T.; Masuta, T.; Sato, K.; ShinjiItoh, S.; Suzuki, A. Thermochemical liquidization of dewatered sewage sludge. Biomass Bioenergy 1993, 4, 243–248. [Google Scholar] [CrossRef]
- Myszograj, S.; Stadnik, A.; Płuciennik-Koropczuk, E. The influence of trace elements on anaerobic digestion process. Civ. Environ. Eng. Rep. 2018, 28, 105–115. [Google Scholar] [CrossRef]
- Li, Y.Y.; Noike, T. Upgrading of anaerobic digestion of waste activated sludge by thermal pre-treatment. J. Water Sci. Technol. 1992, 26, 857–866. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenes, J.P.; Carrere, H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.; Camacho, P.; Sperandio, M.; Ginestet, P. Technical and economical evaluation of a thermal, and two oxidative techniques for the reduction of excess sludge production. Process Saf. Environ. Prot. 2006, 84, 247–252. [Google Scholar] [CrossRef]
- Matsuura, Y.; Takehira, M.; Joti, Y.; Ogasahara, K.; Tanaka, T.; Ono, N.; Kunishima, N.; Yutani, K. Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues. Sci. Rep. 2015, 5, 15545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, I.; Motteta, A.; Carrerea, H.; Delerisb, S.; Vedrenneb, F.; Steyera, J.P. Modified ADM1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge. Water Res. 2009, 43, 3479–3492. [Google Scholar] [CrossRef]
- Peterson, A.A.; Lachance, R.P.; Tester, J.W. Kinetic evidence of the Maillard reaction in hydrothermal biomass processing: Glucose-glycine interactions in high-temperature, high-pressure water. Ind. Eng. Chem. Res. 2010, 49, 2107–2117. [Google Scholar] [CrossRef]
- Myszograj, S.; Płuciennik-Koropczuk, E. COD and nitrogen compounds balance in mechanical-biological wastewater treatment plant with sludge treatment. Desalination Water Treat. 2020, 186, 443–449. [Google Scholar] [CrossRef]
- Dohanyos, M.; Zabranska, J.; Kutil, J.; Jenicek, P. Improvement of anaerobic digestion of sludge. Water Sci. Technol. 2004, 49, 89–96. [Google Scholar] [CrossRef]
- Elbing, G.; Dünnebeil, A. Thermal disintegration with subsequent digestion lab-scale investigation. Korresp. Abwasser 1999, 46, 538–547. [Google Scholar]
- Graja, S.; Chauzy, J.; Fernandes, P.; Patria, L.; Cretenot, D. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation. Water Sci. Technol. 2005, 52, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Huang, X. Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge. J. Environ. Sci. 2007, 19, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, D.C.; McCarty, P.L. The effect of thermal pre-treatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res. 1984, 18, 1343–1353. [Google Scholar] [CrossRef]
- Myszograj, S. Effects and mathematical modelling of thermal pretreatment of waste activated sludge. Pol. J. Environ. Stud 2010, 2, 166–170. [Google Scholar]
- Kim, J. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003, 95, 271–275. [Google Scholar] [CrossRef]
- Valo, A.; Carrère, H.; Delgenès, J. Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J. Chem. Technol. Biotechnol. 2004, 79, 1197–1203. [Google Scholar] [CrossRef]
- Bougrier, C.; Carrere, H.; Battimelli, A.; Delgenes, J.P. Effects of various pretreatments on WAS in order to improve matter solubilization and anaerobic digestion. In Proceedings of the 10th World Congress on Anaerobic Digestion (AD10-2004), Montreal, QC, Canada, 29 August–2 September 2004. [Google Scholar]
- Aboulfoth, A.M.; El Gohary, E.H.; El Monayeri, O.D. Effect of thermal pretreatment on the solubilization of organic matters in a mixture of primary and waste activated sludge. J. Urban Environ. Eng. 2015, 9, 82–88. [Google Scholar] [CrossRef]
- Carballa, M.; Omil, F.; Lema, M. Improvement of anaerobic digestion operation and digested sludge character-istics using a chemical and thermal pre-treatment. In Proceedings of the 10th World Congress on Anaerobic Digestion (AD10-2004), Montreal, Canada, 29 August–2 September 2004. [Google Scholar]
- Yuan, Q.; Sparling, R.; Oleszkiewicz, J.A. Technical Note: VFA generation from waste activated sludge: Effect of temperature and mixing. Chemosphere 2011, 82, 603–607. [Google Scholar] [CrossRef]
- Jolis, D. High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis. Water Environ. Res. 2008, 80, 654–662. [Google Scholar] [CrossRef]
- Dohanyos, M.; Zabranska, J.; Jenicek, P. Enhancement of sludge anaerobic digestion by using of a special thickening centrifuge. Water Sci. Technol. 1997, 36, 145–153. [Google Scholar] [CrossRef]
- Hiraoka, M.; Takeda, N.; Sakai, S.; Yasuda, A. Highly efficient anaerobic digestion with thermal pre-treatment. Water Sci. Technol. 1985, 17, 529–539. [Google Scholar] [CrossRef]
- Gavala, H.N.; Angelidaki, I.; Ahring, B.K. Kinetics and modelling of anaerobic digestion process. Adv. Biochem. Eng. Biotechnol. 2003, 81, 57–93. [Google Scholar] [CrossRef] [PubMed]
- Skiadas, I.V.; Gavala, H.N.; Lu, J.; Ahring, B.K. Thermal pre-treatment of primary and secondary sludge at 70 degrees C prior to anaerobic digestion. Water Sci. Technol. 2005, 52, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Lü, F.; Chen, M.; He, P.J. Effects of ammonia on acidogenesis of protein-rich organic wastes. Environ. Eng. Sci. 2008, 25, 114–122. [Google Scholar] [CrossRef]
- Ge, H.Q.; Jensen, P.D.; Batstone, D.J. Pretreatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge. Water Res. 2010, 44, 123–130. [Google Scholar] [CrossRef]
- Hasegawa, S.; Shiota, N.; Katsura, K.; Akashi, A. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Water Sci. Technol. 2000, 41, 163–169. [Google Scholar] [CrossRef]
- Climent, M.; Ferrer, I.; Baeza, M.D.; Artola, A.; Vazquez, F.; Font, X. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 2007, 133, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Haug, R.T.; LeBrun, T.J.; Tortorici, L.D. Thermal pre-treatment of sludge-a field demonstration. J. Water Pollut. Control Fed. 1983, 55, 23–34. [Google Scholar]
- Pinnekamp, J. Effects of thermal pre-treatment of sewage sludge on anaerobic digestion. Water Sci. Technol. 1989, 21, 97–108. [Google Scholar] [CrossRef]
- Prechtl, S.; Scheneider, R.; Bischof, F.; Faulstich, M. Digestion of waste water after pre-treatment by the process of thermal pressure hydrolysis. In Proceedings of the 9th World Congress, Anaerobic Conversion for Sustainability, Antwerpen, Belgium, 2–6 September 2001. [Google Scholar]
- Guibelin, E. Sustainability of thermal oxidation processes: Strengths for the new millennium. Water Sci. Technol. 2002, 46, 259–267. [Google Scholar] [CrossRef]
- Zhen, G.; Lua, X.; Katoc, H.; Zhaod, Y.; Lia, Y.Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, fullscale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Brooks, R. Heat treatment of sewage sludge. Water Pollut. Control Fed. 1970, 69, 221–231. [Google Scholar]
- Fjordside, C. An operating tale from Naeested Sewage Treatment plant. In Proceedings of the Municipal Wastewater Treatment Nordic Conference, Copenhagen, Denmark, 17–19 January 2001; pp. 17–19. [Google Scholar]
- Chauzy, J.; Graja, S.; Gerardin, F.; Cretenot, D.; Patria, L.; Fernandes, P. Minimization of excess sludge production in a WWTP by coupling thermal hydrolysis and rapid anaerobic digestion. Water Sci. Technol. 2005, 52, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Bougrier, C.; Albasi, C.; Delgenes, J.P.; Carrere, H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process. 2006, 45, 711–718. [Google Scholar] [CrossRef]
- Fernández-Polanco, F.; Velazquez, R.; Perez-Elvira, S.I.; Casas, C.; Del Barrio, D.; Cantero, F.J.; Fdz-Polanco, M.; Rodriguez, P.; Panizo, L.; Serrat, J.; et al. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants. Water Sci. Technol. 2008, 57, 1221–1226. [Google Scholar] [CrossRef]
- Zabranska, J.; Dohanyos, M.; Jenicek, P.; Kutil, J.; Cejka, J. Mechanical and rapid thermal disintegration methods of enhancement of biogas production-full-scale applications. In Proceedings of the IWA Specialized Conference on Sustainable Sludge Management: State-of-The-Art, Challenges and Perspectives, Moscow, Russia, 29–31 May 2006; pp. 235–241. [Google Scholar]
- Fisher, R.A.; Swanwick, S.J. Hight temperature treatment of sewage sludges. Water Pollut.Control 1971, 71, 255–370. [Google Scholar]
- Bougrier, C.; Delgenes, J.P.; Carrère, H. Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem. Eng. J. 2007, 34, 20–27. [Google Scholar] [CrossRef]
- Lang, N.L.; Smith, S.R. Time and temperature inactivation kinetics of enteric bacteria relevant to sewage sludge treatment processes for agricultural use. Water Res. 2008, 42, 2229–2241. [Google Scholar] [CrossRef]
- Weisz, N.; Kepp, U.; Norli, M.; Panter, K.; Solheim, O.E. Sludge disintegration with thermal hydrolysis-cases from Norway, Denmark and United Kingdom. In Proceedings of the 1st IWA World Congress, Paris, France, 3–7 July 2000; pp. 288–295. [Google Scholar]
- Tiehm, A.; Nickel, K.; Zellhorn, M.; Neis, U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001, 35, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, A.T.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 8–10. [Google Scholar] [CrossRef]
- Carlsson, M.; Lagerkvist, A.; Morgan-Sagastume, F. The effects of substarte pre-treatment on anaerobic digestion systems: A review. Waste Manag. 2012, 32, 1634–1650. [Google Scholar] [CrossRef] [PubMed]
- Mottet, A.; Steyera, J.P.; Délérisb, S.; Vedrenneb, F.; Chauzyc, J.; Carrèrea, H. Kinetics of thermophilic batch anaerobic digestion of thermal hydrolysed waste activated sludge. Biochem. Eng. J. 2009, 46, 169–175. [Google Scholar] [CrossRef]
- Salsabil, M.R.; Laurent, J.; Casellas, M.; Dagot, C. Techno-economic evaluation of thermal treatment, ozonation and sonication for the reduction of wastewater biomass volume before aerobic or anaerobic digestion. J. Hazard. Mater. 2010, 174, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Apples, L.; Baeyens, J.; Degrѐve, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Marin, J.; Kennedy, K.J.; Eskicioglu, C. Effect of microwave irradiation on anaerobic degradability of model kitchen waste. Waste Manag. 2010, 30, 1772–1779. [Google Scholar] [CrossRef]
- Myszograj, S. Thermal and chemical disintegration to improve sewage sludge solubilisation. Acta Nat. Sci. 2014, 1, 1–10. [Google Scholar]
- Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. Characterization of soluble organic matter of WAS before and after thermal pretreatment. Water Res. 2006, 40, 3725–3736. [Google Scholar] [CrossRef]
- Perez-Elvira, S.I.; Fdz-Polanco, M.; Plaza, F.I.; Garralon, G. Ultrasound pretreatment for anaerobic digestion improvement. Water Sci. Technol. 2009, 60, 1525–1532. [Google Scholar] [CrossRef]
- Wett, B.; Phothilangka, P.; Eladawy, A. Systematic comparison of mechanical and thermal sludge disintegration technologies. Waste Manag. 2010, 30, 1057–1062. [Google Scholar] [CrossRef]
- Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol. 2011, 102, 592–599. [Google Scholar] [CrossRef]
- Apul, O.G.; Sanin, F.D. Ultrasonic pretreatment and subsequent anaerobic digestion under different operation-al conditions. Bioresour. Technol. 2010, 101, 8984–8992. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.A. Disintegration as a key step in sewage sludge treatment. Water Sci. Technol. 2000, 41, 123–130. [Google Scholar] [CrossRef]
- Naddeo, V.; Belgiorno, V.; Landi, M.; Zarra, T.; Napoli, R.M.A. Effect of sonolysis on WAS solubilization and anaerobic biodegradability. Desalination 2009, 249, 762–767. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gianico, A.; Mininni, G. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J. Environ. Manag. 2010, 19, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, U.; Berger, R.; Orth, H. Protein analysis as a simple method for the quantitative assessment of sewage sludge disintegration. Water Res. 2000, 34, 3682–3685. [Google Scholar] [CrossRef]
- Wang, Q.; Kuninobo, M.; Kakimoto, K.; Ogawa, H.I.; Kato, Y. Upgrading of anaerobic digestion of WAS by ultrasonic pretreatment. Bioresour. Technol. 1999, 68, 309–313. [Google Scholar] [CrossRef]
- Strong, P.J.; Gapes, D.J. Thermal and thermo-chemical pre-treatment of four waste residues and the effect on acetic acid production and methane synthesis. Waste Manag. 2012, 32, 1669–1677. [Google Scholar] [CrossRef]
- Lissens, G.; Thomsen, A.B.; De Baere, L.; Versraete, W.; Ahring, B. Thermal wet oxidation improves anaero-bic digestion of raw and digested biowaste. Environ. Sci. Technol. 2004, 38, 3418–3424. [Google Scholar] [CrossRef]
- Carrere, H.; Rafrafi, Y.; Battimelli, A.; Torrijos, M.; Delgenes, J.P.; Motte Cassini, C. Improving methane pro-duction during the codigestion of waste-activated sludge and fatty wastewater: Impact of thermo-alkaline pretreat-ment on batch and semi-continuous processes. Chem. Eng. J. 2012, 10, 404–409. [Google Scholar] [CrossRef]
- Buswell, A.M.; Mueller, H.F. Mechanism of methane fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Boyle, W.C. Energy recovery from sanitary landfills a review. In Microbial Energy Conversion; Schlegel, H.G., Barnea, J., Eds.; Pergamon Press: Oxford, UK, 1976; pp. 119–138. [Google Scholar]
- Amon, B.; Kryvoruchko, V.; Amon, T.; Zechmeister-Boltenstern, S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Environ. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Yoshida, H.; Tokumoto, H.; Ishii, K.; Ishii, R. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment. Bioresour. Technol. 2009, 100, 2933–2939. [Google Scholar] [CrossRef] [PubMed]
- Kakar, F.L.; Tadesse, F.; Elbeshbishy, E. Comprehensive Review of Hydrothermal Pretreatment Parameters Affecting Fermentation and Anaerobic Digestion of Municipal Sludge. Processes 2022, 10, 2518. [Google Scholar] [CrossRef]
No. | Sewage Sludge | Temperature and Time of Disintegration | Anaerobic Digestion Conditions | Effects | Source |
---|---|---|---|---|---|
1 | PS | 70 °C, 4 d | batch fermentation, 37 °C | CH4 production increase from 21.2 to 24.7 mmol/g d.m. (16%) | [58] |
2 | PS | 70 °C, 7 d | batch fermentation, 55 °C | CH4 production increase from 13.7 to 25.5 mmol/g d.m. (16%) | |
3 | PS | 70 °C, 2 d | continuous fermentation, HRT 13 d, 55 °C | CH4 production increase from 146 to 162 mL/[L∙d] (11%) | [59] |
4 | PS | 70 °C, 2 d | continuous fermentation, HRT 13 d, 55 °C | CH4 production increase from 13.6 to 20.1 mmol/g d.m. (48%) | [60] |
5 | PS | 50–65 °C, 2 d | continuous fermentation, HRT 13 d, 35 °C | CH4 production increase (25%) | [61] |
6 | WAS | 60–70 °C, 1 d | batch fermentation, 10 d, 37 °C | biogas production increase from 200 to 300 mL/g d.m. (50%) | [62] |
7 | WAS | 70 °C, 7 d | batch fermentation, 37 °C | CH4 production increase from 8.30 to 10.45 mmol/g d.m. (26%) | [58] |
8 | WAS | 70 °C, 7 d | batch fermentation, 55 °C | CH4 production 10.9 mmol/g d.m. | |
9 | WAS | 70 °C, 2 d | continuous fermentation, HRT 13 d, 55 °C | CH4 production increase from 40 to 55 mL/[L∙d] (28%) | [58] |
10 | WAS | 70 °C, 9 h | batch fermentation, 55 °C | biogas production increase (58%) | [63] |
11 | Mixed PS + WAS | 70 °C, 9, 24, 48 h | continuous fermentation, HRT 10 d, 55 °C | biogas production increase from 0.15 to 0.18 mL/g d.m. (20%) | [27] |
Assessment Indicator | Definition | Source |
---|---|---|
Solubilization of COD, ηDCOD | ηDCOD = [DCODD − DCOD0]/PCOD | [36,45,51,72,76,81,82,83] |
ηDCOD = [DCODD − DCOD0]/COD | [48,84,85,86] | |
ηDCOD = DCODD/COD | [50,87,88,89] | |
ηDCOD = [DCODD − DCOD0]/DCODD | [90] | |
ηDCOD = [DCODD − DCOD0]/[d.m.] | [91] | |
Degree of disintegration, ηD | ηD = [DCODD − DCOD0]/[CODmax − DCOD0] | [51,92,93] |
ηD = [DCODD − DCOD0]/CODmax | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myszograj, S.; Płuciennik-Koropczuk, E. Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential. Energies 2023, 16, 559. https://doi.org/10.3390/en16010559
Myszograj S, Płuciennik-Koropczuk E. Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential. Energies. 2023; 16(1):559. https://doi.org/10.3390/en16010559
Chicago/Turabian StyleMyszograj, Sylwia, and Ewelina Płuciennik-Koropczuk. 2023. "Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential" Energies 16, no. 1: 559. https://doi.org/10.3390/en16010559
APA StyleMyszograj, S., & Płuciennik-Koropczuk, E. (2023). Thermal Disintegration of Sewage Sludge as a Method of Improving the Biogas Potential. Energies, 16(1), 559. https://doi.org/10.3390/en16010559