Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises
Abstract
:1. Introduction
2. Research Hypotheses
2.1. Digital Economy Improves Energy Supply Chain Efficiency by Promoting Industrial Agglomeration
2.2. Digital Economy Improves Energy Supply Chain Efficiency by Promoting Technological Innovation
3. Methods
3.1. Two-Way Fixed Effects Model
3.2. Variables Selection
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Explained Variable
3.3. Data Source
4. Results
4.1. Baseline Estimation Results
4.2. Heterogeneity Test
4.2.1. Type of Business Ownership
4.2.2. Size of the Enterprise
4.2.3. Degree of Marketization in the Region where the Enterprise Is Located
4.3. Endogenous Treatment
4.4. Robustness Test
4.4.1. Changing the Measurement of Energy Supply Chain Efficiency
4.4.2. Changing the Measurement of the Level of Digital Economy
5. Mediation Effect Analysis
6. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saurav, N. Supply chain efficiency framework to improve business performance in a competitive era. Manag. Res. Rev. 2020, 44, 477–508. [Google Scholar] [CrossRef]
- Han, H.; Gu, X. Evaluation of Innovation Efficiency of High-Tech Enterprise Knowledge Supply Chain Based on AHP-DEA. J. Math. 2022, 2022, 3210474. [Google Scholar] [CrossRef]
- Zhai, D.; Jennifer, S.; Yang, F.; Sheng, A. Measuring energy supply chains’ efficiency with emission trading: A two-stage frontier-shift data envelopment analysis. J. Clean. Prod. 2019, 210, 1462–1474. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Xu, G.; Lu, T.; Chen, X.; Liu, Y. The convergence level and influencing factors of China’s digital economy and real economy based on grey model and PLS- SEM. J. Intell. Fuzzy Syst. 2022, 42, 1575–1605. [Google Scholar] [CrossRef]
- Lee, C.; Wang, D.; Desouza, K.C.; Evans, R. Digital Transformation and the New Normal in China: How Can Enterprises Use Digital Technologies to Respond to COVID-19? Sustainability 2021, 13, 10195. [Google Scholar] [CrossRef]
- Mashalah, H.A.; Hassini, E.; Gunasekaran, A.; Bhatt, M.D. The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework. Transp. Res. Part E 2022, 165, 102837. [Google Scholar] [CrossRef]
- Nayal, K.; Kumar, S.; Raut, R.D.; Queiroz, M.M.; Priyadarshinee, P.; Narkhede, B.E. Supply chain firm performance in circular economy and digital era to achieve sustainable development goals. Bus. Strat. Environ. 2021, 31, 1058–1073. [Google Scholar] [CrossRef]
- Pasqualino, R.; Demartini, M.; Bagheri, F. Digital Transformation and Sustainable Oriented Innovation: A System Transition Model for Socio-Economic Scenario Analysis. Sustainability 2021, 13, 11564. [Google Scholar] [CrossRef]
- Dorsaf, Z.; Salomée, R.; Laurence, V. Does digitalising the supply chain contribute to its resilience? Int. J. Phys. Distrib. Logist. 2020, 51, 149–180. [Google Scholar] [CrossRef]
- Dwivedi, A.; Paul, S.K. A framework for digital supply chains in the era of circular economy: Implications on environmental sustainability. Bus. Strategy Environ. 2022, 31, 1249–1274. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, Q.; Chin, T.; Chen, C.; Shi, Y.; Xu, J. How Supply Chain Integration Affects Innovation in a Digital Age: Moderating Effects of Sustainable Policy. Sustainability 2019, 11, 5460. [Google Scholar] [CrossRef] [Green Version]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manag. 2022, 59, 103508. [Google Scholar] [CrossRef]
- Wang, M.; Wang, B.; Abareshi, A. Blockchain Technology and Its Role in Enhancing Supply Chain Integration Capability and Reducing Carbon Emission: A Conceptual Framework. Sustainability 2020, 12, 10550. [Google Scholar] [CrossRef]
- Choi, D.; Chung, C.; Seyha, T.; Young, J. Factors Affecting Organizations’ Resistance to the Adoption of Blockchain Technology in Supply Networks. Sustainability 2020, 12, 8882. [Google Scholar] [CrossRef]
- Mikhaylova, A.; Sakulyeva, T.; Shcherbina, T.; Levoshich, N.; Truntsevsky, Y. Impact of Digitalization on the Efficiency of Supply Chain Management in the Digital Economy. Int. J. Enterp. Inf. Syst. 2021, 17, 34–46. [Google Scholar] [CrossRef]
- Brett, M.; John, V.G.; Yingchao, L. On the Inattention to Digital Confidentiality in Operations and Supply Chain Research. Prod. Oper. Manag. 2018, 27, 1492–1515. [Google Scholar] [CrossRef]
- Miao, Z. Digital economy value chain: Concept, model structure, and mechanism. Appl. Econ. 2021, 53, 4342–4357. [Google Scholar] [CrossRef]
- Matenga, A.E.; Mpofu, K. Blockchain-Based Cloud Manufacturing SCM System for Collaborative Enterprise Manufacturing: A Case Study of Transport Manufacturing. Appl. Sci. 2022, 12, 8664. [Google Scholar] [CrossRef]
- Gianluca, E.; Alessandro, M.; Giuseppina, P. Digital entrepreneurship ecosystem: How digital technologies and collective intelligence are reshaping the entrepreneurial process. Technol. Forecast. Soc. Chang. 2020, 150, 119791. [Google Scholar] [CrossRef]
- Joshua, D.; Edward, F. Regional industrial structure and agglomeration economies: An analysis of productivity in three manufacturing industries. Reg. Sci. Urban Econ. 2012, 42, 1–14. [Google Scholar] [CrossRef]
- Daisuke, N. An integrated production-stage analysis on market areas and supply areas. Ann. Reg. Sci. 2010, 45, 453–471. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Shi, Y. Linking industrial agglomeration and manufacturers inventory performance: The moderating role of firm size and enterprise status in the supply chain. J. Manuf. Technol. Manag. 2020, 32, 448–484. [Google Scholar] [CrossRef]
- Ryszard, R.; Mariusz, P. EU membership and economic growth: Empirical evidence for the CEE countries. Eur. J. Comp. Econ. 2019, 16, 3–40. [Google Scholar] [CrossRef]
- Dmitry, I.; Ajay, D.; Tsan-Ming, C. New flexibility drivers for manufacturing, supply chain and service operations. Int. J. Prod. Res. 2018, 56, 3359–3368. [Google Scholar] [CrossRef] [Green Version]
- Rachael, D.G.; Eric, F.L.; Rosamond, L.N. The new economic geography of land use change: Supply chain configurations and land use in the Brazilian Amazon. Land Use Policy 2013, 34, 262–275. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, W.; Cheng, P.; Li, Z. The Impact of the Digital Economy on Enterprise Sustainable Development and Its Spatial-Temporal Evolution: An Empirical Analysis Based on Urban Panel Data in China. Sustainability 2022, 14, 11948. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Y. Research on Total Factor Productivity Measurement and Influencing Factors of Digital Economy Enterprises. Procedia Comput. Sci. 2021, 187, 390–395. [Google Scholar] [CrossRef]
- Su, W. Blockchain Empowers Chain Enterprises in the Digital Economy to Strengthen Risk Management Research. J. Electr. Comput. Eng. 2022, 2022, 2580176. [Google Scholar] [CrossRef]
- Sekerin, V.D.; Zaitsev, I.A.; Gorokhova, A.E.; Zaitseva, T.S. Method for evaluating innovativeness of an enterprise in the conditions of the digital economy. J. Phys. Conf. Ser. 2021, 1864, 012051. [Google Scholar] [CrossRef]
- Chen, N.; Sun, D.; Chen, J. Digital transformation, labour share, and industrial heterogeneity. J. Innov. Knowl. 2022, 7, 100173. [Google Scholar] [CrossRef]
- Tsipoulanidis, A.; Nanos, I. Contemporary Potentials and Challenges of Digital Logistics and Supply Chain Management. Int. J. Innov. Technol. Manag. 2022, 19, 2241003. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Nguyen, T.; Duong, Q.H.; Van Nguyen, T.; Zhu, Y.; Zhou, L. Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review. Int. J. Prod. Econ. 2021, 244, 108381. [Google Scholar] [CrossRef]
- Mesnik, D.N. Use of Information Technology by Transport Enterprises: Cryptocurrency Mining Mechanism Based on Blockchain Technology. Sci. Tech. 2020, 19, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Fan, L.; Shao, Z. Threshold effects of energy consumption, technological innovation, and supply chain management on enterprise performance in China’s manufacturing industry. J. Environ. Manag. 2021, 300, 113687. [Google Scholar] [CrossRef]
- Zhang, H. Efficiency of the supply chain collaborative technological innovation in China: An empirical study based on DEA analysis. J. Ind. Eng. Manag. 2015, 8, 1623–1638. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Pan, H.; Cui, X.; Wang, Z. Do compact cities have higher efficiencies of agglomeration economies? A dynamic panel model with compactness indicators. Land Use Policy 2022, 115, 106005. [Google Scholar] [CrossRef]
- Vishal, V.; Priyanka, J. Role of digital economy and technology adoption for financial inclusion in India. Indian Growth Dev. Rev. 2021, 14, 302–324. [Google Scholar] [CrossRef]
- Yoo, R.K.; Allan, M.W.; Sangwon, P.; Jason, L.C. Spatial spillovers of agglomeration economies and productivity in the tourism industry: The case of the UK. Tour. Manag. 2021, 82, 104201. [Google Scholar] [CrossRef]
- Rosa, P.F.; Ana, R.S. The role of firm location and agglomeration economies on export propensity: The case of Portuguese SMEs. EuroMed J. Bus. 2020, 16, 195–217. [Google Scholar] [CrossRef]
- Ning, J.; Yin, Q.; Yan, A. How does the digital economy promote green technology innovation by manufacturing enterprises? Evidence from China. Front. Environ. Sci. 2022, 10, 967588. [Google Scholar] [CrossRef]
- Xin, C.; Zhou, Y.; Zhu, X.; Li, L.; Chen, X. Optimal Decisions for Carbon Emission Reduction through Technological Innovation in a Hybrid-Channel Supply Chain with Consumers’ Channel Preferences. Discret. Dyn. Nat. Soc. 2019, 2019, 1–24. [Google Scholar] [CrossRef]
- Beigizadeh, R.; Delgoshaei, A.; Ariffin, M.K.A.; Hanjani, S.E.; Ali, A. A comprehensive model for determining technological innovation level in supply chains using green investment, eco-friendly design and customer collaborations factors. Rairo-Oper. Res. 2022, 56, 2775–2880. [Google Scholar] [CrossRef]
- Tarei, P.K.; Chand, P.; Gangadhari, R.K.; Kumar, A. Analysing the inhibitors of complexity for achieving sustainability and improving sustainable performance of petroleum supply chain. J. Clean. Prod. 2021, 310, 127360. [Google Scholar] [CrossRef]
- Chad, S.; Clifford, W. Firm inventory behavior and the returns from highway infrastructure investments. J. Urban Econ. 2003, 55, 398–415. [Google Scholar] [CrossRef]
- Han, L.; Zhigang, L. Road investments and inventory reduction: Firm level evidence from China. J. Urban Econ. 2013, 76, 43–52. [Google Scholar] [CrossRef]
- Sufian, Q.; Monideepa, T. Lean and agile supply chain strategies and supply chain responsiveness: The role of strategic supplier partnership and postponement. Supply Chain Manag. 2013, 18, 571–582. [Google Scholar] [CrossRef]
- Chhabi, R.M.; Saurav, D.; Siba, S.M. Evaluation of leanness, agility and leagility for supply chain of automotive industries. Int. J. Agile Syst. Manag. 2015, 8, 85–115. [Google Scholar] [CrossRef]
- Wael, H.E.G. Analysis of supply chain operations reference (SCOR) and balanced scorecard (BSC) in measuring supply chains efficiency using DEMATEL and DEA techniques. J. Glob. Oper. Strateg. 2021, 14, 680–700. [Google Scholar] [CrossRef]
- Chi, E.; Jiang, B.; Peng, L.; Zhong, Y. Uncertain Network DEA Models with Imprecise Data for Sustainable Efficiency Evaluation of Decentralized Marine Supply Chain. Energies 2022, 15, 5313. [Google Scholar] [CrossRef]
- Hahn, G.; Brandenburg, M.; Becker, J. Valuing supply chain performance within and across manufacturing industries: A DEA-based approach. Int. J. Prod. Econ. 2021, 240, 108203. [Google Scholar] [CrossRef]
- Mohammad, A.; Hosein, D.; Kaveh, K.; Ashkan, H. Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application. Int. J. Inf. Tech. Decis. 2018, 17, 1429–1467. [Google Scholar]
- Babina, T.; Fedyk, A.; He, A.X.; Hodson, J. Artificial Intelligence, Firm Growth, and Industry Concentration. SSRN 2022. [Google Scholar] [CrossRef]
- Wilbur, C.; Suraj, S. Going Digital: Implications for Firm Value and Performance. SSRN 2022. [Google Scholar] [CrossRef]
- Jiang, K.; Du, X.; Chen, Z. Firms’ digitalization and stock price crash risk. Int. Rev. Financ. Anal. 2022, 82, 102196. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Y.; Wang, L.; Sun, X. Research on evaluation of manufacturing cloud service oriented to environmental benefits of supply chain. Environ. Sci. Pollut. Res. 2021, 28, 59473–59485. [Google Scholar] [CrossRef]
- Saadat, N.L.K.; Kasimu, S.; Shakilah, N. Digital technologies in micro and small enterprise: Evidence from Uganda’s informal sector during the COVID-19 pandemic. World J. Sci. Technol. 2021, 18, 93–108. [Google Scholar] [CrossRef]
- Lu, H.; Peng, J.; Lu, X. Do Factor Market Distortions and Carbon Dioxide Emissions Distort Energy Industry Chain Technical Efficiency? A Heterogeneous Stochastic Frontier Analysis. Energies 2022, 15, 6154. [Google Scholar] [CrossRef]
- Tang, P.; Jiang, Q.; Mi, L. One-vote veto: The threshold effect of environmental pollution in China’s economic promotion tournament. Ecol. Econ. 2021, 185, 107069. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, S.; Tian, J.; Peng, J. A Review of Energy Industry Chain and Energy Supply Chain. Energies 2022, 15, 9246. [Google Scholar] [CrossRef]
- Scholastica, N.E.; Gioia, F. A review on energy supply chain resilience through optimization. Renew. Sustain. Energy Rev. 2020, 134, 110088. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; He, M.; Luo, D.; Wu, Y. Entrepreneurship and industrial clusters: Evidence from China industrial census. Small Bus. Econ. 2018, 52, 595–616. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Liu, B.; Peng, J.; Liu, X. The impact of the embedded global value chain position on energy-biased technology progress: Evidence from chinas manufacturing. Technol. Soc. 2022, 71, 102065. [Google Scholar] [CrossRef]
Stage | Input Indicators | Output Indicators | External Environmental Indicators |
---|---|---|---|
Production | Number of employees | Operating income | GDP per capita |
Fixed assets | |||
Processing | Operating costs | Total profit | Years of enterprise establishment |
Sales | Selling expenses |
Variable | Variable Name | Symbols | Expected Variable Symbols | Measurement Methods |
---|---|---|---|---|
Explained variable | Energy supply chain efficiency | It is calculated by using the three-stage DEA model. | ||
Explanatory variable | Digital economy | + | Proportion of the digital economy-related portion of the year-end intangible asset breakdown to total intangible assets. | |
Control variables | Operating cash flow | + | Ratio of net cash flow from operating activities to operating income. | |
Nature of ownership | + | If the enterprise is state-owned, the value is 1; otherwise, the value is 0. | ||
Profitability | + | Ratio of total enterprise profit to operating costs. | ||
Government subsidies | + | Ratio of government subsidies to enterprise operating income. | ||
Ownership concentration | + | Percentage of shareholding of the largest shareholder | ||
Return on assets | + | Ratio of net profit to total assets | ||
Growth capability | + | Ratio of added value of operating income to total operating income of the previous year | ||
Gross profit margin | + | Ratio of net profit to average total assets. |
Variable | N | Mean | SD | Min | p50 | Max |
---|---|---|---|---|---|---|
1008 | 0.23 | 0.25 | 0 | 0.13 | 1 | |
1008 | 0 | 0 | 0 | 0 | 0.02 | |
1008 | 0.19 | 0.2 | −0.36 | 0.16 | 0.83 | |
1008 | 0.82 | 0.38 | 0 | 1 | 1 | |
1008 | 0.18 | 0.29 | −0.48 | 0.11 | 1.56 | |
1008 | 16.59 | 2.15 | 10.82 | 16.64 | 22.11 | |
1008 | 0.43 | 0.17 | 0.09 | 0.44 | 0.84 | |
1008 | 0.03 | 0.05 | −0.16 | 0.03 | 0.16 | |
1008 | 0.4 | 2.27 | −0.97 | 0.04 | 18.58 | |
1008 | 0.23 | 0.14 | −0.1 | 0.21 | 0.6 |
(1) | (2) | (3) | |
---|---|---|---|
5.763 *** | 4.474 ** | 5.738 *** | |
(2.090) | (1.973) | (1.892) | |
0.0600 *** | 0.0722 *** | ||
(0.0214) | (0.0205) | ||
0.115 *** | 0.121 ** | ||
(0.0309) | (0.0526) | ||
0.0873 *** | 0.0912 *** | ||
(0.0207) | (0.0203) | ||
0.00888 *** | 0.00560 *** | ||
(0.00166) | (0.00158) | ||
0.237 *** | 0.179 *** | ||
(0.0317) | (0.0315) | ||
0.305 *** | 0.282 *** | ||
(0.0869) | (0.0835) | ||
0.00192 * | 0.00191 ** | ||
(0.000991) | (0.000927) | ||
−0.157 *** | −0.168 *** | ||
(0.0388) | (0.0372) | ||
0.222 *** | −0.120 *** | −0.0467 *** | |
(0.00294) | (0.0394) | (0.0494) | |
Observations | 1.008 | 1.008 | 1.008 |
R-squared | 0.008 | 0.198 | |
Number of id | 112 | 112 | 112 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
VARIABLES | SOEs | Non-SOEs | LEs | MSMEs | DMOEs | LMOEs |
5.477 *** | 27.71 *** | 5.296 *** | 5.315 ** | 6.954 *** | 2.986 * | |
(1.987) | (10.52) | (1.985) | (1.112) | (2.439) | (2.588) | |
0.0587 ** | 0.0332 | 0.125 *** | 0.0244 | 0.0982 *** | 0.0232 | |
(0.0248) | (0.0352) | (0.0277) | (0.0268) | (0.0277) | (0.0257) | |
0.143 *** | 0.00695 | 0.133 *** | 0.0581 *** | 0.0181 | 0.112 *** | |
(0.0260) | (0.0268) | (0.0325) | (0.0219) | (0.0291) | (0.0246) | |
0.00596 *** | 0.00267 | 0.00512 *** | −0.000461 | 0.00520 *** | 0.00411 * | |
(0.00184) | (0.00272) | (0.00193) | (0.00282) | (0.00196) | (0.00241) | |
0.153 *** | 0.282 *** | 0.153 *** | −0.0326 | 0.314 *** | −0.0797 * | |
(0.0373) | (0.0510) | (0.0377) | (0.0881) | (0.0399) | (0.0467) | |
0.256 ** | 0.136 | 0.303 *** | 0.109 | 0.221 ** | 0.340 *** | |
(0.103) | (0.118) | (0.109) | (0.112) | (0.110) | (0.109) | |
0.00217 ** | −0.00165 | 0.00137 | 0.00584 | 0.000496 | 0.00420 *** | |
(0.00103) | (0.00211) | (0.000978) | (0.00442) | (0.00117) | (0.00132) | |
−0.203 *** | −0.0602 | −0.241 *** | −0.0917 | −0.103 ** | −0.0537 | |
(0.0441) | (0.0611) | (0.0489) | (0.0590) | (0.0489) | (0.0519) | |
0.0853 ** | −0.0487 | 0.116 *** | 0.0684 | 0.0601 | 0.107 ** | |
(0.0349) | (0.0475) | (0.0366) | (0.0535) | (0.0374) | (0.0443) | |
Observations | 826 | 182 | 794 | 214 | 508 | 500 |
R-squared | 0.206 | 0.311 | 0.209 | 0.141 | 0.260 | 0.263 |
Number of id | 92 | 21 | 99 | 38 | 75 | 75 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
first stage | second stage | first stage | second stage | |
VARIABLES | ||||
0.737 *** | ||||
(0.182) | ||||
0.893 *** | ||||
(0.0211) | ||||
0.318 *** | 0.0175 ** | |||
(0.0839) | (0.00715) | |||
yes | yes | yes | yes | |
0.194 | −0.998 *** | −0.00140 | 0.0175 ** | |
(0.258) | (0.0950) | (0.161) | (0.00715) | |
Kleibergen–Paap rk LM | 8.735 *** [0.003] | 51.252 *** [0.000] | ||
Cragg–Donald Wald F | 16.410 {16.38} | 1796.177 {16.38} | ||
Observations | 1.008 | 1.008 | 896 | 896 |
R-squared | 0.075 | 0.072 | 0.692 | 0.485 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
VARIABLES | ||||
−0.0319 *** | −0.0525 *** | |||
(0.00763) | (0.00694) | |||
0.358 *** | ||||
(0.0404) | ||||
0.0209 *** | ||||
(0.00411) | ||||
yes | yes | yes | yes | |
0.775 | 2.453 *** | −0.263 *** | −0.0180 | |
(0.477) | (0.434) | (0.0558) | (0.0510) | |
Observations | 1.008 | 1.008 | 1.008 | 1.008 |
R-squared | 0.076 | 0.121 | 0.259 | 0.216 |
Number of id | 112 | 112 | 112 | 112 |
(1) | (2) | (3) | (2) | (5) | |
---|---|---|---|---|---|
VARIABLES | |||||
5.738 *** | 22.36 *** | 5.139 *** | 55.77 *** | 5.259 *** | |
(1.892) | (8.024) | (1.897) | (16.60) | (1.894) | |
0.0107 *** | |||||
(0.00381) | |||||
0.0214 *** | |||||
(0.00789) | |||||
yes | yes | yes | yes | yes | |
−0.0467 | −2.984 *** | −0.0432 | −0.325 | 0.0173 | |
(0.0494) | (0.209) | (0.0492) | (0.433) | (0.0545) | |
Observations | 1.008 | 1.008 | 1.008 | 1.008 | 1.008 |
R-squared | 0.198 | 0.207 | 0.205 | 0.030 | 0.204 |
Number of id | 112 | 112 | 112 | 112 | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Liu, J.; Tian, J.; Peng, J.; Wu, C. Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises. Energies 2023, 16, 568. https://doi.org/10.3390/en16010568
Fu S, Liu J, Tian J, Peng J, Wu C. Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises. Energies. 2023; 16(1):568. https://doi.org/10.3390/en16010568
Chicago/Turabian StyleFu, Shuke, Jiabei Liu, Jiali Tian, Jiachao Peng, and Chuyue Wu. 2023. "Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises" Energies 16, no. 1: 568. https://doi.org/10.3390/en16010568
APA StyleFu, S., Liu, J., Tian, J., Peng, J., & Wu, C. (2023). Impact of Digital Economy on Energy Supply Chain Efficiency: Evidence from Chinese Energy Enterprises. Energies, 16(1), 568. https://doi.org/10.3390/en16010568