Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR
Abstract
:1. Introduction
2. Basic Theory
2.1. Definition of Battery SOH
2.2. VDM Decomposition
2.3. Dung Beetle Optimization Algorithm (DBO)
2.4. Support Vector Regression (SVR)
3. SOH Prediction Based on VMD-DBO-SVR Combination Model
3.1. SVR Method Based on DBO Optimization
3.2. Combined Forecasting Model Framework Based on VMD-DBO-SVR
4. Experimental Results and Comparative Analysis
4.1. Experimental Data and Parameter Settings
4.2. Evaluation Index
4.3. Experimental Verification and Analysis of SOH Prediction Based on VMD-DBO-SVR Model
4.4. Comparative Analysis of VMD-DBO-SVR Model with Other Models
5. Conclusions
- (1)
- The VMD algorithm can decompose the battery SOH sequence into multiple stationary mode components, which can effectively reduce noise interference, such as capacity regeneration and testing errors, and minimize prediction errors.
- (2)
- The selection of kernel parameters in the SVR method directly affects the accuracy of SOH prediction. To address this issue, we proposed a DBO optimization algorithm to provide the optimal parameters for the SVR method. The combination of the two methods can improve the prediction accuracy and stability of SOH.
- (3)
- NASA battery dataset was employed to validate the prediction performance of the proposed VMD-DBO-SVR model. The results showed that the VMD-DBO-SVR model had good prediction accuracy and stability, and the prediction error was maintained within 1%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghorbanzadeh, M.; Astaneh, M.; Golzar, F. Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems. Energy 2019, 166, 1194–1206. [Google Scholar] [CrossRef]
- Xu, J.L.; Liu, B.L.; Zhang, G.Y.; Zhu, J.W. State-of-health estimation for lithium-ion batteries based on partial charging segment and stacking model fusion. Energy Sci. Eng. 2023, 11, 383–397. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Chen, G.; Lyu, C.; Wu, Y.; Xu, L.; Ma, S. Research on Feature Extraction and SOH Evaluation Methods for Retired Power Battery. Proc. Chin. Soc. Electr. Eng. 2022, 42, 1332–1346. [Google Scholar]
- Pang, B.; Chen, L.; Dong, Z.M. Data-Driven Degradation Modeling and SOH Prediction of Li-Ion Batteries. Energies 2022, 15, 5580. [Google Scholar] [CrossRef]
- Shen, S.Q.; Liu, B.C.; Zhang, K.; Ci, S. Toward Fast and Accurate SOH Prediction for Lithium-Ion Batteries. IEEE Trans. Energy Convers. 2021, 36, 2036–2046. [Google Scholar] [CrossRef]
- Chen, D.; Meng, J.H.; Huang, H.Y.; Wu, J.; Liu, P.; Lu, J.W.; Liu, T.Q. An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving. Energy 2022, 245, 12. [Google Scholar] [CrossRef]
- Iurilli, P.; Brivio, C.; Carrillo, R.E.; Wood, V. Physics-Based SoH Estimation for Li-Ion Cells. Batteries 2022, 8, 204. [Google Scholar] [CrossRef]
- Wen, J.C.; Zou, Q.R.; Chen, C.G.; Wei, Y.J. Linear correlation between state-of-health and incremental state-of-charge in Li-ion batteries and its application to SoH evaluation. Electrochim. Acta 2022, 434, 10. [Google Scholar] [CrossRef]
- Wu, T.Z.; Liu, S.Z.; Wang, Z.K.; Huang, Y.H. SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm. J. Electr. Eng. Technol. 2022, 17, 307–317. [Google Scholar] [CrossRef]
- Sun, S.; Sun, J.Z.; Wang, Z.L.; Zhou, Z.Y.; Cai, W. Prediction of Battery SOH by CNN-BiLSTM Network Fused with Attention Mechanism. Energies 2022, 15, 4428. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Zhao, K.; Sun, J.; Wang, K. State of Health Estimation of Lithium-ion Battery Based on Ant Lion Optimization and Support Vector Regression. In Proceedings of the 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), Qingdao, China, 2–4 July 2021; pp. 334–337. [Google Scholar]
- Wang, Y.; Ni, Y.; Zheng, Y.; Shi, X.; Wang, J. Remaining Useful Life Prediction of Lithium-ion Batteries Based on Support Vector Regression Optimized and Ant Lion Optimizations. Proc. Chin. Soc. Electr. Eng. 2021, 41, 1445–1457. [Google Scholar]
- Xu, J.; Ni, Y.; Zhu, C. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Support Vector Regression. Trans. China Electrotech. Soc. 2021, 36, 3693–3704. [Google Scholar]
- Ye, J.Y.; Yang, Z.X.; Li, Z.L. Quadratic hyper-surface kernel-free least squares support vector regression. Intell. Data Anal. 2021, 25, 265–281. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, L.; Liu, J. Lithium battery health state estimation based on mode decomposition and time series. J. Power Supply 2023. Available online: https://kns.cnki.net/kcms/detail/12.1420.TM.20230131.1102.001.html (accessed on 21 February 2023).
- Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm. Energies 2019, 12, 660. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Guo, Y.J.; Saleh, J.H. A physics-informed dynamic deep autoencoder for accurate state-of-health prediction of lithium-ion battery. Neural Comput. Appl. 2022, 34, 15997–16017. [Google Scholar] [CrossRef]
- Hu, X.; Guo, Y.; Zhang, R. Review of State-of-health Estimation Methods for Lithium-ion Battery. J. Power Supply 2022, 20, 126–133. [Google Scholar]
- Meng, J.H.; Cai, L.; Stroe, D.I.; Huang, X.R.; Peng, J.C.; Liu, T.Q.; Teodorescu, R. An Automatic Weak Learner Formulation for Lithium-Ion Battery State of Health Estimation. IEEE Trans. Ind. Electron. 2022, 69, 2659–2668. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, S.; He, Y. State-of-health Estimate for Lithium-ion Battery Using Information Entropy and PSO-LSTM. J. Mech. Eng. 2022, 58, 180–190. [Google Scholar]
- Zhang, Y.N.; Lian, Z.; Fu, W.L.; Chen, X. An ESR Quasi-Online Identification Method for the Fractional-Order Capacitor of Forward Converters Based on Variational Mode Decomposition. IEEE Trans. Power Electron. 2022, 37, 3685–3690. [Google Scholar] [CrossRef]
- Ding, G.R.; Wang, W.B.; Zhu, T. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on CS-VMD and GRU. IEEE Access 2022, 10, 89402–89413. [Google Scholar] [CrossRef]
- Xue, J.K.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 79, 7305–7336. [Google Scholar] [CrossRef]
- Wei, R.; Mao, T.; Gao, H.; Peng, J.; Yang, J. Health state estimation of lithium ion battery based on TWP-SVR. Energy Storage Sci. Technol. 2022, 11, 2585–2599. [Google Scholar]
- Zhou, X.; Li, N.; Pan, Y.; Sun, L. Optimized SVR based on artificial bee colony algorithm for leaf area index inversion. J. Remote Sens. 2022, 26, 766–780. [Google Scholar]
- Zhou, S.; Yang, C.C.; Su, Z.N.; Yu, P.; Jiao, J. An Aeromagnetic Compensation Algorithm Based on Radial Basis Function Artificial Neural Network. Appl. Sci. 2023, 13, 136. [Google Scholar] [CrossRef]
- Huang, K.; Ding, H.; Guo, Y.; Tian, H. Prediction of Remaining Useful Life of Lithium-Ion Battery Based on Adaptive Data Preprocessing and Long Short-Term Memory Network. Trans. China Electrotech. Soc. 2022, 37, 3753–3766. [Google Scholar]
Number | Temperature/°C | Discharge Current | Capacity/Ah | Shutdown Voltage/V |
---|---|---|---|---|
B5 | 24 | 2A/CC | 2 | 2.7 |
B6 | 24 | 2A/CC | 2 | 2.5 |
B7 | 24 | 2A/CC | 2 | 2.2 |
K | Center Frequency/Hz | |||||
---|---|---|---|---|---|---|
2 | 1.97 × 10−5 | 0.233 | - | - | - | - |
3 | 1.97 × 10−5 | 0.166 | 0.328 | - | - | - |
4 | 1.96 × 10−5 | 0.095 | 0.233 | 0.357 | - | - |
5 | 1.96 × 10−5 | 0.093 | 0.167 | 0.292 | 0.401 | - |
6 | 1.96 × 10−5 | 0.066 | 0.1664 | 0.224 | 0.330 | 0.402 |
Battery | MAPE/% | RMSE | RA |
---|---|---|---|
B5 | 0.3511 | 0.3488 | 0.9964 |
B6 | 0.5863 | 0.5019 | 0.9941 |
B7 | 0.2594 | 0.2765 | 0.9974 |
Battery | MAPE/% | RMSE | RA |
---|---|---|---|
B5 | 0.3906 | 0.4771 | 0.9961 |
B6 | 0.7892 | 0.8227 | 0.9921 |
B7 | 0.3318 | 0.4828 | 0.9966 |
Battery | Model | MAPE/% | RMSE | RA | Prediction Time/s |
---|---|---|---|---|---|
B5 | SVR | 1.7833 | 1.5486 | 0.9821 | 0.6875 |
EMD-SVR | 1.1607 | 0.9775 | 0.9883 | 3.2114 | |
VMD-SVR | 0.6467 | 0.5797 | 0.9935 | 3.4732 | |
VMD-DBO-SVR | 0.3906 | 0.4771 | 0.9961 | 3.7297 | |
B6 | SVR | 1.9822 | 1.6458 | 0.9801 | 0.7751 |
EMD-SVR | 1.3974 | 1.3233 | 0.9860 | 3.2046 | |
VMD-SVR | 1.0090 | 0.9082 | 0.9899 | 3.6104 | |
VMD-DBO-SVR | 0.7892 | 0.8148 | 0.9921 | 3.9867 | |
B7 | SVR | 1.4489 | 1.4325 | 0.9855 | 0.6658 |
EMD-SVR | 1.1933 | 1.0556 | 0.9880 | 3.1699 | |
VMD-SVR | 0.7364 | 0.6431 | 0.9926 | 3.1105 | |
VMD-DBO-SVR | 0.3318 | 0.4828 | 0.9966 | 3.4405 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Fu, J.; Huang, X.; Xu, X.; Meng, J. Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR. Energies 2023, 16, 3993. https://doi.org/10.3390/en16103993
Wu C, Fu J, Huang X, Xu X, Meng J. Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR. Energies. 2023; 16(10):3993. https://doi.org/10.3390/en16103993
Chicago/Turabian StyleWu, Chunling, Juncheng Fu, Xinrong Huang, Xianfeng Xu, and Jinhao Meng. 2023. "Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR" Energies 16, no. 10: 3993. https://doi.org/10.3390/en16103993
APA StyleWu, C., Fu, J., Huang, X., Xu, X., & Meng, J. (2023). Lithium-Ion Battery Health State Prediction Based on VMD and DBO-SVR. Energies, 16(10), 3993. https://doi.org/10.3390/en16103993