Design of a Three-Phase Shell-Type Distribution Transformer Using Evolutionary Algorithms
(This article belongs to the Section F: Electrical Engineering)
Abstract
:1. Introduction
2. Three-Phase Shell-Type Transformer Design Procedure
2.1. Windings
Winding mass (kg) | |
Coil half-turn (mm) | |
Number of coil turns | |
Number of phases | |
Winding conductor cross-section (mm2) | |
Conductor density (kg/mm3) |
Current density (A/mm2) | |
Volumetric resistivity and density of the conductive material ( · mm4/kg) | |
Eddy current losses factor |
2.2. Core
Primary voltage | |
Number of primary turns | |
Magnetic flux (Wb) | |
Frequency (Hz) |
Core window width (mm) | |
Core window height (mm) | |
Core sheet width (mm) | |
Density of the magnetic core material (kg/mm3) |
2.3. Operating Constraints
2.3.1. Excitation Current
Transformer rating (kVA) | |
Apparent core losses (VA) |
Core weight | |
Volt Ampere per kilogram for a given magnetic flux density | |
Core empirical constant |
2.3.2. Total Losses
2.3.3. Impedance
Percentage resistance at 85 °C | |
Conductor losses (W) | |
Transformer rating |
Average winding heights and thicknesses (mm) |
2.3.4. Efficiency
2.4. Objective Function: Total Owning Cost
Primary winding copper conductor size | |
Cross-section of the aluminum conductor of the secondary winding | |
Cost of primary and secondary winding (US$) | |
Core cost (US$) | |
Core losses (W) | |
Primary and secondary winding losses (W) | |
No-load loss cost rate (US$/W) | |
Load loss cost rate (US$/W) |
3. Optimization Methods
3.1. Genetic Algorithm
- T1:
- When comparing two feasible individuals, the one with the better fitness value is selected.
- T2:
- When comparing two individuals, where one is feasible and the other is not, the feasible is selected.
- T3:
- If both individuals are infeasible, then the one who violates the constraints to a lesser extent is selected.
Algorithm 1 GA |
Require: Material costs, initialize |
1: for i = 1 to NP do |
2: Create |
3: end for |
4: for i = 1 to NP do |
5: Evaluate (16) |
6: end for |
7: for gen = 1 to NGs do |
8: Selecting NP individuals based on the three criteria to obtain parents |
9: Apply the crossover operator to the selected parents to generate NP offspring |
10: Apply mutation operator to offspring |
11: Keep the NP offspring and discard the NP individuals in X, just keeping the best solution to replace the worst child |
12: end for |
Ensure: |
3.2. Particle Swarm Optimization
Algorithm 2 PSO |
Require: Material costs, initialize |
1: for i = 1 to NP do |
2: Create |
3: end for |
4: for i = 1 to NP do |
5: Evaluate (16) |
6: end for |
7: while g < NGs do |
8: for i = 1 to NP do |
9: for j = 1 to D=(6) do |
10: , = |
11: Update velocity (18) |
12: Update position (19) |
13: end for |
14: if (based on the three selection criteria) then |
15: |
16: end if |
17: if then |
18: |
19: end if |
20: end for |
21: end while |
Ensure: |
3.3. Differential Evolution
Algorithm 3 DE/rand/1/bin |
Require: Material costs, initialize |
1: for i = 1 to NP do |
2: Create |
3: end for |
4: for i = 1 to NP do |
5: Evaluate (16) |
6: end for |
7: for i = 1 to NP do |
8: Randomly select |
9: |
10: for j = 1 to D do |
11: if then |
12: |
13: else |
14: |
15: end if |
16: end for |
17: if (based on the three selection criteria) then |
18: |
19: else |
20: |
21: end if |
22: end for |
Ensure: |
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
Abbreviations
Genetic Algorithm | |
Particle Swarm Optimization | |
Differential Evolution | |
Total Owning Cost |
Nomenclature
References
- Williams, S.; Abetti, P.; Magnesson, E. How digital computers aid transformer designer. Gen. Electr. Rev. 1955, 58, 24–25. [Google Scholar]
- Zobaa, A.F.; Aleem, S.A.; Abdelaziz, A.Y. Classical and Recent Aspects of Power System Optimization; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Olivares-Galvan, J.C.; Georgilakis, P.S.; Escarela-Perez, R.; Campero-Littlewood, E. Optimal design of single-phase shell-type distribution transformers based on a multiple design method validated by measurements. Electr. Eng. 2011, 93, 237–246. [Google Scholar] [CrossRef]
- Yadav, A.K.; Rahi, O.; Malik, H.; Azeem, A. Design optimization of high-frequency power transformer by genetic algorithm and simulated annealing. Int. J. Electr. Comput. Eng. 2011, 1, 102. [Google Scholar] [CrossRef]
- Phaengkieo, D.; Ruangsinchaiwanich, S. Design optimization of electrical transformer using genetic algorithm. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 3487–3491. [Google Scholar]
- Kokila, R.; Anagha, C.; Neethu, P. Performance comparison of conventional, genetic algorithm and particle swarm optimization for optimal design of transformer with respect to its total owning cost. Int. J. Sci. Res. Publ. 2013, 3, 1–5. [Google Scholar]
- Mehta, H.; Patel, R. Optimal design of transformer using tournament selection based elitist genetic algorithms. Indian J. Sci. Technol. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Salkoski, R.; Chorbev, I. Design optimization of distribution transformers based on Differential Evolution Algorithms. Proc. ICT Innov. 2012, 35–44. [Google Scholar]
- Di Noia, L.P.; Lauria, D.; Mottola, F.; Rizzo, R. Design optimization of distribution transformers by minimizing the total owning cost. Int. Trans. Electr. Energy Syst. 2017, 27, e2397. [Google Scholar] [CrossRef]
- Tamilselvi, S.; Baskar, S.; Sivakumar, T.; Anandapadmanaban, L. Evolutionary algorithm-based design optimization for right choice of transformer conductor material and stepped core. Electr. Eng. 2019, 101, 259–277. [Google Scholar] [CrossRef]
- Kul, S.; Tezcan, S.S.; Duysak, H.; Celtek, S.A. FEM-based Modeling and Optimization of Dry-Type Transformers with Metaheuristic Algorithms. Teh. Vjesn. 2022, 29, 1678–1685. [Google Scholar]
- Amoiralis, E.I.; Georgilakis, P.S.; Tsili, M.A.; Kladas, A.G. Global transformer optimization method using evolutionary design and numerical field computation. IEEE Trans. Magn. 2009, 45, 1720–1723. [Google Scholar] [CrossRef]
- Ayala, H.V.H.; dos Santos Coelho, L.; Mariani, V.C.; da Luz, M.V.F.; Leite, J.V. Harmony search approach based on ricker map for multi-objective transformer design optimization. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Soldoozy, A.; Esmaeli, A.; Akbari, H.; Mazloom, S.Z. Implementation of tree pruning method for power transformer design optimization. Int. Trans. Electr. Energy Syst. 2019, 29, e2659. [Google Scholar] [CrossRef]
- Orosz, T.; Sleisz, Á.; Tamus, Z.Á. Metaheuristic optimization preliminary design process of core-form autotransformers. IEEE Trans. Magn. 2015, 52, 1–10. [Google Scholar] [CrossRef]
- Diaz-Dorado, E.; Cidrás, J.; Míguez, E. Application of evolutionary algorithms for the planning of urban distribution networks of medium voltage. IEEE Trans. Power Syst. 2002, 17, 879–884. [Google Scholar] [CrossRef]
- Ascencion-Mestiza, H.; Maximov, S.; Mezura-Montes, E.; Olivares-Galvan, J.C.; Ocon-Valdez, R.; Escarela-Perez, R. Estimation of the Equivalent Circuit Parameters in Transformers Using Evolutionary Algorithms. Math. Comput. Appl. 2023, 28, 36. [Google Scholar] [CrossRef]
- Bhowmick, D.; Manna, M.; Chowdhury, S.K. Estimation of equivalent circuit parameters of transformer and induction motor using PSO. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. [Google Scholar]
- Harnefors, L.; Nee, H.P. A general algorithm for speed and position estimation of AC motors. IEEE Trans. Ind. Electron. 2000, 47, 77–83. [Google Scholar] [CrossRef]
- Peng, L.; Liu, S.; Liu, R.; Wang, L. Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy 2018, 162, 1301–1314. [Google Scholar] [CrossRef]
- Abido, M.A. Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans. Evol. Comput. 2006, 10, 315–329. [Google Scholar] [CrossRef]
- Wu, L.; Wang, Y.; Yuan, X.; Zhou, S. Environmental/economic power dispatch problem using multi-objective differential evolution algorithm. Electr. Power Syst. Res. 2010, 80, 1171–1181. [Google Scholar] [CrossRef]
- Abou El Ela, A.; Abido, M.; Spea, S. Differential evolution algorithm for optimal reactive power dispatch. Electr. Power Syst. Res. 2011, 81, 458–464. [Google Scholar] [CrossRef]
- Abou El Ela, A.; Abido, M.; Spea, S. Optimal power flow using differential evolution algorithm. Electr. Power Syst. Res. 2010, 80, 878–885. [Google Scholar] [CrossRef]
- Rodríguez-Molina, A.; Mezura-Montes, E.; Villarreal-Cervantes, M.G.; Aldape-Pérez, M. Multi-objective meta-heuristic optimization in intelligent control: A survey on the controller tuning problem. Appl. Soft Comput. 2020, 93, 106342. [Google Scholar] [CrossRef]
- Mohanty, B.; Panda, S.; Hota, P. Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. Int. J. Electr. Power Energy Syst. 2014, 54, 77–85. [Google Scholar] [CrossRef]
- Salgado, G.R.; Reyes-Garcia, C.A. Applications of evolutionary algorithms in the design automation of analog integrated circuits. J. Appl. Sci. 2010, 10, 1859–1872. [Google Scholar]
- Jabr, R.A. Application of geometric programming to transformer design. IEEE Trans. Magn. 2005, 41, 4261–4269. [Google Scholar] [CrossRef]
- Moses, A.; Anderson, P.; Jenkins, K.; Stanbury, H. Electrical Steels Volume 1: Fundamentals and Basic Concepts; The Institution of Engineering and Technology: London, UK, 2019. [Google Scholar]
- Olivares-Galván, J.C.; Georgilakis, P.S.; Theocharis, A.D.; Madrigal, M. Experimental investigation of parameters influencing transformer excitation current. In Proceedings of the 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, Med Power 2010, Agia Napa, Cyprus, 7–10 November 2010. Number 572 CP. [Google Scholar]
- Olivares-Galvan, J.C.; Georgilakis, P.S.; Campero-Littlewood, E.; Escarela-Perez, R. Core lamination selection for distribution transformers based on sensitivity analysis. Electr. Eng. 2013, 95, 33–42. [Google Scholar] [CrossRef]
- Olivares-Galvan, J.C.; Canedo, J.; Moreno, P.; Driesen, J.; Escarela-Perez, R.; Palanivasagam, S. Experimental study to reduce the distribution-transformers stray losses using electromagnetic shields. Electr. Power Syst. Res. 2002, 63, 1–7. [Google Scholar] [CrossRef]
- IEEE C57.12.00-2015; IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers. IEEE: New York, NY, USA, 2015.
- Maximov, S.; Corona-Sánchez, M.A.; Olivares-Galvan, J.C.; Melgoza-Vazquez, E.; Escarela-Perez, R.; Jimenez-Mondragon, V.M. Mathematical Calculation of Stray Losses in Transformer Tanks with a Stainless Steel Insert. Mathematics 2021, 9, 184. [Google Scholar] [CrossRef]
- Magdaleno-Adame, S.; Melgoza-Vazquez, E.; Olivares-Galvan, J.C.; Escarela-Perez, R. Loss reduction by combining electrical steels in the core of power transformers. Int. Trans. Electr. Energy Syst. 2016, 26, 1737–1751. [Google Scholar] [CrossRef]
- David Edward, G. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston, MA, USA, 2002. [Google Scholar]
- Coello Coello, C.A.; Mezura-Montes, E. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv. Eng. Inform. 2002, 16, 193–203. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Qing, A. Differential Evolution: Fundamentals and Applications in Electrical Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mezura-Montes, E.; Coello Coello, C.A.; Tun-Morales, E.I. Simple feasibility rules and differential evolution for constrained optimization. In Proceedings of the Mexican International Conference on Artificial Intelligence, Mexico City, Mexico, 26–30 April 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 707–716. [Google Scholar]
- Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [Google Scholar] [CrossRef]
- Drăgoi, E.N.; Curteanu, S.; Vlad, D. Differential evolution applications in electromagnetics. In Proceedings of the 2012 International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 25–27 October 2012; pp. 636–640. [Google Scholar]
- López-Ibáñez, M.; Dubois-Lacoste, J.; Cáceres, L.P.; Birattari, M.; Stützle, T. The irace package: Iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [Google Scholar] [CrossRef]
- López-Ibánez, M.; Cáceres, L.P.; Dubois-Lacoste, J.; Stützle, T.; Birattari, M. The Irace Package: User Guide; Technical Report, Belgium, Tech. Rep. TR/IRIDIA/2016-004; IRIDIA, Université Libre de Bruxelles: Bruxelles, Belgium, 2016. [Google Scholar]
- Wilcoxon, F. Individual comparisons by ranking methods. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar]
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability and Statistics for Engineering and Science; Pearson: London, UK, 2012; pp. 665–667. (In Spanish) [Google Scholar]
References | Method Applied | Validation | Number of Design Equations | Number of Objective Functions | Transformer Type | Transformer Rating |
---|---|---|---|---|---|---|
[9] | No information | FEM | 8 | 1 | Shell-type, 3-phase. | 800 kVA, 1600 kVA, 2500 kVA. |
[10] | CMA-ES, SaDE | FEM | No information | 4 | Core-type, 3-phase. | 150 kVA. |
[11] | CSA, MFO, VOA, PSO, SL-PSO | FEM | 3 | No information | Core-type, Dry-type, 3-phase. | 100 kVA. |
[12] | MINLP | FEM | No information | 1 | Shell-type, 3-phase. | 400 kVA. |
[13] | MOHS, MHSR | Analytical | 14 | 2 | Shell-type, dry-type, 1-phase. | 400 VA. |
[14] | TPA-FEM | FEM and Experimentation | 1 | 1 | Core-type, 3-phase. | 200 MVA. |
[15] | GP- BBS | FEM | 17 | 1 | Autotransformer, core-type, 3-phase. | 200 MVA. |
Variable | Unit | Lower Limit | Upper Limit | Value Alternative |
---|---|---|---|---|
Turns | 10 | 20 | 10 | |
Teslas | 1.7 | 1.9 | Continuos | |
AWG | 7 | 16 | 10 | |
mm | 34.29 | 452.12 | 4 | |
D | mm | 152.4 | 308.4 | 4 |
Description | Value | Units |
---|---|---|
Lamination factor, () | 0.95 | dimensionless |
Aluminum density, () | 2.7 | g/cm3 |
Copper density, () | 8.9 | g/cm3 |
Volumetric resistivity and material density factor for aluminum, () | 13.25 | Ω · mm4/kg |
Volumetric resistivity and material density factor for copper, () | 2.43 | Ω · mm4/kg |
Core empiric constant, () | 1.35 | dimensionless |
Eddy current losses factor, () | 1.25 | dimensionless |
GA | PSO | DE | |
---|---|---|---|
Population | 40 | 40 | 40 |
Iterations | 40 | 40 | 40 |
Crossover probability | 0.8394 | – | – |
Mutation probability | 0.5005 | – | – |
k | – | 0.9896 | – |
– | 0.9917 | – | |
– | 0.9585 | – | |
F | – | – | 0.9122 |
CR | – | – | 0.4707 |
Methods | DE | GA | PSO | |
---|---|---|---|---|
Stat | TOC () | TOC () | TOC () | |
Best | 0.9426 | 0.9444 | 0.9549 | |
Mean | 0.9463 | 0.9543 | 0.9606 | |
Medium | 0.9444 | 0.9549 | 0.9598 | |
Worst | 0.9695 | 0.9602 | 0.9690 | |
St. Dev. | 0.0055 | 0.0044 | 0.0042 | |
Wilcoxon rank-sum test | + | + | ||
with 95% confidence |
Manufacturer | GA | PSO | DE | |
---|---|---|---|---|
Warranties | ||||
(%) | 1.39 | 0.74 | 0.68 | 0.3 |
(%) | 4.92 | 4.02 | 4.62 | 4.67 |
Total losses (W) | 11,522.45 | 10,581.92 | 10,887.69 | 10,846.49 |
Efficiency (%) | 98.49 | 98.61 | 98.57 | 98.57 |
Core | ||||
E (mm) | 60 | 100 | 93 | 96 |
F (mm) | 85 | 85 | 85 | 85 |
G (mm) | 280 | 280 | 280 | 280 |
D (mm) | 304.8 | 203.2 | 203.2 | 203.2 |
Optimum values | ||||
Secondary turns | 15 | 14 | 15 | 15 |
(T) | 1.818 | 1.76 | 1.76 | 1.7 |
DP (AWG) | 10 | 10 | 10 | 10 |
DS (mm) | ||||
Core width (mm) | 304.8 | 203.2 | 203.2 | 203.2 |
TOC () | 1.0 | 0.9444 | 0.9549 | 0.9426 |
Cost reduction (%) | — | 5.89 | 4.73 | 6.08 |
Time (seg) | 347.23 | 0.104 | 0.171 | 0.195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares-Galvan, J.C.; Ascencion-Mestiza, H.; Maximov, S.; Mezura-Montes, E.; Escarela-Perez, R. Design of a Three-Phase Shell-Type Distribution Transformer Using Evolutionary Algorithms. Energies 2023, 16, 4016. https://doi.org/10.3390/en16104016
Olivares-Galvan JC, Ascencion-Mestiza H, Maximov S, Mezura-Montes E, Escarela-Perez R. Design of a Three-Phase Shell-Type Distribution Transformer Using Evolutionary Algorithms. Energies. 2023; 16(10):4016. https://doi.org/10.3390/en16104016
Chicago/Turabian StyleOlivares-Galvan, Juan Carlos, Hector Ascencion-Mestiza, Serguei Maximov, Efrén Mezura-Montes, and Rafael Escarela-Perez. 2023. "Design of a Three-Phase Shell-Type Distribution Transformer Using Evolutionary Algorithms" Energies 16, no. 10: 4016. https://doi.org/10.3390/en16104016
APA StyleOlivares-Galvan, J. C., Ascencion-Mestiza, H., Maximov, S., Mezura-Montes, E., & Escarela-Perez, R. (2023). Design of a Three-Phase Shell-Type Distribution Transformer Using Evolutionary Algorithms. Energies, 16(10), 4016. https://doi.org/10.3390/en16104016