Numerical Study on Flow and Noise Characteristics of High-Temperature and High-Pressure Steam Ejector
Abstract
:1. Introduction
2. Numerical Model
2.1. Description of the Physical Problem
2.2. Mathematical Model
2.2.1. Governing Equations
2.2.2. Steady-State Process
2.2.3. Unsteady-State Process
2.3. Computational Grid and Solution Procedure
2.4. Independence Checks and Model Verification
3. Results and Discussion
3.1. Flow and Noise Characteristics
3.1.1. Flow Characteristics
3.1.2. Near-Field Sound Source Characteristics
3.1.3. Far-Field Noise Characteristics
3.2. Effect of Working Parameters
3.2.1. Primary Steam Pressure
3.2.2. Secondary Steam Pressure
3.2.3. Back Pressure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
c | Specific heat capacity (J/(kg·K)) |
E | Total energy (J/kg) |
k | Turbulence kinetic energy (m2/s2) |
Ma | Mach number |
P | Dimensionless pressure, |
Pij | Stress tensor |
p | Pressure (MPa) |
Q | Vortex criterion (1/s2) |
q | Flow rate (t/h) |
S | Lilley sound source intensity (1/s3) |
T | Temperature (°C) |
Tij | Lighthill tensor |
u | Velocity (m/s) |
v | Surface velocity (m/s) |
x, y, z | Spatial coordinates (m) |
Greek symbols | |
α | Angle in Section-xoy |
β | Angle in Section-yoz |
θ | Dimensionless temperature, |
μt | Turbulent viscosity (mPa·s) |
ξ | Vorticity (1/s) |
ρ | Density (kg/m3) |
φ | Entrainment ratio, |
Ω | Sound pressure level (dB) |
ω | Specific dissipation (1/s) |
Subscripts | |
b | Back pressure |
p | Primary steam |
s | Secondary steam |
i, j, k | Spatial vector |
References
- Bilal, E.Z.; Nikolay, B.; Hassan, H.A.; Kamel, A.M.; Anas, S.; Mouhammad, E.H. Investigation of the Effects of the Het Nozzle Geometry and Location on the Performance of Supersonic Fluid Ejectors. Energy Rep. 2022, 8, 228–233. [Google Scholar] [CrossRef]
- Tashtoush, B.M.; Al-Nimr, M.A.; Khasawneh, M.A. A Comprehensive Review of Ejector Design, Performance, and Applications. Appl. Energy 2019, 240, 138–172. [Google Scholar] [CrossRef]
- Kong, F.S.; Kim, H.D.; Jin, Y.Z.; Setoguchi, T. Application of Chevron Nozzle to a Supersonic Ejector-Diffuser System. Procedia Eng. 2013, 56, 193–200. [Google Scholar] [CrossRef]
- Ma, S.X.; Zhao, G.J. A Thermoelectric Peak Regulating Method for a Coal-Fired Unit. CHINA Patent 112,050,190, 8 December 2020. (In Chinese). [Google Scholar]
- Dirk, S.; Markus, M.; Cara, K.; Christin, P.; Thomas, E. Aircraft Noise and Quality of Life around Frankfurt Airport. Int. J. Environ. Res. Public Health 2010, 7, 3382–3405. [Google Scholar] [CrossRef]
- Sun, B.Z.; Yue, S.; Wang, C.B.; Xu, Z.Y.; Guo, J.L.; Mi, C.L. Numerical Simulation and Test Verification on Industrial Heating Performance of Adjustable Steam Ejector in 350MW Supercritical Unit. J. North China Electr. Power Univ. 2021, 48, 98–107. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.J.; Zhang, X.Z.; Wang, D.B.; Jin, Z.L. Performance Evaluation and Operation Optimization of the Steam Ejector Based on Modified Model. Appl. Therm. Eng. 2019, 163, 114388. [Google Scholar] [CrossRef]
- Giuseppe, G.; Adriano, M.; Samuele, P. Prediction of Condensation in Steam Ejector for a Refrigeration System. Int. J. Refrig. 2011, 34, 1641–1648. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.D.; Ning, J.X.; Zhang, P.F.; Huang, H.L.; Tu, J.Y. Numerical Investigation of the Nozzle Expansion State and its Effect on the Performance of the Steam Ejector Based on Ideal Gas Model. Appl. Therm. Eng. 2021, 199, 117509. [Google Scholar] [CrossRef]
- Han, Y.; Wang, X.D.; Sun, H.; Zhang, G.L.; Guo, L.X.; Tu, J.Y. CFD Simulation on the Boundary Layer Separation in the Steam Ejector and its Influence on the Pumping Performance. Energy 2019, 167, 469–483. [Google Scholar] [CrossRef]
- Giorgio, B.; Nicolò, C.; Lorenzo, C.; Gaël, R.G.; Fabio, I. Computational Fluid-dynamics Modelling of Supersonic Ejectors: Screening of Modelling Approaches, Comprehensive Validation and Assessment of Ejector Component Efficiencies. Appl. Therm. Eng. 2021, 186, 116431. [Google Scholar] [CrossRef]
- Li, Y.Q.; Shen, S.Q.; Niu, C.; Guo, Y.L.; Zhang, L.Y. The Effect of Different Pressure Conditions on Shock Waves in a Supersonic Steam Ejector. Energies 2022, 15, 2093. [Google Scholar] [CrossRef]
- Li, Y.Q.; Shen, S.Q.; Niu, C.; Mu, X.S.; Zhang, L.Y. The Effect of Variable Motive Pressures on the Performance and Shock Waves in a Supersonic Steam Ejector with Non-Equilibrium Condensing. Int. J. Therm. Sci. 2023, 185, 108034. [Google Scholar] [CrossRef]
- Wen, C.; Gong, L.; Ding, H.B.; Yang, Y. Steam Ejector Performance Considering Phase Transition for Multi-Effect Distillation with Thermal Vapour Compression (MED-TVC) Desalination System. Appl. Energy 2020, 279, 115831. [Google Scholar] [CrossRef]
- Sun, W.X.; Ma, X.J.; Zhang, Y.M.; Jia, L.; Xue, H.Y. Performance Analysis and Optimization of a Steam Ejector Through Streamlining of the Primary Nozzle. Case Stud. Therm. Eng. 2021, 27, 101356. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Yuan, J.L.; Liu, Z.L.; Feng, Q.; Gong, X.L.; Lu, L.; Chua, K.J. Study on Evolution Laws of Two-Phase Choking Flow and Entrainment Performance of Steam Ejector Oriented Towards MED-TVC Desalination System. Energy 2022, 242, 122967. [Google Scholar] [CrossRef]
- Gerard, D. A Theoretical and Experimental Investigation on Ejector Acoustics and Ejector Silencer Design. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2018. [Google Scholar]
- Mohammed, S. Optimization of Acoustic Liner Design for Axisymmetric Mixer-Ejector Nozzles under ESPR Program. In Proceedings of the 23rd International Congress of Aeronautical Sciences, Toronto, ON, Canada, 8–13 September 2002. [Google Scholar]
- Rafael, C.E.; Carlos, R.I.S.; Cesar, J.D. Application of RANS-based method to predict acoustic noise of chevron nozzles. Appl. Acoust. 2014, 79, 153–163. [Google Scholar] [CrossRef]
- Das, I.S.; Khavaran, A.; Krejsa, E.A. A Computational Study of Contoured Plug-nozzle Jet Noise. J. Sound Vib. 1997, 206, 169–194. [Google Scholar] [CrossRef]
- Suponitsky, V.; Sandham, N.D.; Agarwal, A. On the Mach Number and Temperature Dependence of Jet Noise, Results from a Simplified Numerical Model. J. Sound Vib. 2011, 330, 4123–4138. [Google Scholar] [CrossRef]
- Kapusta, M.; Powers, R.; Morris, P.J. Numerical Simulations for Supersonic Jet Noise Reduction Using Fluidic Inserts. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Yang, H.H.; Zhou, L.; Wan, Z.H.; Sun, D.J. The Effects of Temperature on Vortex-Pairing Noise in Axisymmetric Subsonic Jets. Procedia Eng. 2015, 126, 63–67. [Google Scholar] [CrossRef]
- Wei, X.F.; Mariani, R.; Chua, L.P.; Lim, H.D.; Lu, Z.B.; Cui, Y.D.; New, T.H. Mitigation of Under-Expanded Supersonic Jet Noise Through Stepped Nozzles. J. Sound Vib. 2019, 459, 114875. [Google Scholar] [CrossRef]
- Tide, P.S.; Babu, V. Numerical Predictions of Noise due to Subsonic Jets from Nozzles with and without Chevrons. Appl. Acoust. 2009, 70, 321–332. [Google Scholar] [CrossRef]
- Ffowcs, W.J.E.; Hawkings, D.L. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philos. Trans. R. Soc. Lond. 1969, A264, 321–342. [Google Scholar] [CrossRef]
- Xing, C.L.; Le, G.G.; Shen, L.; Zhao, C.F.; Zheng, H. Numerical Investigations on Acoustic Environment of Multi-Nozzle Launch Vehicle at Lift-Off. Aerosp. Sci. Technol. 2020, 106, 106140. [Google Scholar] [CrossRef]
- Morfey, C.L.; Tester, B.J.; Powles, C.J. Numerical and Asymptotic Lilley-Equation Solutions for the Goldstein Jet-Noise Source Model. In Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), Rome, Italy, 21–23 May 2007. [Google Scholar]
- Zhu, Y.H.; Cai, W.J.; Wen, C.Y.; Li, Y.Z. Shock Circle Model for Ejector Performance Evaluation. Energy Convers. Manag. 2007, 48, 2533–2541. [Google Scholar] [CrossRef]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Kavous, A.; David, B.; Ghassan, A.D.; Navid, S. Mixing Layer Effects on the Entrainment Ratio in Steam Ejectors through Ideal Gas Computational Simulations. Energy 2016, 95, 380–392. [Google Scholar] [CrossRef]
- Walid, B.; Christophe, B.; Philippe, L. Stochastic Approach to Noise Modeling for Free Turbulent Flows. AIAA J. 1994, 32, 455–463. [Google Scholar] [CrossRef]
- Wan, Z.H.; Yang, H.H.; Zhang, X.C.; Sun, D.J. Instability Waves and Aerodynamic Noise in a Subsonic Transitional Turbulent Jet. Eur. J. Mech. B Fluids 2016, 57, 192–203. [Google Scholar] [CrossRef]
- Casalino, D.; Genito, M. Achievements in the Numerical Modeling of Fan Noise Radiation from Aero-engines. Aerosp. Sci. Technol. 2008, 12, 105–113. [Google Scholar] [CrossRef]
- Menter, F.; Egorov, Y. The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions, Part 1, Theory and Model Sescription. J. Flow Turbul. Combust. 2010, 85, 113–138. [Google Scholar] [CrossRef]
- Brentner, K.S.; Farassat, F. An Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulations for Moving Surfaces. AIAA J. 1998, 36, 1379–1386. [Google Scholar] [CrossRef]
- Liu, C.Q.; Gao, Y.S.; Dong, X.R.; Wang, Y.Q.; Liu, J.M.; Zhang, Y.N.; Cai, X.S.; Gui, N. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J. Hydrodyn. 2019, 31, 205–223. [Google Scholar] [CrossRef]
- Wu, H.Q. A Study on the Flow and Phase Change Characteristics in Steam Ejector. Doctor Thesis, Beijing University of Technology, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Wu, K.; Liang, L.X.; Huang, L.L.; Cao, J.Z. Numerical Simulation of Aerodynamic Noise for the Steam Jet of Ejector. Build. Energy Environ. 2010, 29, 41–44. (In Chinese) [Google Scholar] [CrossRef]
Name | Size (mm) |
---|---|
Throat diameter of nozzle | 71.21 |
Inlet diameter of nozzle | 207.63 |
Outlet diameter of nozzle | 81.46 |
Diameter of suction chamber | 507.63 |
Throat diameter of mixing chamber | 169.00 |
Outlet diameter of diffuser chamber | 372.52 |
Length of nozzle expansion section | 97.24 |
Length of suction chamber | 1041.71 |
Length of mixing chamber | 1183.00 |
Length of diffuser chamber | 1322.89 |
Case | The Numbers of Grid | φ | Relative Error (%) | Ω (dB) (x = 5.548 m) | Relative Error (%) |
---|---|---|---|---|---|
1 | 648,248 | 1.089 | - | 134.9 | - |
2 | 821,015 | 1.088 | 0.09 | 133.9 | 0.74 |
3 | 1,103,264 | 1.089 | 0.09 | 133.0 | 0.67 |
4 | 1,493,388 | 1.088 | 0.09 | 132.6 | 0.30 |
- | Time Step (s) | φ | Relative Error (%) | Ω (dB) (x = 5.548 m) | Relative Error (%) |
5 | 5 × 10−5 | 1.088 | - | 130.0 | - |
6 | 2.5 × 10−5 | 1.088 | 0.00 | 133.9 | 3.00 |
7 | 1 × 10−5 | 1.088 | 0.00 | 133.1 | 0.60 |
8 | 5 × 10−6 | 1.088 | 0.00 | 132.9 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, Y.; Guo, Y.; Zhang, J.; Ma, S. Numerical Study on Flow and Noise Characteristics of High-Temperature and High-Pressure Steam Ejector. Energies 2023, 16, 4158. https://doi.org/10.3390/en16104158
Zhang J, Liu Y, Guo Y, Zhang J, Ma S. Numerical Study on Flow and Noise Characteristics of High-Temperature and High-Pressure Steam Ejector. Energies. 2023; 16(10):4158. https://doi.org/10.3390/en16104158
Chicago/Turabian StyleZhang, Jiajie, Yun Liu, Yumeng Guo, Jingxian Zhang, and Suxia Ma. 2023. "Numerical Study on Flow and Noise Characteristics of High-Temperature and High-Pressure Steam Ejector" Energies 16, no. 10: 4158. https://doi.org/10.3390/en16104158
APA StyleZhang, J., Liu, Y., Guo, Y., Zhang, J., & Ma, S. (2023). Numerical Study on Flow and Noise Characteristics of High-Temperature and High-Pressure Steam Ejector. Energies, 16(10), 4158. https://doi.org/10.3390/en16104158