The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant
Abstract
:1. Introduction
1.1. Motivation
1.2. Prior Research
1.3. Contributions of This Work
1.4. Methodology and Outline
2. System Description
2.1. System Components
2.2. Sensors and Actuators
2.3. Operation
3. Modeling Approach
3.1. Application
3.2. Assumptions
3.3. Actuators
3.4. Reservoirs
3.4.1. Engine
3.4.2. Plate Heat Exchanger
3.4.3. Exhaust Gas Heat Exchanger
3.4.4. Dynamics of Water Supply Pipe
3.5. Model Validation
4. Optimization
4.1. Constraints
4.2. Objective
4.3. Further Variants of Objectives
5. Case Study
6. Discussion
6.1. Key Insights
6.2. Limitations
7. Implications and Future Application
7.1. Different Operating Conditions
7.2. Demand-Side Interaction
7.3. Cost-Effectiveness
7.4. Implementation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CAN | Controller Area Network |
CCHP | Combined Cooling, Heat and Power |
CHP | Combined Heat and Power |
ECU | Electronic Control Unit |
HRSG | Heat Recovery Steam Generator |
HXE | Heat exchanger exhaust gas |
HXP | Plate heat exchanger |
ICE | Internal Combustion Engine |
mCHP | Micro Combined Heat and Power |
MPC | Model Predictive Control |
NLP | Nonlinear Program |
OCP | Optimal Control Problem |
ODE | Ordinary Differential Equation |
PI | Proportional Integral |
SISO | Single-Input Single-Output |
TES | Thermal Energy Storage |
TWC | Three-way Catalytic Converter |
Symbols
temperature | [] | |
f | pump mass flow | [] |
valve split factor | [-] | |
m | mass | |
mass flow | [] | |
heat flow | [] | |
isobaric specific heat capacity | [] | |
lumped heat transfer coefficient and contact surface | [] | |
lumped heat transfer coefficient and contact surface | [] | |
N | horizon | [-] |
uniform time period between consecutive samples | [] | |
k | discrete time index | [-] |
thermal efficiency measure | [-] |
Subscripts and Superscripts
a | air |
average | |
bypass | |
c | coolant |
combined heat and power plant | |
cold | |
e | engine |
exhaust | |
hot | |
heat exchanger exhaust | |
plate heat exchanger | |
entering | |
maximum | |
middle | |
exiting | |
reference | |
w | water |
Appendix A
Component | Type | Range | Accuracy |
---|---|---|---|
Engine | 1-cylinder, displacement volume , mechanical power | - | - |
Generator | EMWB AG, asynchronous, efficiency , | - | - |
HXP | Alfa Laval CBH16-25H plate heat exchanger | - | - |
HXE | Prototype, gas-to-water heat exchanger, | - | - |
Pumps | Wilo-Stratos PARA/-Z | - | - |
3-way valves | Valves: Belimo R513, Electric Actuator: Belimo NRC24A-SR | - | - |
ECU | Woodward ECM-0563-048-0701-C | - | - |
Temperature Sensors | Thermocouple Type K | 0 to 25 C | |
Thermocouple Scanner | Axiomatic AXTC20 | - | |
Flow Sensors | Vortex Flow Sensor 200 | 1.8 to 32 L/min | <2% |
Gas Valve | Heinzmann E-LES 30 SMC | - | - |
CAN Connector | Kvaser Leaf Light HS v2 | - | - |
Lab Computer | Dell Precision Tower 3620 XCTO, 20 GB RAM | - | - |
Parameter | Description | Value |
---|---|---|
Heat flow to engine block due to combustion | ||
Lumped heat transfer coefficient and surface between engine block and ambient | ||
Lumped heat transfer coefficient and surface between engine block and coolant | ||
Lumped heat transfer coefficient and heat exchange surface in exhaust gas heat exchanger | ||
Lumped heat transfer coefficient and heat exchange surface in plate heat exchanger | ||
Specific heat capacity of coolant fluid (water with 25% ethylene glycol) | ||
Specific heat capacity of engine block | ||
Specific heat capacity of exhaust gas | 10,044 | |
Specific heat capacity of water | ||
mass of coolant fluid in engine | ||
mass of coolant fluid in plate heat exchanger | ||
mass of engine | ||
mass of exhaust gas in heat exchanger | ||
mass of water in supply pipe after plate heat exchanger | ||
mass of water in exhaust gas heat exchanger | ||
mass of water in plate heat exchanger | ||
exhaust gas mass flow | ||
temperature of exhaust gas at inlet of exhaust gas heat exchanger |
References
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Liu, M.; Shi, Y.; Fang, F. Combined cooling, heating and power systems: A survey. Renew. Sustain. Energy Rev. 2014, 35, 1–22. [Google Scholar] [CrossRef]
- Maghanki, M.M.; Ghobadian, B.; Najafi, G.; Galogah, R.J. Micro combined heat and power (MCHP) technologies and applications. Renew. Sustain. Energy Rev. 2013, 28, 510–524. [Google Scholar] [CrossRef]
- Murugan, S.; Horák, B. A review of micro combined heat and power systems for residential applications. Renew. Sustain. Energy Rev. 2016, 64, 144–162. [Google Scholar] [CrossRef]
- Tan, D.; Meng, Y.; Tian, J.; Zhang, C.; Zhang, Z.; Yang, G.; Cui, S.; Hu, J.; Zhao, Z. Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies. Energy 2023, 269, 126785. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, R.; Lan, G.; Yuan, T.; Tan, D. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: A review. Environ. Sci. Pollut. Res. 2023, 30, 39338–39376. [Google Scholar] [CrossRef]
- Angrisani, G.; Roselli, C.; Sasso, M. Distributed microtrigeneration systems. Prog. Energy Combust. Sci. 2012, 38, 502–521. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y. Combined heat and power scheduling: Utilizing building-level thermal inertia for short-term thermal energy storage in district heat system. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 804–814. [Google Scholar] [CrossRef]
- Rosato, A.; Sibilio, S.; Ciampi, G. Energy, environmental and economic dynamic performance assessment of different micro-cogeneration systems in a residential application. Appl. Therm. Eng. 2013, 59, 599–617. [Google Scholar] [CrossRef]
- Pereira, J.S.; Ribeiro, J.B.; Mendes, R.; Vaz, G.C.; André, J.C. ORC based micro-cogeneration systems for residential application – A state of the art review and current challenges. Renew. Sustain. Energy Rev. 2018, 92, 728–743. [Google Scholar] [CrossRef]
- Georg Bock, H.; Diehl, M.; Schlöder, J.P.; Allgöwer, F.; Findeisen, R.; Nagy, Z. Real-Time Optimization and Nonlinear Model Predictive Control of Processes Governed by Differential-Algebraic Equations. IFAC Proc. Vol. 2000, 33, 671–679. [Google Scholar] [CrossRef]
- Mayne, D.Q. Model predictive control: Recent developments and future promise. Automatica 2014, 50, 2967–2986. [Google Scholar] [CrossRef]
- Mohammadian, P.K.; Saidi, M.H. Simulation of startup operation of an industrial twin-shaft gas turbine based on geometry and control logic. Energy 2019, 183, 1295–1313. [Google Scholar] [CrossRef]
- Sindareh-Esfahani, P.; Ghaffari, A.; Ahmadi, P. Thermodynamic modeling based optimization for thermal systems in heat recovery steam generator during cold start-up operation. Appl. Therm. Eng. 2014, 69, 286–296. [Google Scholar] [CrossRef]
- Aurora, C.; Diehl, M.; Ferramosca, A.; Magni, L.; Miotti, A.; Scattolini, R. Nonlinear model predictive control for combined cycle power plants. IFAC Proc. Vol. 2004, 37, 621–626. [Google Scholar] [CrossRef]
- Albanesi, C.; Bossi, M.; Magni, L.; Paderno, J.; Pretolani, F.; Kuehl, P.; Diehl, M. Optimization of the Start-up Procedure of a Combined Cycle Power Plant. In Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006. [Google Scholar] [CrossRef]
- Tică, A.; Guéguen, H.; Dumur, D.; Faille, D.; Davelaar, F. Design of a combined cycle power plant model for optimization. Appl. Energy 2012, 98, 256–265. [Google Scholar] [CrossRef]
- Casella, F.; Farina, M.; Righetti, F.; Faille, D.; Tica, A.; Gueguen, H.; Scattolini, R.; Davelaar, F.; Dumur, D. An optimization procedure of the start-up of Combined Cycle Power Plants. IFAC Proc. Vol. 2011, 44, 7043–7048. [Google Scholar] [CrossRef]
- Larsson, P.O.; Casella, F.; Magnusson, F.; Andersson, J.; Diehl, M.; Akesson, J. A framework for nonlinear model-predictive control using object-oriented modeling with a case study in power plant start-up. In Proceedings of the 2013 IEEE Conference on Computer Aided Control System Design (CACSD), Hyderabad, India, 28–30 August 2013. [Google Scholar] [CrossRef]
- Diaz, J.L.; Ocampo-Martinez, C.; Panten, N.; Weber, T.; Abele, E. Optimal operation of combined heat and power systems: An optimization-based control strategy. Energy Convers. Manag. 2019, 199, 111957. [Google Scholar] [CrossRef]
- Wang, J.; You, S.; Zong, Y.; Træholt, C.; Dong, Z.Y.; Zhou, Y. Flexibility of combined heat and power plants: A review of technologies and operation strategies. Appl. Energy 2019, 252, 113445. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Zeng, D.; Fang, F.; Niu, Y. Modeling and flexible load control of combined heat and power units. Appl. Therm. Eng. 2020, 166, 114624. [Google Scholar] [CrossRef]
- Kazda, K.; Li, X. A Critical Review of the Modeling and Optimization of Combined Heat and Power Dispatch. Processes 2020, 8, 441. [Google Scholar] [CrossRef]
- Salman, C.A.; Li, H.; Li, P.; Yan, J. Improve the flexibility provided by combined heat and power plants (CHPs) – a review of potential technologies. e-Prime—Adv. Electr. Eng. Electron. Energy 2021, 1, 100023. [Google Scholar] [CrossRef]
- Gu, W.; Wu, Z.; Bo, R.; Liu, W.; Zhou, G.; Chen, W.; Wu, Z. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. Int. J. Electr. Power Energy Syst. 2014, 54, 26–37. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, Y.; Cao, Y.; Li, D.; Wang, L. Optimal Energy Management for Microgrids with Combined Heat and Power (CHP) Generation, Energy Storages, and Renewable Energy Sources. Energies 2017, 10, 1288. [Google Scholar] [CrossRef]
- Costa, A.; Fichera, A. A mixed-integer linear programming (MILP) model for the evaluation of CHP system in the context of hospital structures. Appl. Therm. Eng. 2014, 71, 921–929. [Google Scholar] [CrossRef]
- dos Reis, E.P.; Arrieta, F.R.P.; Venturini, O.J. General methodology and optimization for the analysis of bottoming cycle cogeneration. Energy Convers. Manag. 2023, 276, 116536. [Google Scholar] [CrossRef]
- Marrasso, E.; Roselli, C.; Sasso, M.; Tariello, F. Comparison of centralized and decentralized air-conditioning systems for a multi-storey/multi users building integrated with electric and diesel vehicles and considering the evolution of the national energy system. Energy 2019, 177, 319–333. [Google Scholar] [CrossRef]
- Shakibi, H.; Shokri, A.; Assareh, E.; Yari, M.; Lee, M. Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system. Appl. Energy 2023, 333, 120607. [Google Scholar] [CrossRef]
- Marseglia, G.; Medaglia, C.M.; Petrozzi, A.; Nicolini, A.; Cotana, F.; Sormani, F. Experimental Tests and Modeling on a Combined Heat and Power Biomass Plant. Energies 2019, 12, 2615. [Google Scholar] [CrossRef]
- Yee, S.K.; Milanović, J.V.; Hughes, F.M. Validated Models for Gas Turbines Based on Thermodynamic Relationships. IEEE Trans. Power Syst. 2011, 26, 270–281. [Google Scholar] [CrossRef]
- Laszczyk, P. Simplified modeling of liquid-liquid heat exchangers for use in control systems. Appl. Therm. Eng. 2017, 119, 140–155. [Google Scholar] [CrossRef]
- Indumathy, M.; Sobana, S.; Panda, B.; Panda, R.C. Modelling and control of plate heat exchanger with continuous high-temperature short time milk pasteurization process—A review. Chem. Eng. J. Adv. 2022, 11, 100305. [Google Scholar] [CrossRef]
- Gut, J.A.; Pinto, J.M. Modeling of plate heat exchangers with generalized configurations. Int. J. Heat Mass Transf. 2003, 46, 2571–2585. [Google Scholar] [CrossRef]
- Damiani, L.; Revetria, R.; Giribone, P. A Dynamic Simulation Model for a Heat Exchanger Malfunction Monitoring. Energies 2022, 15, 1862. [Google Scholar] [CrossRef]
- Mota, F.A.; Carvalho, E.; Ravagnani, M.A. Modeling and Design of Plate Heat Exchanger. In Heat Transfer Studies and Applications; InTech: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef]
- Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi – A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
- Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 2006, 106, 25–57. [Google Scholar] [CrossRef]
- Padua, D. (Ed.) MUMPS. In Encyclopedia of Parallel Computing; Springer: Boston, MA, USA, 2011; p. 1238. [Google Scholar] [CrossRef]
- Bock, H.; Plitt, K. A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems. IFAC Proc. Vol. 1984, 17, 1603–1608. [Google Scholar] [CrossRef]
- Kim, I.Y.; de Weck, O.L. Adaptive weighted sum method for multiobjective optimization: A new method for Pareto front generation. Struct. Multidiscip. Optim. 2006, 31, 105–116. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Scattolini, R. Architectures for distributed and hierarchical Model Predictive Control—A review. J. Process Control 2009, 19, 723–731. [Google Scholar] [CrossRef]
No. | Priority | Objective | Constraints | |
---|---|---|---|---|
① | Temperature Deviation | Equation (30) | Equations (3), (4), (7), (13)–(21), (23)–(29) | |
② | Durability | Equation (31) | Equations (3), (4), (7), (13)–(21), (23)–(29) | |
③ | Thermal Efficiency | Equation (33) | Equations (3), (4), (7), (13)–(21), (23)–(29) | |
④ | Temperature Deviation (time optimal) | see ① | Equations (3), (4), (7), (13)–(21), (23)–(29) | |
⑤ | Durability (time optimal) | see ② | Equations (3), (4), (7), (13)–(21), (23)–(29) | |
⑥ | Temperature Deviation (no input constraints) | see ① | Equations (3), (4), (7), (13)–(21), (23)–(25), (28)–(29) | |
⑦ | Durability (no input constraints) | see ② | Equations (3), (4), (7), (13)–(21), (23)–(25), (28)–(29) | |
⑧ | Thermal Efficiency (no input constraints) | see ③ | Equations (3), (4), (7), (13)–(21), (23)–(25), (28)–(29) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zobel, T.; Ritter, A.; Onder, C.H. The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant. Energies 2023, 16, 4180. https://doi.org/10.3390/en16104180
Zobel T, Ritter A, Onder CH. The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant. Energies. 2023; 16(10):4180. https://doi.org/10.3390/en16104180
Chicago/Turabian StyleZobel, Tammo, Andreas Ritter, and Christopher H. Onder. 2023. "The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant" Energies 16, no. 10: 4180. https://doi.org/10.3390/en16104180
APA StyleZobel, T., Ritter, A., & Onder, C. H. (2023). The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant. Energies, 16(10), 4180. https://doi.org/10.3390/en16104180