Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Evaluating the Risk of Backfire and the Correlation to Fuel System Requirements through 0D/1D Simulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Injector Rate of Delivery
3.2. Start-of-Injection Effects for H2 Fueling
3.3. Selected Part-Load Operating Points with H2 Fueling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hydrogen Council. Roadmap towards Zero Emission: BEVs and FCEVs, 10/21. Available online: www.hydrogencouncil.com (accessed on 20 December 2022).
- Sacchi, R.; Bauer, C.; Cox, B.; Mutel, C. When, where and how can the electrification of passenger cars reduce greenhouse gas emissions? Renew. Sustain. Energy Rev. 2022, 162, 112475. [Google Scholar] [CrossRef]
- Mills, S.J. Heavy duty hydrogen ICE: Production realization by 2025 and system operation efficiency assessment. In Powertrain Systems for Net-Zero Transport, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003219217. [Google Scholar]
- Candelaresi, D.; Valente, A.; Iribarren, D.; Dufour, J.; Spazzafumo, G. Comparative life cycle assessment of hydrogen-fuelled passenger cars. Int. J. Hydrogen Energy 2021, 46, 35961–35973. [Google Scholar] [CrossRef]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Progress Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef]
- Liu, X.; Seberry, G.; Kook, S.; Nian Chan, Q.; Hawkes, E.R. Direct injection of hydrogen main fuel and diesel pilot fuel in a retrofitted single-cylinder compression ignition engine. Int. J. Hydrogen Energy 2022, 47, 35864–35876. [Google Scholar] [CrossRef]
- Zucca, G.; Mocci, A.; Tirilló, J.; Bernabei, M.; De Paolis, F. Hydrogen Embrittlement and Fatigue Fracture of a Crankshaft of an Internal Combustion Engine. Procedia Eng. 2015, 109, 202–209. [Google Scholar] [CrossRef]
- Rorimpandey, P.; Lung Yip, H.; Srna, A.; Zhai, G.; Wehrfritz, A.; Kook, S.; Hawkes, E.R.; Nian Chan, Q. Hydrogen-diesel dual-fuel direct-injection (H2DDI) combustion under compression-ignition engine conditions. Int. J. Hydrogen Energy 2023, 48, 766–783. [Google Scholar] [CrossRef]
- Janarthanam, S.; Blankenship, J.; Soltis, R.; Szwabowski, S.; Jaura, A.K. Architecture and Development of a Hydrogen Sensing and Mitigation System in H2RV—Ford’s Concept HEV Propelled with a Hydrogen Engine; SAE Technical Paper 2004-01-0359; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Kosmadakis, G.M.; Rakopoulos, D.C.; Rakopoulos, C.D. Assessing the cyclic-variability of spark-ignition engine running on methane-hydrogen blends with high hydrogen contents of up to 50%. Int. J. Hydrogen Energy 2021, 46, 17955–17968. [Google Scholar] [CrossRef]
- Irimescu, A.; Cecere, G.; Sementa, P. Combustion Phasing Indicators for Optimized Spark Timing Settings for Methane-Hydrogen Powered Small Size Engines; SAE Technical Paper 2022-01-0603; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Stępień, Z.A. Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges. Energies 2021, 14, 6504. [Google Scholar] [CrossRef]
- Wallner, T.; Ciatti, S.; Bihari, B. Investigation of Injection Parameters in a Hydrogen DI Engine Using an Endoscopic Access to the Combustion Chamber; SAE Technical Paper 2007-01-1464; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Fischer, M.; Sterlepper, S.; Pischinger, S.; Seibel, J.; Kramer, U.; Lorenz, T. Operation principles for hydrogen spark ignited direct injection engines for passenger car applications. Int. J. Hydrogen Energy 2021, 47, 5638–5649. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Song, P.; Tian, G.; Ma, C. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel 2022, 307, 121553. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, F.; Wang, L.; Wang, K.; Zhang, D. Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine. Energy 2018, 147, 715–728. [Google Scholar] [CrossRef]
- Luo, Q.; Sun, B. Experiments on the effect of engine speed, load, equivalence ratio, spark timing and coolant temperature on the energy balance of a turbocharged hydrogen engine. Energy Convers. Manag. 2018, 162, 1–12. [Google Scholar] [CrossRef]
- Diéguez, P.M.; Urroz, J.C.; Sáinz, D.; Machin, J.; Arana, M.; Gandía, L.M. Characterization of combustion anomalies in a hydrogen-fueled 1.4 L commercial spark-ignition engine by means of in-cylinder pressure, block-engine vibration, and acoustic measurements. Energy Convers. Manag. 2018, 172, 67–80. [Google Scholar] [CrossRef]
- Thawko, A.; Tartakovsky, L. The Mechanism of Particle Formation in Non-Premixed Hydrogen Combustion in a Direct-Injection Internal Combustion Engine. Fuel 2022, 327, 125187. [Google Scholar] [CrossRef]
- Thawko, A.; Eyal, A.; Tartakovsky, L. Experimental comparison of performance and emissions of a direct-injection engine fed with alternative gaseous fuels. Energy Convers. Manag. 2022, 251, 114988. [Google Scholar] [CrossRef]
- Duc, K.N.; Duy, V.N.; Hoang-Dinh, L.; Viet, T.N.; Le-Anh, T. Performance and emission characteristics of a port fuel injected, spark ignition engine fueled by compressed natural gas. Sust. Energy Technol. Assess. 2019, 31, 383–389. [Google Scholar] [CrossRef]
- Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T. Fuel economy and emissions evaluation of BMW Hydrogen 7 Mono-Fuel demonstration vehicles. Int. J. Hydrogen Energy 2008, 33, 7607–7618. [Google Scholar] [CrossRef]
- Irimescu, A.; Vaglieco, B.M.; Merola, S.; Zollo, V.; De Marinis, R. Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Rated Power and Injection Phasing Effects; SAE Technical Paper 2022-24-0031; SAE International: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Irimescu, A.; Vaglieco, B.M.; Merola, S.S.; Zollo, V.; De Marinis, R. Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Simulation of CCV and Evaluation of Cylinder Imbalance. Machines 2023, 11, 135. [Google Scholar] [CrossRef]
- Smart EQ ForTwo. Available online: www.smart.mercedes-benz.com (accessed on 17 November 2022).
- Gamma Technologies. GT-SUITE Flow Theory Manual; Version 7.4; Gamma Technologies: Westmont, IL, USA, 2013. [Google Scholar]
- Thomas, J.; West, B.; Huff, S. Effect of Air Filter Condition on Diesel Vehicle Fuel Economy; SAE Technical Paper 2013-01-0311; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Dziubak, T.; Boruta, G. Experimental and Theoretical Research on Pressure Drop Changes in a Two-Stage Air Filter Used in Tracked Vehicle Engine. Separations 2021, 8, 71. [Google Scholar] [CrossRef]
- Dziubak, T.; Karczewski, M. Experimental Study of the Effect of Air Filter Pressure Drop on Internal Combustion Engine Performance. Energies 2022, 15, 3285. [Google Scholar] [CrossRef]
- Gerke, U.; Steurs, K.; Rebecchi, P.; Boulouchos, K. Derivation of burning velocities of premixed hydrogen/air flames at engine-relevant conditions using a single-cylinder compression machine with optical access. Int. J. Hydrogen Energy 2010, 35, 2566–2577. [Google Scholar] [CrossRef]
- Rakopoulos, C.D.; Kosmadakis, G.M.; Demuynck, J.; De Paepe, M.; Verhelst, S. A combined experimental and numerical study of thermal processes, performance and nitric oxide emissions in a hydrogen-fueled spark-ignition engine. Int. J. Hydrogen Energy 2011, 36, 5163–5180. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw Hill: New York, NY, USA, 1988. [Google Scholar]
- Irimescu, A. Comparison of combustion characteristics and heat loss for gasoline and methane fueling of a spark ignition engine. Proc. Rom. Acad. Ser. A 2013, 14, 161–168. [Google Scholar]
- Office of Energy Efficiency and Renewable Energy—Hydrogen and Fuel Cell Technologies. Available online: www.energy.gov (accessed on 5 March 2022).
Description | |
---|---|
Displacement | 599 cm3 |
Number of cylinders | 3 |
Rated power | 40 kW @ 5250 rpm |
Rated torque | 80 Nm @ 2000–4400 rpm |
Bore × stroke | 63.5 mm × 63.0 mm |
Connecting rod length | 114 mm |
Compression ratio | 9.5:1 |
Number of valves | 2 per cylinder |
Intake valves’ opening/closure | 363/164 deg bTDC |
Exhaust valves’ opening/closure | 157/349 deg a/bTDC |
Fuel system | port fuel injection at 3.5 bar for gasoline and 5 bar for hydrogen |
Ignition | inductive discharge, 2 spark plugs per cylinder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irimescu, A.; Vaglieco, B.M.; Merola, S.S.; Zollo, V.; De Marinis, R. Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Evaluating the Risk of Backfire and the Correlation to Fuel System Requirements through 0D/1D Simulation. Energies 2023, 16, 4201. https://doi.org/10.3390/en16104201
Irimescu A, Vaglieco BM, Merola SS, Zollo V, De Marinis R. Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Evaluating the Risk of Backfire and the Correlation to Fuel System Requirements through 0D/1D Simulation. Energies. 2023; 16(10):4201. https://doi.org/10.3390/en16104201
Chicago/Turabian StyleIrimescu, Adrian, Bianca Maria Vaglieco, Simona Silvia Merola, Vasco Zollo, and Raffaele De Marinis. 2023. "Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Evaluating the Risk of Backfire and the Correlation to Fuel System Requirements through 0D/1D Simulation" Energies 16, no. 10: 4201. https://doi.org/10.3390/en16104201
APA StyleIrimescu, A., Vaglieco, B. M., Merola, S. S., Zollo, V., & De Marinis, R. (2023). Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Evaluating the Risk of Backfire and the Correlation to Fuel System Requirements through 0D/1D Simulation. Energies, 16(10), 4201. https://doi.org/10.3390/en16104201