Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Infrared Thermal Acquisition
2.2. Disconnect Current
2.3. Weather Station
2.4. Multivariate Time Series Regression Model
2.5. Metrics
- (a)
- Mean Square Error (MSE): Evaluate the mean square error between real observations and a proposed theoretical model:
- (b)
- Mean Absolute Error (MAE): Evaluate the mean absolute error between real observations and predicted data:
- (c)
- Absolute Mean Percentage Error (MAPLE):
- (d)
- Median Absolute Derivation (MAD):
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
CBM | Condition-based Maintenance |
Humid | Humidity |
IRT | Infrared thermography |
Current phase A | |
Solar Incident | |
MAD | Median Absolute Derivation |
MAE | Mean Absolute Error |
MAPLE | Absolute Mean Percentage Error |
MSE | Mean Square Error |
PCA | Principal Component Analysis |
PV | Photovoltaic |
SVM | Support Vector Machine |
Air Temperature | |
Maximum Temperature | |
VAR | Vector Auto-Regression |
Velocity of Wind |
References
- Baldissarelli, L.; Fabro, E. Manutenção Preditiva na indústria 4.0. Sci. Cum Ind. 2019, 7, 12–22. [Google Scholar] [CrossRef]
- ABNT, N. 5462; Confiabilidade e Mantenabilidade. ABNT (Associação Brasileira de Normas Técnicas): São Paulo, Brazil, 1994; p. 6.
- Ullah, I.; Yang, F.; Khan, R.; Liu, L.; Yang, H.; Gao, B.; Sun, K. Predictive maintenance of power substation equipment by infrared thermography using a machine-learning approach. Energies 2017, 10, 1987. [Google Scholar] [CrossRef]
- Siemann, G. Análise de Vibração: Estudo da Técnica e Aplicação Prática em Uma Indústria Siderúrgica; Universidade Estadual Paulista: São Paulo, Brazil, 2021; p. 11. [Google Scholar]
- Santiago, P.; Silva, E. Termografia Aplicada em Redes de Distribuição; XIV CEEL. Universidade Federal de Uberlândia: Uberlândia, Minas Gerais, Brasil, 3–7 October 2016. Available online: https://www.peteletricaufu.com.br/static/ceel/doc/artigos/artigos2016/ceel2016_artigo084_r01.pdf (accessed on 21 May 2023).
- Silva, A. Análise de Equipamentos por Termografia Infravermelha; Universidade Federal de Campina Grande: Campina Grande, Brazil, 2021; p. 5. [Google Scholar]
- Lins, E.; Freire, E.; Molina, L.; Carvalho, E.; Silva, W. Aplicação da Técnica BoVW para Identificar Falhas em Máquinas Rotativas a Partir de Imagens Termográficas de Baixa Resolução. In Proceedings of the XV Simpósio Brasileiro De Automação Inteligente, Online, 17–20 October 2021; Sociedade Brasileira de Automática: São Paulo, Brasil. Available online: https://www.sba.org.br/open_journal_systems/index.php/sbai/article/view/2677 (accessed on 21 May 2023). [CrossRef]
- Luz, J.; Oliveira Silveira, I.; Soeiro, M. Ensaio termográfico de edificação histórica: Igreja de Nossa Senhora da Conceição de Almofala/Thermographic test of historical heritage: Igreja de Nossa Senhora da Conceição de Almofala. Braz. J. Dev. 2021, 7, 100708–100731. [Google Scholar] [CrossRef]
- Oliveira Alves Takeuchi, R.; Ulbricht, L.; Magrin, F.; Ganacim, F.; Fernandes, L.; Romaneli, E.; Junior, J. Comparison of Traditional Image Segmentation Methods Applied to Thermograms of Power Substation Equipment. Energies 2022, 15, 7477. [Google Scholar] [CrossRef]
- Marinetti, S.; Cesaratto, P. Emissivity estimation for accurate quantitative thermography. NDT E Int. 2012, 51, 127–134. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Yaw, C.; Koh, S.; Abedin, T.; Raj, A.; Tiong, S.; Chen, C. A Review of Infrared Thermography for Condition-Based Monitoring in Electrical Energy: Applications and Recommendations. Energies 2022, 15, 6000. [Google Scholar] [CrossRef]
- Sethi, R.; Kumar, P. Advantages and Limitations of Thermography in Utility Scale Solar PV Plants. In Proceedings of the ISES Solar World Congress 2017-IEA SHC International Conference On Solar Heating and Cooling for Buildings and Industry, Abu Dhabi, United Arab Emirates, 29 October–2 November 2017; pp. 1271–1279. [Google Scholar] [CrossRef]
- Piotrowski, L.; Franchi, D.; Medeiros, L.; Junior, A.; Lazari, G.; Abaide, A. Análise das Perdas de Energia no Sistema Elétrico de Distribuição Brasileiro. In Proceedings of the 13th Seminar on Power Electronics and Control (SEPOC 2021), Online, 15–18 May 2021; p. 5. [Google Scholar]
- Zhang, Y.; Tang, K.; Liu, Z.; Chen, Y. Experimental study on thermal and fire behaviors of energized PE-insulated wires under overload currents. J. Therm. Anal. Calorim. 2021, 145, 345–351. [Google Scholar] [CrossRef]
- Vakrilov, N.; Kafadarova, N.; Zlatanski, D. Application of Infrared Imaging in the Field of Electrical Engineering. In Proceedings of the XXX International Scientific Conference Electronics (ET), 15–17 September 2021; pp. 1–4, ISBN 978-1-6654-4518-4. [Google Scholar]
- Madding, R.; Lyon, B.R.J. Wind effects on electrical hot spots: Some experimental IR data. In Proceedings of the Thermosense XXII, Orlando, FL, USA, 25–27 April 2000; Volume 4020, pp. 80–84, ISBN 0819436461. [Google Scholar] [CrossRef]
- Neto, E.W.; Da Costa, E.G.; Maia, M.J.A. Influence of Emissivity and Distance in High Voltage Equipments Thermal Imaging. In Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, Caracas, Venezuela, 15–18 August; 2006; pp. 1–4. [Google Scholar]
- Dos Santos, L.; Bortoni, E.; Souza, L.; Bastos, G.; Craveiro, M. Infrared thermography applied for outdoor power substations. In Proceedings of the Thermosense XXX, Orlando, FL, USA, 18–20 March 2008; Volume 6939, pp. 169–179. [Google Scholar]
- Mohr, G.; Nowakowski, S.; Altenburg, S.; Maierhofer, C.; Hilgenberg, K. Experimental determination of the emissivity of powder layers and bulk material in laser powder bed fusion using infrared thermography and thermocouples. Metals 2020, 10, 1546. [Google Scholar] [CrossRef]
- Rath, S.; Mohapatra, B. Blue-green nature solutions for urban wastewater enbling a circular economy. Urban. Archit. Constr. 2023, 14, 147–162. [Google Scholar]
- Yi, C.; Zhao, Z.; Fulu, T. Impacts of Climate Change and Climate Extremes on Major Crops Productivity in China at a Global Warming of 1.5 and 2.0 C; Copernicus GmbH: Gottingen, Germany, 2023. [Google Scholar]
- Charles, F.; Boehlert, B.; Strzepek, K.; Larsen, P.; White, A.; Gulati, S.; Li, Y.; Martinich, J. Climate Change Impacts and Costs to U.S. Electricity Transmission and Distribution Infrastructure; Elsevier Ltd.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Chafla, E.A.; Salazar, A.A.; Garcés, E.A. Determination of the Temperature in the Half-Voltage Disconnect Switches, through Polynomial Functions Obtained from Thermographic Images, for the Development of Intelligent Maintenance Systems. In Proceedings of the International Conference on Consumer Electronics and Devices, London, UK, 14–17 July 2017; pp. 18–22. [Google Scholar]
- Shi, X.; Ling, Z. Spatio-Temporal Correlation Analysis of Online Monitoring Data for Anomaly Detection and Location in Distribution Networks. IEEE Trans. Smart Grid 2019, 11, 995–1006. [Google Scholar] [CrossRef]
- Ovsyannikov, V.A.; Ovsyannikov, Y.V. Threshold sensitivity of staring thermal imaging devices operating in slant atmospheric paths. J. Opt. Technol. 2022, 11, 569–577. [Google Scholar] [CrossRef]
- Zeileis, A.; Leisch, F.; Hornik, K.; Kleiber, C. Strucchange: An R Package for Testing for Structural Change in Linear Regression Models. J. Stat. Softw. 2022, 7, 1–38. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wei, W.W.S. Multivariate Time Series Analysis and Applications; Wiley Series in Probability and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Dehlhaus, R. Fitting time series models to nonstationary processes. Ann. Stat. 1997, 25, 1–37. [Google Scholar] [CrossRef]
- Hamilton, J.D. Analysis of time series subject to changes in regime. J. Econom. 1990, 45, 39–70. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 5th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Box, G. Box, G. Box and Jenkins: Time Series Analysis, Forecasting and Control. In A Very British Affair. Palgrave Advanced Texts in Econometrics; Palgrave Macmillan: London, UK, 2015. [Google Scholar]
- Bessa, R.J.; Trindade, A.; Silva, C.S.P.; Miranda, V. Probabilistic Solar Power Forecasting in Smart Grids Using Distributed Information. Int. J. Electr. Power Energy Syst. 2015, 72, 16–23. [Google Scholar] [CrossRef]
- Baumeister, C.; Hamilton, J.D. Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks. Am. Econ. Rev. 2019, 109, 1873–1910. [Google Scholar] [CrossRef]
- Cavalcante, L.; Bessa, R.J.; Reis, M.; Browell, J. LASSO vector autoregression structures for very short-term wind power forecasting. Wind Energy 2017, 20, 657–675. [Google Scholar] [CrossRef]
- Alashari, M.; El-Rayes, K.; Attalla, M.; Al-Ghzawi, M. Multivariate time series and regression models for forecasting annual maintenance costs of EPDM roofing systems. J. Build. Eng. 2022, 54, 104618. [Google Scholar] [CrossRef]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike. Springer Series in Statistics; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Nottmeyer, L.; Armstrong, B.; Lowe, R.; Abbott, S.; Meakin, S.; O’Reilly, K.M.; von Borries, R.; Schneider, R.; Royé, D.; Hashizume, M.; et al. The association of COVID-19 incidence with temperature, humidity, and UV radiation—A global multi-city analysis. Sci. Total Environ. 2023, 854, 158636. [Google Scholar] [CrossRef] [PubMed]
- Quispe, C.; Purca, S. Forecast of Sea Surface Temperature Off The Peruvian Coast Using an Autoregressive Integrated Moving Average Model. Rev. Peru. Biol. 2013, 14, 109–115. [Google Scholar] [CrossRef]
- Arevalo, F.; Cid, A.; Moya, J. AIC and BIC for cosmological interacting scenarios. Eur. Phys. J. C 2017, 77, 565. [Google Scholar] [CrossRef]
- Zeileis, A. Dynlm: Dynamic Linear Regression. R Package Version 0.3-6. 2019. Available online: https://CRAN.R-project.org/package=dynlm (accessed on 21 May 2023).
Model | MSE | MAE | MAD | MAPE | ||
---|---|---|---|---|---|---|
Model 1 | 32.72 | 164.50 | 49.05 | 5.51 | 4.69 | 0.26 |
Model 2 | 80.57 | 130.29 | 12.28 | 2.84 | 2.44 | 0.12 |
Model 3 | 87.22 | 126.55 | 10.57 | 2.57 | 2.25 | 0.10 |
Model 4 | 91.01 | 117.60 | 7.38 | 2.14 | 1.81 | 0.08 |
Model 5 | 92.95 | 106.13 | 5.73 | 1.88 | 1.59 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, O.S.; Coninck, J.C.P.; Magrin, F.G.S.; Ganacim, F.I.S.; Pombeiro, A.; Fernandes, L.G.; Romaneli, E.F.R. Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model. Energies 2023, 16, 4295. https://doi.org/10.3390/en16114295
Junior OS, Coninck JCP, Magrin FGS, Ganacim FIS, Pombeiro A, Fernandes LG, Romaneli EFR. Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model. Energies. 2023; 16(11):4295. https://doi.org/10.3390/en16114295
Chicago/Turabian StyleJunior, Osni Silva, Jose Carlos Pereira Coninck, Fabiano Gustavo Silveira Magrin, Francisco Itamarati Secolo Ganacim, Anselmo Pombeiro, Leonardo Göbel Fernandes, and Eduardo Félix Ribeiro Romaneli. 2023. "Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model" Energies 16, no. 11: 4295. https://doi.org/10.3390/en16114295
APA StyleJunior, O. S., Coninck, J. C. P., Magrin, F. G. S., Ganacim, F. I. S., Pombeiro, A., Fernandes, L. G., & Romaneli, E. F. R. (2023). Impacts of Atmospheric and Load Conditions on the Power Substation Equipment Temperature Model. Energies, 16(11), 4295. https://doi.org/10.3390/en16114295