The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition
Abstract
:1. Introduction
2. Central American Situation
2.1. Context: Initial Electrical Development
2.2. Central American Interconnection
2.3. Central American Power Sector: Current Situation
2.4. Electrical Infrastructure
2.4.1. Guatemala
2.4.2. Honduras
2.4.3. El Salvador
2.4.4. Nicaragua
2.4.5. Costa Rica
2.4.6. Panama
2.5. Imports, Exports, and the Regional Power Market
2.6. Green Transition Central America Power System
2.7. Issues and Identified Risks
3. Case of Study: A Blackout in Central America
3.1. Materials and Methods
3.2. Description of the Event
- 1.
- The disconnection of a transmission line in the Honduras Power Grid caused a high power transmission, translating into an unbalanced condition in the Regional Power System. It caused the loss of 169 MW in PV Generation.
- 2.
- Un-balance condition provoked a change in the power flow (Mexico interconnection) from 200 to 484 MW. After 2 s, the power breaker opened the interconnection between Mexico-CA.
- 3.
- After 120 s, power flow increased from 140 to 361 MW between Costa Rica and Nicaragua (interconnection 1), and opened the power breaker.
- 4.
- Power flow increased from 218 to 394 MW between Costa Rica and Nicaragua (interconnection 2) and opened the power breaker.
- 5.
- Power flow increased between Honduras and Nicaragua interconnection. The power breaker opened the two interconnections.
- 6.
- Nicaragua was in black-out stage
3.3. Simulation Results
4. Challenges and Opportunities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CACM | Central American Common Market |
CEAC | Central American Electrification Council |
CEL | Executive Hydroelectric Commission of the Lempa River |
CFE | Federal Electricity Commission of Mexico |
CIER | Regional Energy Integration Commission |
CRIE | Regional Commission for Electricity Integration |
CRO | Regional Operation Center |
ECLAC | Economic Commission for Latin America and the Caribbean |
ENATREL | National Electricity Transmission Company of Nicaragua |
ENDESA | Spanish Energy Company |
ENNE | National Electric Power Company of Honduras |
EOR | Network Operator Entity |
EPR | Network Owner |
ETESA | Electric Transmission Company S.A. from Panama |
ETESAL | Transmission Company of El Salvador |
GRIE | Regional Electric Interconnection Group |
HVDC | High Voltage Direct Current |
ICE | Costa Rican Electricity Institute |
INDE | National Institute of Electrification of Guatemala |
ISA | Electric Interconnection Company S.A. |
MER | Regional Electricity Market |
OAS | Organisation of American States |
ODECA | Organization of Central American States |
RMER | Regional Electricity Market |
RTR | Regional Transmission Network |
SCS | Supplementary Control Schemes Implemented |
SER | Regional Electric System |
SICA | Central American Integration System |
SIEPAC | Electrical Interconnection System for the Central American Countries |
References
- Santos da Silva, S.R.; Hejazi, M.I.; Iyer, G.; Wild, T.B.; Binsted, M.; Miralles-Wilhelm, F.; Patel, P.; Snyder, A.C.; Vernon, C.R. Power sector investment implications of climate impacts on renewable resources in Latin America and the Caribbean. Nat. Commun. 2021, 12, 1276. [Google Scholar] [CrossRef] [PubMed]
- Aboumahboub, T.; Brecha, R.J.; Shrestha, H.B.; Fuentes, U.; Geiges, A.; Hare, W.; Schaeffer, M.; Welder, L.; Gidden, M.J. Decarbonization of Australia’s Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors. Energies 2020, 13, 3805. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, H. Regional Security Assessment of Integrated Energy Systems with Renewables in China: A Grid-Connected Perspective. Sustainability 2020, 12, 10299. [Google Scholar] [CrossRef]
- Rios, R.; Karacsonyi, J.; Tinoco, M. Allocation of transmission capacity in the central America electricity market. In Proceedings of the IEEE Power Engineering Society General Meeting, 2004, Denver, CO, USA, 6–10 June 2004; pp. 1286–1291. [Google Scholar] [CrossRef]
- Meza, C. A review on the Central America electrical energy scenario. Renew. Sustain. Energy Rev. 2014, 33, 566–577. [Google Scholar] [CrossRef]
- Suffian, S.; de Leon Barido, D.P.; Kabalan, M.; Singh, P. Grid adequacy and cooperation in central america: A data-driven analysis. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Prado, L.P.; Soto, F.S. Experiences at the electricity control centers in El Salvador and Nicaragua in the frame of the Electricity Industry Reforms. In Proceedings of the DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No.00EX382), London, UK, 4–7 April 2000; pp. 425–430. [Google Scholar] [CrossRef]
- Perez, E.; Lee, W.j. Voltage Stability Assessment of the Salvadorian Power System. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; pp. 1198–1203. [Google Scholar] [CrossRef]
- Espinoza, J.V.; Guzman, A.; Calero, F.; Mynam, M.V.; Palma, E.; Korkmaz, Z. Wide-area synchrophasors protect and control Central America’s power system stability. In Proceedings of the 2014 Saudi Arabia Smart Grid Conference (SASG), Jeddah, Saudi Arabia, 14–17 December 2014; pp. 1–9. [Google Scholar] [CrossRef]
- Flores, W.C.; Meraz, P.; Berrios, J.; Melara, D.; Barahona, C.; Sifuentes, W. The Solar eclipse of August 21, 2017 in Honduras: Evidence of the impact on the power system operation. In Proceedings of the 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), Lima, Peru, 18–21 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- CEPAL. Estadísticas de Producción de Electricidad de los Países del SICA: Datos Preliminares a 2019; CEPAL: Santiago, Chile, 2020. [Google Scholar]
- Lazo Vega, M.A. Centroamérica y el cambio climático: De la planificación a la acción. Real. Reflex. 2020, 20, 71–101. [Google Scholar] [CrossRef]
- Fallas Saborío, C.E. Sistema de Interconexión Eléctrica para los Países de América Central: Una historia Exitosa de Colaboración e Integración Regional; Gestión Documentación e Información ICE: San José, Costa Rica, 2014. [Google Scholar]
- EOR. Tomo I: Planificación de Largo Plazo de la Generación y la Transmisión Regional Correspondiente al Período 2019–2028; EOR: St. Paul, MN, USA, 2019. [Google Scholar]
- ICE. Plan de Expansión de la Generación Eléctrica 2018–2034; ICE: Washington, DC, USA, 2019. [Google Scholar]
- Hidalgo, H.G.; Amador, J.A.; Alfaro, E.J.; Quesada, B. Hydrological climate change projections for Central America. J. Hydrol. 2013, 495, 94–112. [Google Scholar] [CrossRef]
- Granados Flores, M.E. La descarbonización de la economía: Un diagnóstico del estado actual de las políticas en centroamérica ante el cambio climático. In Proceedings of the La Integración Centroamericana y la Globalización Mundial, San José, Costa Rica, 28 July 2019. [Google Scholar]
- Ente Opeardor Regional. Estudio de Seguridad Operativa para: Determinar los Límites de Transferencia de Potencia Desde el Sistema Eléctrico de México Hacia el Sistema Eléctrico Regional. 2019. Available online: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahcKEwj4vMyLuY__AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwww.enteoperador.org%2Fwp-content%2Fuploads%2F2019%2F06%2FEstudio-Seguridad-Operativa-Actualizaci%25C3%25B3n_E_T_M%25C3%25A9xico-SER_%25C3%25A9poca_h%25C3%25BAmeda_2019.pdf&psig=AOvVaw1_fE4UyRn8DgB8WGw23g79&ust=1685068816501291 (accessed on 13 April 2023).
- Montano Pineda, O.S. Energía Eléctrica en Honduras: Modelo de Operación, Crisis y Alternativas de Desarrollo Sustentable. Master’s Thesis, UNAH, Tegucigalpa, Honduras, 2021. [Google Scholar]
- CEPAL. Estadísticas del Subsector Eléctrico de los Países del Sistema de la Integración Centroamericana (SICA), 2019 y Avances a 2020; CEPAL: Santiago, Chile, 2021. [Google Scholar]
- Burchett, R.C.; Heydt, G.T. Probabilistic Methods For Power System Dynamic Stability Studies. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 695–702. [Google Scholar] [CrossRef]
- Ochoa Contreras, M.J.; Sandino Bermúdez, M.L. Análisis del Desarrollo del Sector de Generación de Energía Eléctrica en Nicaragua; ESAN University: Lima, Peru, 2019. [Google Scholar]
- Molina Carrera, V.E. Beneficios Positivos y Negativos de la Interconexión Eléctrica de Guatemala con Otros Países. Ph.D. Thesis, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala, 2019. [Google Scholar]
- SEGEPLAN. Plan Nacional de Energía de Guatemala 2017–2032; SEGEPLAN: Ciudad de Guatemala, Guatemala, 2017. [Google Scholar]
- MEM. VII Plan de Expansión de la Generación Eléctrica de Nicaragua 2019–2033. MEM. 2018. Available online: https://biblioteca.olade.org/opac-tmpl/Documentos/cg00467.pdf (accessed on 13 April 2023).
- De Energía, S.N. VII Plan Nacional Energético de Panamá 2015–2050. 2015. Available online: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahcKEwio_6nKvI_AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwww.irena.org%2F-%2Fmedia%2FFiles%2FIRENA%2FAgency%2FEvents%2F2016%2FOct%2F18%2FNational-Energy-Plan-20152050-by-Eng-Isaac-Castillo-SubSecretary-of-Energy-Panama.pdf%3Fla%3Den%26hash%3D323452FABF4A8B067F609F0755C775B25D20709E&psig=AOvVaw0gI73mxbTxAPYXM1s3nvje&ust=1685069862733878 (accessed on 13 April 2023).
- Gómez-Ramírez, G.A.; Mora-Jiménez, G.; Meza, C. Simulación del sistema de interconexión eléctrica de los países de América Central usando ETAP. Rev. Tecnol. Marcha 2023, 36, 50–58. [Google Scholar] [CrossRef]
- Siddique, A.H.; Hasan, M.; Islam, S.; Rashid, K. Prospective Smart Distribution Substation in Bangladesh: Modeling and Analysis. Sustainability 2021, 13, 10904. [Google Scholar] [CrossRef]
- Makola, C.S.; Le Roux, P.F.; Jordaan, J.A. Comparative Analysis of Lithium-Ion and Lead–Acid as Electrical Energy Storage Systems in a Grid-Tied Microgrid Application. Appl. Sci. 2023, 13, 3137. [Google Scholar]
- Ente Operador Regional. Informe Final del Evento Ocurrido en el Sistema Electrico Regional (SER); Technical Report; Ente Operador Regional: San Salvador, El Salvador, 2021. [Google Scholar]
- Kang, S.; Kim, J.; Park, J.W.; Baek, S.M. Reactive Power Management Based on Voltage Sensitivity Analysis of Distribution System with High Penetration of Renewable Energies. Energies 2019, 12, 1493. [Google Scholar] [CrossRef]
- Huo, Y.; Barcellona, S.; Piegari, L.; Gruosso, G. Reactive Power Injection to Mitigate Frequency Transients Using Grid Connected PV Systems. Energies 2020, 13, 1998. [Google Scholar] [CrossRef]
- Perilla, A.; Papadakis, S.; Rueda Torres, J.L.; van der Meijden, M.; Palensky, P.; Gonzalez-Longatt, F. Transient Stability Performance of Power Systems with High Share of Wind Generators Equipped with Power-Angle Modulation Controllers or Fast Local Voltage Controllers. Energies 2020, 13, 4205. [Google Scholar] [CrossRef]
- Xu, B.; Lei, L.; Zhao, Z.; Jiang, W.; Xiao, S.; Li, H.; Zhang, J.; Chen, D. Low Frequency Oscillations in a Hydroelectric Generating System to the Variability of Wind and Solar Power. Water 2021, 13, 1978. [Google Scholar] [CrossRef]
- Meegahapola, L.; Sguarezi, A.; Bryant, J.S.; Gu, M.; Conde, D.E.R.; Cunha, R.B.A. Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends. Energies 2020, 13, 3441. [Google Scholar] [CrossRef]
- Tamrakar, U.; Shrestha, D.; Maharjan, M.; Bhattarai, B.P.; Hansen, T.M.; Tonkoski, R. Virtual Inertia: Current Trends and Future Directions. Appl. Sci. 2017, 7, 654. [Google Scholar] [CrossRef]
- Saeed Uz Zaman, M.; Bukhari, S.B.A.; Hazazi, K.M.; Haider, Z.M.; Haider, R.; Kim, C.H. Frequency Response Analysis of a Single-Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia. Energies 2018, 11, 787. [Google Scholar] [CrossRef]
- Ochoa, D.; Martinez, S. Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems. Energies 2021, 14, 3660. [Google Scholar] [CrossRef]
- Orihara, D.; Kikusato, H.; Hashimoto, J.; Otani, K.; Takamatsu, T.; Oozeki, T.; Taoka, H.; Matsuura, T.; Miyazaki, S.; Hamada, H.; et al. Contribution of Voltage Support Function to Virtual Inertia Control Performance of Inverter-Based Resource in Frequency Stability. Energies 2021, 14, 4220. [Google Scholar] [CrossRef]
- Kim, H.S.; Hong, J.; Choi, I.S. Implementation of Distributed Autonomous Control Based Battery Energy Storage System for Frequency Regulation. Energies 2021, 14, 2672. [Google Scholar] [CrossRef]
- Dratsas, P.A.; Psarros, G.N.; Papathanassiou, S.A. Battery Energy Storage Contribution to System Adequacy. Energies 2021, 14, 5146. [Google Scholar] [CrossRef]
- Pérez-Arriaga, I.; Knittle, C. Utility of the Future: An MIT Energy Initiative Response to an Industry in Transition. 2016. Available online: https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=olbp73179 (accessed on 13 April 2023).
- Wong, C.; Ashton, C.; Chalamala, B.; Houseman, D.; Huang, H.; Masiello, R.; McDowall, J.; Novosel, D.; Rabl, V.; Ropp, M.; et al. Energy Storage Opportunities and Research Needs; Technical Report; IEEE-PES: Piscataway, NJ, USA, 2020. [Google Scholar]
- Gómez-Ramírez, G.A.; Meza, C.; Morales-Hernández, S. Oportunidades y desafíos para la integración de almacenamiento electroquímico en las redes eléctricas centroamericanas. Rev. Tecnol. Marcha 2021, 34, 70–82. [Google Scholar] [CrossRef]
- Gómez-Ramírez, G.A.; Luévano-Reyes, I.A.; Mora-Jiménez, G.; García-Santander, L.; Laskano, M.Z.; Meza, C. Increasing Distribution Network Capacity through Storage in Central American Countries: A Case Study. In Proceedings of the 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA), Curicó, Chile, 24–28 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Iweh, C.D.; Gyamfi, S.; Tanyi, E.; Effah-Donyina, E. Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits. Energies 2021, 14, 5375. [Google Scholar] [CrossRef]
- Acosta, M.N.; Pettersen, D.; Gonzalez-Longatt, F.; Argos, J.P.; Andrade, M.A. Optimal Frequency Support of Variable-Speed Hydropower Plants at Telemark and Vestfold, Norway: Future Scenarios of Nordic Power System. Energies 2020, 13, 3377. [Google Scholar] [CrossRef]
- Carvajal, S.; Serrano, J.; Arango, S. Colombian ancillary services and international connections: Current weaknesses and policy challenges. Energy Policy 2013, 52, 770–778. [Google Scholar] [CrossRef]
- Barroco, J. Designing financeable ancillary services revenue contracts in developing economies: Learnings from the Philippines. Energy Policy 2021, 152, 112218. [Google Scholar] [CrossRef]
- Winfield, M.; Shokrzadeh, S.; Jones, A. Energy policy regime change and advanced energy storage: A comparative analysis. Energy Policy 2018, 115, 572–583. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P.; Jenkin, T. Market and policy barriers to deployment of energy storage. Econ. Energy Environ. Policy 2012, 1, 47–64. [Google Scholar] [CrossRef]
- Ahrens, M.; Kern, F.; Schmeck, H. Strategies for an Adaptive Control System to Improve Power Grid Resilience with Smart Buildings. Energies 2021, 14, 4472. [Google Scholar] [CrossRef]
- Gong, H.; Ionel, D.M. Improving the Power Outage Resilience of Buildings with Solar PV through the Use of Battery Systems and EV Energy Storage. Energies 2021, 14, 5749. [Google Scholar] [CrossRef]
- Papic, M.; Ekisheva, S.; Cotilla-Sanchez, E. A Risk-Based Approach to Assess the Operational Resilience of Transmission Grids. Appl. Sci. 2020, 10, 4761. [Google Scholar] [CrossRef]
- Doorman, G.L.; Uhlen, K.; Kjolle, G.; Huse, E.S. Vulnerability analysis of the Nordic power system. IEEE Trans. Power Syst. 2006, 21, 402–410. [Google Scholar] [CrossRef]
- Jauch, C.; Sørensen, P.; Norheim, I.; Rasmussen, C. Simulation of the impact of wind power on the transient fault behavior of the Nordic power system. Electr. Power Syst. Res. 2007, 77, 135–144. [Google Scholar] [CrossRef]
- Doorman, G.; Kjolle, G.; Uhlen, K.; Huse, E.S.; Flatabo, N. Vulnerability of the Nordic Power System: Report to the Nordic Council of Ministers; SINTEF Energy Research: Trondheim, Norway, 2004. [Google Scholar]
Access to Electricity | Population | Area km2 | |
---|---|---|---|
Guatemala | 92.4 | 17.91 M | 108,889 |
Honduras | 77.2 | 9.90 M | 112,492 |
El Salvador | 96.7 | 6.48 M | 21,041 |
Nicaragua | 92.3 | 6.62 M | 129,494 |
Costa Rica | 99.4 | 5.09 M | 51,100 |
Panamá | 92.9 | 4.31 M | 75,517 |
Total | 91.8 | 50.33 M | 498,533 |
Length in km | Transformation in MVA | MVAR Compensation | % Losses | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SIEPAC | 230 kV | 138 kV | 115 kV | 69 kV | 2-W | 3-W | ind | cap | ||
Guatemala | 282 | 2490 | 472 | 0 | 2418 | 7865 | 2895 | 230 | 125 | 13.3 |
Honduras | 270 | 1011 | 1034 | 0 | 690 | 5660 | 2550 | 80 | 40 | 32.5 |
El Salvador | 287 | 288 | 0 | 1215 | 133 | 5378 | 937 | 0 | 116 | 13.5 |
Nicaragua | 305 | 851 | 1857 | 0 | 623 | 4908 | 1415 | 95 | 126 | 21.2 |
Costa Rica | 492 | 1581 | 602 | 0 | 98 | 4068 | 7305 | 80 | 267 | 10.9 |
Panamá | 150 | 3293 | 0 | 618 | 0 | 8931 | 5513 | 250 | 971 | 13.3 |
Total | 1786 | 9514 | 3965 | 1833 | 3962 | 36,810 | 20,615 | 735 | 1645 | 17.4 |
Date | MW Transfer to SER | Interconnection Voltage in p.u. |
---|---|---|
03-04-17 | 404.23 | 0.952 |
03-21-17 | 413.48 | 0.956 |
04-26-17 | 441.94 | 0.958 |
06-27-17 | 442.40 | 0.937 |
08-28-18 | 418.53 | 0.933 |
10-30-18 | 326.17 | 0.946 |
03-11-19 | 408.02 | 0.954 |
06-23-19 | 408.31 | 0.957 |
07-05-19 | 469.76 | 0.950 |
07-08-19 | 444.06 | 0.959 |
06-23-20 | 459.06 | 0.957 |
08-27-20 | 381.97 | 0.959 |
SCS | Location | Aim |
---|---|---|
1 | Guatemala | Low voltage and high power protection ( ≤ 0.97 pu and ≥ 300 MW) |
2 | Guatemala | Regional electrical system oscillation modes protection |
3 | Guatemala | Loss of generation or load protection in the SER or Mexico Power System |
4 | Honduras | To avoid the injection of Power ≥ 210 MW toward Nicaragua |
5 | Nicaragua | To avoid the injection of Power ≥ 160 MW toward Costa Rica |
6 | Nicaragua | To avoid the injection of Power ≥ 220 MW from Costa Rica and Panamá |
7 | Costa Rica | To avoid the injection of Power ≥ 0 MW toward Panama |
8 | Panamá | To avoid the injection of Power ≥ 200 MW toward North Region |
GUA | HON | SAL | NIC | CRC | PAN | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imp | Exp | Imp | Exp | Imp | Exp | Imp | Exp | Imp | Exp | Imp | Exp | Imp | Exp | |
2014 | 1.4 | 986.4 | 320.4 | 4.1 | 618.8 | 238.0 | 22.3 | 49.0 | 251.5 | 69.7 | 189.2 | 98.5 | 1403.6 | 1445.7 |
2015 | 1.9 | 842.4 | 151.7 | 2.7 | 981.4 | 82.2 | 33.5 | 21.5 | 172.5 | 280.1 | 17.1 | 139.4 | 1358.1 | 1368.3 |
2016 | 5.2 | 1110.2 | 195.3 | 16.2 | 1212.2 | 224.0 | 204.8 | 17.9 | 313.4 | 181.2 | 30.0 | 397.9 | 1960.9 | 1947.4 |
2017 | 19.2 | 1741.1 | 331.1 | 12.7 | 1729.1 | 143.8 | 326.6 | 1.0 | 31.8 | 230.0 | 6.6 | 318.2 | 2444.4 | 2446.8 |
2018 | 9.7 | 1789.9 | 381.3 | 8.4 | 1968.3 | 209.1 | 201.1 | 0.2 | 65.7 | 307.5 | 14.7 | 327.2 | 2640.8 | 2642.3 |
2019 | 9.5 | 1657.1 | 259.5 | 5.9 | 1948.8 | 656.7 | 434.4 | 0.2 | 339.8 | 322.6 | 96.3 | 431.5 | 3088.3 | 3074.0 |
Demand | GUA-HON-SAL | HON-NIC | NIC-CRC | CRC-PAN | ||||
---|---|---|---|---|---|---|---|---|
N-S | S-N | N-S | S-N | N-S | S-N | N-S | S-N | |
Max | 300 | 300 | 210 | 220 | 160 | 220 | 0 | 200 |
Med | 300 | 300 | 190 | 200 | 180 | 220 | 0 | 200 |
Min | 300 | 300 | 180 | 220 | 170 | 220 | 0 | 200 |
Hydro Power Plant | MW Capacity | |
---|---|---|
Guatemala | Chixoy: 300 MW | 300 |
Honduras | Francisco Morazán: 300 MW | 300 |
El Salvador | 15 de septiembre: 180 MW 5 de noviembre: 180 MW Cerrón Grande: 172 MW | 532 |
Costa Rica | Reventazón: 306 MW Miguel Dengo: 174 MW Arenal: 157 MW Angostura: 172 MW Garita: 134 MW Cachí: 152 MW | 1095 |
Panamá | Fortuna: 300 MW Estí: 120 MW Bayano: 260 MW Changuinola: 222 MW | 902 |
Description | Element Simulated | Capacities |
---|---|---|
Buses | 193 | 230/138/34.5 kV |
Transmission Lines | 119 | — |
Generators-Production | 49 | 37,989 MWh |
Power Transformer | 133 | 2–3 W |
Loads-Demand | 66 | 1563 MW |
Interconnections | 5 | GUA-MEX, SAL and NIC |
Storage | 2 | 1060 MW h/160 MW, H = 6 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Ramírez, G.A.; Meza, C.; Mora-Jiménez, G.; Morales, J.R.R.; García-Santander, L. The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition. Energies 2023, 16, 4328. https://doi.org/10.3390/en16114328
Gómez-Ramírez GA, Meza C, Mora-Jiménez G, Morales JRR, García-Santander L. The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition. Energies. 2023; 16(11):4328. https://doi.org/10.3390/en16114328
Chicago/Turabian StyleGómez-Ramírez, Gustavo Adolfo, Carlos Meza, Gonzalo Mora-Jiménez, José Rodrigo Rojas Morales, and Luis García-Santander. 2023. "The Central American Power System: Achievements, Challenges, and Opportunities for a Green Transition" Energies 16, no. 11: 4328. https://doi.org/10.3390/en16114328