Early Gas Kick Warning Based on Temporal Autoencoder
Abstract
:1. Introduction
2. Methodology
2.1. Data Processing
2.1.1. Dataset Description
2.1.2. Data Cleaning and Feature Selection
2.1.3. Data Augmentation
2.2. Model Building
2.2.1. Long Short-Term Memory
2.2.2. Bidirectional Long Short-Term Memory
2.2.3. Autoencoder
2.2.4. MLP-AE
2.2.5. BiLSTM-AE
2.3. Threshold Setting
2.4. Evaluation Metrics
- : True Positive, Positive samples are classified as positive samples;
- : False Positive, Negative samples are classified as positive samples;
- : True Negative, Negative samples are classified as negative samples;
- : False Negative, Positive samples are classified as negative samples.
3. Results and Discussion
3.1. Optimal Sequence Length
3.2. Model Parameter
3.3. Model Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menghan, S. Study on Real-Time Warning Method of Drilling Overflow; Southwest Petroleum University: Chengdu, China, 2016. [Google Scholar]
- Du, Z. Research on Intelligent Identification and Diagnosis of Overflow; China University of Petroleum: Beijing, China, 2020. [Google Scholar]
- Shoujun, L. Development of device for drilling fluid level detection and automatic grout system. China Pet. Mach. 2006, 34, 29–30. [Google Scholar]
- Jiang, Q.; Wang, Y.; Mao, M.; Wang, Y.; Li, Z. Early kick detection system based on Coriolis mass flowmeter. J. Oil Gas Technol. 2013, 35, 158–160. [Google Scholar]
- Hou Yan-Wei, L.X. Application effect and development direction of engineering logging early warning system in drilling site. Pet. Instrum. 2013, 27, 6–9. [Google Scholar]
- Jinbo, W.; Baojiang, S.; Hao, L.I.; Ning, W.; Zhiyuan, W.; Yonghai, G. Early gas kick detection based on the LWD resistivity in deepwater drilling. J. China Univ. Pet. (Ed. Nat. Sci.) 2017, 41, 94–100. [Google Scholar]
- Ying, Z. Research on Data-Driven Early Warning and Treatment Methods for Deepwater Gas Kick; China University of Petroleum: Beijing, China, 2020. [Google Scholar]
- Kamyab, M.; Shadizadeh, S.R.; Jazayeri-rad, H.; Dinarvand, N. In Early kick detection using real time data analysis with dynamic neural network: A case study in iranian oil fields. In Proceedings of the Nigeria Annual International Conference and Exhibition, Calabar, Nigeria, 7 July 2010; OnePetro: Richardson, TX, USA, 2010. [Google Scholar]
- Gola, G.; Nybø, R.; Sui, D.; Roverso, D. In Improving management and control of drilling operations with artificial intelligence. In Proceedings of the SPE Intelligent Energy International, Utrecht, The Netherlands, 27–29 March 2012; OnePetro: Richardson, TX, USA, 2012. [Google Scholar]
- Weijie, Y. Design and Development of on-Line Monitoring and Early Warning System for “Three High” Oil and Gas Well Overflow Aura; China University of Petroleum (East China): Beijing, China, 2014. [Google Scholar]
- Luzhi, Z.; Haibo, L.; Jin, Z.; Ling, M. Application of BP neural network in the intelligent early warning of drilling overflow in development Wells. Inf. Commun. 2014, 2, 3–4. [Google Scholar]
- Liang, H.; Li, G.; Liang, W. Intelligent early warning model of early-stage overflow based on dynamic clustering. Clust. Comput. 2019, 22, 481–492. [Google Scholar] [CrossRef]
- Yin, Q.; Yang, J.; Tyagi, M.; Zhou, X.; Wang, N.; Tong, G.; Xie, R.; Liu, H.; Cao, B. Downhole quantitative evaluation of gas kick during deepwater drilling with deep learning using pilot-scale rig data. J. Petrol. Sci. Eng. 2022, 208, 109136. [Google Scholar] [CrossRef]
- Li, H.; Ge, Z.; Wei, N.; Sun, W.; Zhang, Y.; Xue, J.; Jiang, L.; Pei, J.; Liao, B.; Cao, H. Research on intelligent judgment method of natural gas hydrate drilling risk. Petroleum 2021, 7, 439–450. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, G.; Li, J.; Zhang, T.; Wang, C. A realtime drilling risks monitoring method integrating wellbore hydraulics model and streaming-data-driven model parameter inversion algorithm. J. Nat. Gas Sci. Eng. 2021, 85, 103702. [Google Scholar] [CrossRef]
- Elmgerbi, A.; Thonhauser, G. Holistic autonomous model for early detection of downhole drilling problems in real-time. Process Saf Env. 2022, 164, 418–434. [Google Scholar] [CrossRef]
- Wanjun, H.; Wenhe, X.; Yongjie, L.; JIANG, J.; Gao, L.I.; Yijian, C. An intelligent identification method of safety risk while drilling in gas drilling. Petrol. Explor Dev. 2022, 49, 428–437. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977; Volume 2. [Google Scholar]
- Wei, Z. Study on Bearing Fault Diagnosis Algorithm Based on Convolutional Neural Network. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE T Signal Proces. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18. [Google Scholar]
- Wei, Y.; Jang-Jaccard, J.; Xu, W.; Sabrina, F.; Camtepe, S.; Boulic, M. Lstm-autoencoder based anomaly detection for indoor air quality time series data. IEEE Sens J. 2023, 23, 3787–3800. [Google Scholar] [CrossRef]
- Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [Google Scholar] [CrossRef]
- Serai, P.; Stiff, A.; Fosler-Lussier, E. In End to end speech recognition error prediction with sequence to sequence learning. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: New York, NY, USA, 2020; pp. 6339–6343. [Google Scholar]
- Meneghello, F.; Rossi, M.; Bui, N. Smartphone identification via passive traffic fingerprinting: A sequence-to-sequence learning approach. IEEE Netw. 2020, 34, 112–120. [Google Scholar] [CrossRef]
Correlation Coefficient | Relationship |
---|---|
0.6–1.0 | Strong correlation |
0.2–0.6 | Weak correlation |
0.0–0.2 | Very weak correlation or no correlation |
True Result | Forecast Result | |
---|---|---|
Positive Class | Negative Class | |
Positive class | TP | FN |
Negative class | FP | TN |
Parameter | LSTM | MLP-AE | LSTM-AE | BiLSTM-AE |
---|---|---|---|---|
Model parameter | 4953 | 5032 | 4560 | 4816 |
Batch size | 32 | 32 | 32 | 32 |
Learning rate | 0.001 | 0.001 | 0.001 | 0.001 |
Optimizer | Adma | Adma | Adma | Adma |
Activation function | Relu | Relu | Relu | Relu |
Time steps | 30 | / | 30 | 30 |
Hidden layer neurons | LSTM: 32; Dense: 8 | Encoder: 64; Decoder: 64 | Encoder: 16; Decoder: 16 | Encoder: 16; Decoder: 16 |
Evaluation Indicator | Intelligent Model | |||
---|---|---|---|---|
LSTM | MLP-AE | LSTM-AE | BiLSTM-AE | |
Accuracy | 0.85 | 0.83 | 0.91 | 0.95 |
Recall | 0.82 | 0.77 | 0.89 | 0.93 |
Precision | 0.85 | 0.81 | 0.89 | 0.92 |
F1 score | 0.83 | 0.79 | 0.89 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zhou, D.; Yang, D.; Song, X.; Zhou, M.; Zhang, C.; Duan, S.; Zhu, L. Early Gas Kick Warning Based on Temporal Autoencoder. Energies 2023, 16, 4606. https://doi.org/10.3390/en16124606
Zhu Z, Zhou D, Yang D, Song X, Zhou M, Zhang C, Duan S, Zhu L. Early Gas Kick Warning Based on Temporal Autoencoder. Energies. 2023; 16(12):4606. https://doi.org/10.3390/en16124606
Chicago/Turabian StyleZhu, Zhaopeng, Detao Zhou, Donghan Yang, Xianzhi Song, Mengmeng Zhou, Chengkai Zhang, Shiming Duan, and Lin Zhu. 2023. "Early Gas Kick Warning Based on Temporal Autoencoder" Energies 16, no. 12: 4606. https://doi.org/10.3390/en16124606
APA StyleZhu, Z., Zhou, D., Yang, D., Song, X., Zhou, M., Zhang, C., Duan, S., & Zhu, L. (2023). Early Gas Kick Warning Based on Temporal Autoencoder. Energies, 16(12), 4606. https://doi.org/10.3390/en16124606