A Review of Natural Bio-Based Insulation Materials
Abstract
:1. Introduction
2. Materials and Methods
- Are bio-based materials suitable for building insulation?
- What are the main properties to consider in an insulating material?
- What is the environmental impact of bio-based insulation materials versus conventional insulation materials?
2.1. Physical Parameters
2.2. Mechanical Parameters
2.3. Environmental Parameters
3. Results and Discussion
3.1. Sample Characterisation
3.2. Physical Parameter Analysis
3.2.1. Density and Thermal Conductivity
3.2.2. Heat Capacity, Effusivity, and Diffusivity
3.2.3. Water Absorption
3.2.4. Water Vapor Permeability
3.2.5. Fire Resistance
3.3. Mechanical Parameter Analysis
3.4. Environmental Parameter Analysis
4. Conclusions
- To analyze the heat capacity of materials as a way to understand long-term thermal behavior and explore the decrement delay of materials;
- To use natural binders and optimize manufacturing processes to reduce potential environmental impacts;
- To perform a cradle-to-cradle life cycle assessment of existing insulation materials to better understand their impacts and how they fit into the circular economy targets.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Studied Material | Density (Kg/m3) | Thermal Conductivity (W/mK) | Specific Heat Capacity (J/Kg∙K) | Thermal Stability (°C) | Effusivity (Ws1/2/(m2K) | Diffusivity (m2/s) | Water/Moisture Absorption after 24 h (%) or Water Vapour Diffusion Resistance (µ-Value) | Fire Resistance | Ref. |
---|---|---|---|---|---|---|---|---|---|
Wheat Strawbale, stalk orientation perpendicular to heat flow | 86.42–135.09 | 0.066–0.071 | - | - | - | - | - | Non-combustibility | [58] |
Wheat Strawbale, stalk orientation parallel to heat flow | 91.82–114.46 | 0.077–0.084 | - | - | - | - | - | Non-combustibility | [58] |
Wheat Strawbale | 126–129 | 0.078–0.056 | - | - | - | - | - | - | [24] |
Wheat straw and clay | 343–567 | 0.07–0.079 | - | - | - | - | - | - | [51] |
Wheat straw insulation panel | 235–894 | 0.092–0.186 | - | - | - | - | 32–102% | - | [43] |
Wheat straw | 105–112 | 0.046 | - | - | - | - | - | - | [23] |
Konjac glucomannan/starch-based aerogel strengthened by wheat straw | 43 | 0.04641 | - | - | - | - | - | - | [64] |
Untreated Rice straw particle board | 500 | 0.086 | - | - | - | - | - | - | [62] |
Eucalyptus Globulus leaves and wheat straw fibres | 217 | 0.049–0.065 | - | - | - | - | - | - | [65] |
100% Sheep wool soft mats | 30 | 0.0318 | - | - | - | - | - | - | [25] |
80% sheep wool 20% polyester fibres semi-rigid panel | 25 | 0.04 | - | - | - | - | - | - | [25] |
100% Sheep wool loose-fill fibres | 75–100 | 0.035 | - | - | - | - | - | - | [25] |
90% sheep wool, 10% polypropylene | - | 0.058–0.083 | - | 250, 1% weight loss until 250 °C | - | - | 21–34% | Fire retardant rate of V-0 according to UL-94 rating | [59] |
Wool and clay insulation panel | 452 | 0.0621 | - | - | - | - | - | - | [51] |
Reed panel (no specified species) | 137.6 | 0.056 | 5080 | - | 200.1 | 0.08 × 10−6 | - | - | [28] |
Reed (Arundo donax) particles and citric acid monohydrate | 600–850 | 0.081–0.093 | - | - | - | - | 57.3–88.16% | - | [53] |
Reed (Arundo donax) 1 | 510 | 0.063 | 1000 | - | - | - | 52.6% | - | [29] |
Bi-layered composite with cork | 461 | 0.0949 | - | - | - | - | - | - | [63] |
60% cork fiber 40% gypsum | - | 0.0623 | - | - | - | - | 45% | - | [66] |
agglomerated cork panel with an air cavity and OSB | 110–369 | 0.044–0.083 | 1.98 × 10−3–5.17 × 10−3 | - | - | 0.0726–0.1061 | - | - | [30] |
Corn husk | 119–128 | 0.047 | - | - | - | - | - | - | [23] |
Composite of corn pith and alginate | 60–100 | 0.042–0.048 | - | - | - | 0.65–0.70 | 35% | - | [79] |
Cornstalk and magnesium phosphate cement | 557–1854 | 0.051–0.998 | - | - | - | - | 165.25–222% | - | [67] |
Rice husk composite | 378 | 0.08 | 524 | 250 | 194 | 421 × 10−7 | 43% | - | [38] |
Wheat husk | 448 | 0.1 | 718 | 250 | 242 | 312 × 10−7 | 40% | - | [38] |
Wood fibres insulation board | 100–250 | 0.035–0.046 | - | - | - | - | 50–627% | - | [31] |
Wood waste without binders | 117–167 | 0.053–0.056 | - | - | - | 0.3080 × 10−6–0.5153 × 10−6 | - | - | [32] |
Aerogel composite of pineapple leaf and cotton waste fibres | 19–46 | 0.039–0.043 | - | - | - | - | - | - | [34] |
Tree bark | 127–484 | 0.045–0.065 | - | - | - | - | - | - | [36] |
Larch and popcorn tree bark | 180 | 0.059 | - | - | - | - | - | - | [35] |
90% Banana leaf fibres, 10% pure polystyrene | -- | 0.0183 | - | 180 | - | - | - | - | [33] |
Hemp fibre panels | 200–300 | 0.0544–0.0655 | - | - | - | - | 189.2–202.8% | - | [37] |
Mycobamboo (Bamboo + Mycelium) | 229 | 0.08 | - | - | - | - | - | - | [71] |
Air-laid feather-fibre fabric | 59 | 0.033 | - | - | - | - | - | - | [80] |
Sugarcane Bagasse | 100–200 | 0.034–0.042 | - | - | - | - | - | - | [68] |
Manau rattan Aerogel | 150–410 | 0.030–0.056 | - | - | - | - | - | - | [81] |
Almond Skins composite panels | 235–373 | 0.074–0.082 | - | - | - | 0.180 × 10−6 –0.219 × 10−6 | Water vapour diffusion = 13–14.9 µ | - | [49] |
Whole mussel shell | 281 | 0.12 | - | - | - | - | 2.17% | - | [39] |
Mussel shell gravel | 684 | 0.15 | - | - | - | - | 2.17% | - | [39] |
Coarse mussel shell sand | 1205 | 0.2 | - | - | - | - | 2.56% | - | [39] |
Sabai grass polypropylene composite | 500 | 0.096 | - | <250 | - | - | - | - | [44] |
15% paper 45% cement composite | 1920 | 0.107 | - | - | - | - | - | - | [69] |
Mulberry stems (polystyrene composite) | 50 | 0.136–0.175 | - | - | - | - | 9.5–24.3% | Fire retardant rate of V-1 according to UL-94 rating. V-2 for 95/05 composite | [46] |
Kenaf and clay | 328 | 0.073 | - | - | - | - | - | - | [51] |
Flax shives particles board | 500 | 0.099 | - | - | - | - | - | - | [62] |
Cotton/Denim natural fibres insulation board, Inno-Therm/Métisse | 20–25 | 0.039 | 1600 | - | - | - | Water vapour diffusion = 2.2 µ | Euroclass E | [70] |
Wood fibre insulation board, STEICO Flex | 60 | 0.036 | 2100 | - | - | - | Water vapour diffusion = 2 µ | Euroclass E | [82] |
Expanded Insulation Cork Board, Amorin isolamentos S.A. | 130 | 0.040 | - | - | - | - | - | Euroclass E | [75] |
Grass insulation, Gramitherm | 40 | 0.041 | 1500 | - | - | - | Water vapour diffusion = 1 µ | Euroclass E | [56] |
Wheat Strawbale from conventional agriculture | 100 | 0.048 | 1558 | - | - | - | Water vapour diffusion = 2 µ | Euroclass E | [83] |
Sheep wool insulation, Optimal Lehner Isolena | 18 | 0.038 | 1760 | - | - | - | Water vapour diffusion = 1 µ | Euroclass D | [84] |
Extruded Polystyrene (XPS) Danopren | 32.41 | 0.034 | -- | - | - | - | Water vapour diffusion = 200 µ | Euroclass E | [57] |
References
- IPCC. Climate Change 2022—Mitigation of Climate Change—Working Group III; Cambridge University Press: Cambridge, UK, 2022; p. 1454. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2018. [Google Scholar]
- European Commission. European Green Deal: Commission Proposes to Boost Renovation and Decarbonisation of Buildings; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Comissão das Comunidades Europeias. Um Novo Plano de Ação Para a Economia Circular; European Commission: Brussels, Belgium, 2020; p. 21. [Google Scholar]
- UNEP; IRP. Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future; A Report of the International Resource Panel; International Resource Panel (IRP): Paris, France, 2020. [Google Scholar]
- European Commission. European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Parliament. Revision of the Energy Performance of Buildings Directive: Fit for 55 Package; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Piccardo, C.; Dodoo, A.; Gustavsson, L.; Tettey, U.Y.A. Comparative Life-Cycle Analysis of Building Materials for the Thermal Upgrade of an Existing Building. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012044. [Google Scholar] [CrossRef]
- Magwood, C.; Bowden, E.; Trottier, M. Emissions of Materials Benchmark Assessment for Residential Construction Report; Efficiency Canada: Ottawa, ON, Canada, 2022. [Google Scholar]
- Pavel, C.C.; Blagoeva, D.T. Competitive Landscape of the EU’s Insulation Materials Industry for Energy-Efficient Buildings; EUR 28816 EN; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-96383-4. [Google Scholar] [CrossRef]
- Pittau, F.; Lumia, G.; Heeren, N.; Iannaccone, G.; Habert, G. Retrofit as a Carbon Sink: The Carbon Storage Potentials of the EU Housing Stock. J. Clean. Prod. 2019, 214, 365–376. [Google Scholar] [CrossRef]
- Fernandes, J.; Mateus, R.; Gervásio, H.; Silva, S.M.; Branco, J.; Almeida, M. Thermal Performance and Comfort Conditions Analysis of a Vernacular Palafitic Timber Building in Portuguese Coastline Context. Sustainability 2020, 12, 10484. [Google Scholar] [CrossRef]
- Chiou, Y.S.; Elizalde, J.S. Thermal Performances of Three Old Houses: A Comparative Study of Heterogeneous Vernacular Traditions in Taiwan. Sustainability 2019, 11, 5538. [Google Scholar] [CrossRef] [Green Version]
- Stenman, H. (Ed.) Reed Construction in the Baltic Sea Region; Turku University of Applied Sciences: Turku, Finland, 2008; ISBN 9789522160362. [Google Scholar]
- Jerman, M.; Palomar, I.; Kočí, V.; Černý, R. Thermal and Hygric Properties of Biomaterials Suitable for Interior Thermal Insulation Systems in Historical and Traditional Buildings. Build. Environ. 2019, 154, 81–88. [Google Scholar] [CrossRef]
- Fernandes, J.; Mateus, R.; Gervásio, H.; Silva, S.M.; Bragança, L. Passive Strategies Used in Southern Portugal Vernacular Rammed Earth Buildings and Their Influence in Thermal Performance. Renew. Energy 2019, 142, 345–363. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. J. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- EN ISO 9869; Thermal Insulation—Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance. International Organization for Standardization (ISO): Geneva, Switzerland, 2014; p. 48.
- ASTM E2550-21; Standard Test Method for Thermal Stability by Thermogravimetry. ASTM International: West Conshohocken, PA, USA, 2021; p. 5.
- ISO 62:2008; Plastics-Determination of Water Absorption. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- EN 13501-1:2018; Fire Classification of Construction Products and Building Elements. European Standard: Plzen, Czech Republic, 2018.
- ISO EN 15978:2011; Global Methodology For The Environmental Assessment of Buildings. International Organization for Standardization (ISO): Geneva, Switzerland, 2011.
- Rojas, C.; Cea, M.; Iriarte, A.; Valdés, G.; Navia, R.; Cárdenas-R, J.P. Thermal Insulation Materials Based on Agricultural Residual Wheat Straw and Corn Husk Biomass, for Application in Sustainable Buildings. Sustain. Mater. Technol. 2019, 20, e00102. [Google Scholar] [CrossRef]
- Platt, S.; Maskell, D.; Walker, P.; Laborel-Préneron, A. Manufacture and Characterisation of Prototype Straw Bale Insulation Products. Constr. Build. Mater. 2020, 262, 120035. [Google Scholar] [CrossRef]
- Parlato, M.C.M.; Porto, S.M.C.; Valenti, F. Assessment of Sheep Wool Waste as New Resource for Green Building Elements. Build. Environ. 2022, 225, 109596. [Google Scholar] [CrossRef]
- Guna, V.; Yadav, C.; Maithri, B.R.; Ilangovan, M.; Touchaleaume, F.; Saulnier, B.; Grohens, Y.; Reddy, N. Wool and Coir Fiber Reinforced Gypsum Ceiling Tiles with Enhanced Stability and Acoustic and Thermal Resistance. J. Build. Eng. 2021, 41, 102433. [Google Scholar] [CrossRef]
- Rivera-Gómez, C.; Galán-Marín, C.; López-Cabeza, V.P.; Diz-Mellado, E. Sample Key Features Affecting Mechanical, Acoustic and Thermal Properties of a Natural-Stabilised Earthen Material. Constr. Build. Mater. 2021, 271, 121569. [Google Scholar] [CrossRef]
- Tsapko, Y.V.; Tsapko, A.Y.; Bondarenko, O.P. Modeling of Thermal Conductivity of Reed Products. IOP Conf. Ser. Mater. Sci. Eng. 2020, 907, 012057. [Google Scholar] [CrossRef]
- Barreca, F.; Martinez Gabarron, A.; Flores Yepes, J.A.; Pastor Pérez, J.J. Innovative Use of Giant Reed and Cork Residues for Panels of Buildings in Mediterranean Area. Resour. Conserv. Recycl. 2019, 140, 259–266. [Google Scholar] [CrossRef]
- Barreca, F.; Cardinali, G.D.; Fichera, C.R.; Praticò, P. Utilization of Cork Residues for High Performance Walls in Green Buildings. Agric. Eng. Int. CIGR J. 2018, 20, 47–55. [Google Scholar]
- Lee, M.; Lee, S.-M.; Kang, E.-C. Changes in Characteristics of Wood Fiber Insulation Board According to Density. BioResources 2019, 14, 6529–6543. [Google Scholar] [CrossRef]
- Cetiner, I.; Shea, A.D. Wood Waste as an Alternative Thermal Insulation for Buildings. Energy Build. 2018, 168, 374–384. [Google Scholar] [CrossRef]
- Mohamed, G.R.; Mahmoud, R.K.; Fahim, I.S.; Shaban, M.; Abd El-Salam, H.M.; Mahmoud, H.M. Bio-Composite Thermal Insulation Materials Based on Banana Leaves Fibers and Polystyrene: Physical and Thermal Performance. J. Nat. Fibers 2021, 19, 4806–4821. [Google Scholar] [CrossRef]
- Do, N.H.N.; Tran, V.T.; Tran, Q.B.M.; Le, K.A.; Thai, Q.B.; Nguyen, P.T.T.; Duong, H.M.; Le, P.K. Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-Insulating and Flexible Cellulose Aerogel Composites. J. Polym. Environ. 2021, 29, 1112–1121. [Google Scholar] [CrossRef]
- Kain, G.; Tudor, E.M.; Barbu, M.C. Bark Thermal Insulation Panels: An Explorative Study on the Effects of Bark Species. Polymers 2020, 12, 2140. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Ferrer, M.; Czabany, I.; Vay, O.; Gindl-Altmutter, W.; Hansmann, C. Alkali-Extracted Tree Bark for Efficient Bio-Based Thermal Insulation. Constr. Build. Mater. 2021, 271, 121577. [Google Scholar] [CrossRef]
- Gaujena, B.; Agapovs, V.; Borodinecs, A.; Strelets, K. Analysis of Thermal Parameters of Hemp Fiber Insulation. Energies 2020, 13, 6385. [Google Scholar] [CrossRef]
- Muthuraj, R.; Lacoste, C.; Lacroix, P.; Bergeret, A. Sustainable Thermal Insulation Biocomposites from Rice Husk, Wheat Husk, Wood Fibers and Textile Waste Fibers: Elaboration and Performances Evaluation. Ind. Crops Prod. 2019, 135, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, C.; González-Fonteboa, B.; Carro-López, D.; Pérez-Ordóñez, J.L. Mussel Shells: A Canning Industry by-Product Converted into a Bio-Based Insulation Material. J. Clean. Prod. 2020, 269, 122343. [Google Scholar] [CrossRef]
- Guna, V.; Ilangovan, M.; Rather, M.H.; Giridharan, B.V.; Prajwal, B.; Vamshi Krishna, K.; Venkatesh, K.; Reddy, N. Groundnut Shell/Rice Husk Agro-Waste Reinforced Polypropylene Hybrid Biocomposites. J. Build. Eng. 2020, 27, 100991. [Google Scholar] [CrossRef]
- Taurino, R.; Ferretti, D.; Cattani, L.; Bozzoli, F.; Bondioli, F. Lightweight Clay Bricks Manufactured by Using Locally Available Wine Industry Waste. J. Build. Eng. 2019, 26, 100892. [Google Scholar] [CrossRef]
- Olacia, E.; Pisello, A.L.; Chiodo, V.; Maisano, S.; Frazzica, A.; Cabeza, L.F. Sustainable Adobe Bricks with Seagrass Fibres. Mechanical and Thermal Properties Characterization. Constr. Build. Mater. 2020, 239, 117669. [Google Scholar] [CrossRef]
- Liu, L.; Zou, S.; Li, H.; Deng, L.; Bai, C.; Zhang, X.; Wang, S.; Li, N. Experimental Physical Properties of an Eco-Friendly Bio-Insulation Material Based on Wheat Straw for Buildings. Energy Build. 2019, 201, 19–36. [Google Scholar] [CrossRef]
- Guna, V.; Ilangovan, M.; Adithya, K.; Akshay, A.K.; Srinivas, C.V.; Yogesh, S.; Nagananda, G.S.; Venkatesh, K.; Reddy, N. Biofibers and Biocomposites from Sabai Grass: A Unique Renewable Resource. Carbohydr. Polym. 2019, 218, 243–249. [Google Scholar] [CrossRef]
- Viel, M.; Collet, F.; Lanos, C. Development and Characterization of Thermal Insulation Materials from Renewable Resources. Constr. Build. Mater. 2019, 214, 685–697. [Google Scholar] [CrossRef]
- Guna, V.; Ilangovan, M.; Reddy, N.; Radhakrishna, P.G.; Maharaddi, V.H.; Jambunath, A.; Rao, A.P. Biobased Insulating Panels from Mulberry Stems. J. Thermoplast. Compos. Mater. 2021, 36, 453–472. [Google Scholar] [CrossRef]
- Cottrill, A.L.; Liu, A.T.; Kunai, Y.; Koman, V.B.; Kaplan, A.; Mahajan, S.G.; Liu, P.; Toland, A.R.; Strano, M.S. Ultra-High Thermal Effusivity Materials for Resonant Ambient Thermal Energy Harvesting. Nat. Commun. 2018, 9, 664. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.; Oleaga, A.; Mendioroz, A.; Apiñaniz, E. Thermal Effusivity Measurements of Thermal Insulators Using the Photopyroelectric Technique in the Front Configuration. Meas. J. Int. Meas. Confed. 2018, 121, 96–102. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Martellotta, F. Performance Characterization of Broad Band Sustainable Sound Absorbers Made of Almond Skins. Materials 2020, 13, 5474. [Google Scholar] [CrossRef] [PubMed]
- FBT Isolation. Fiche Produit—Panneaux Isolants Semi-Rigides En Paille de Riz de Camargue, sans Additif; FBT Isolation: Dagneux France, 2019. [Google Scholar]
- Erkmen, J.; Yavuz, H.I.; Kavci, E.; Sari, M. A New Environmentally Friendly Insulating Material Designed from Natural Materials. Constr. Build. Mater. 2020, 255, 119357. [Google Scholar] [CrossRef]
- Robinson, J.; Aoun, H.K.; Davison, M. Determining Moisture Levels in Straw Bale Construction. Procedia Eng. 2017, 171, 1526–1534. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Villena, M. Experimental Evaluation of a New Giant Reed (Arundo Donax L.) Composite Using Citric Acid as a Natural Binder. Agronomy 2019, 9, 882. [Google Scholar] [CrossRef] [Green Version]
- Guelberth, C.R.; Chiras, D. The Natural Plaster Book, 2nd ed.; New Society Publishers: Gabriola Island, BC, Canada, 2005; ISBN 00865714495. [Google Scholar]
- Lafond, C.; Blanchet, P. Technical Performance Overview of Bio-Based Expanded Polystyrene. Buildings 2020, 10, 81. [Google Scholar] [CrossRef]
- Gramitherm. Technical Data Gramitherm: Insulation Material Made from Grass; Gramitherm Europe SA: Sambreville, Belgium, 2021. [Google Scholar]
- DANOSA. Environmental Product Declaration of Danopren: Extruded Polystyrene (XPS) Insulation Board; DANOSA—Derivados S.A. Normalized Asfálticos: Guadalajara, Spain, 2019. [Google Scholar]
- Janowska-Renkas, E.; Król, A.; Pochwała, S.; Pałubski, D.; Adamska, M.; Klementowski, I. The Fire Resistance and Heat Conductivity of Natural Construction Material Based on Straw and Numerical Simulation of Building Energy Demand. Energies 2022, 15, 1155. [Google Scholar] [CrossRef]
- Guna, V.; Ilangovan, M.; Vighnesh, H.R.; Sreehari, B.R.; Abhijith, S.; Sachin, H.E.; Mohan, C.B.; Reddy, N. Engineering Sustainable Waste Wool Biocomposites with High Flame Resistance and Noise Insulation for Green Building and Automotive Applications. J. Nat. Fibers 2021, 18, 1871–1881. [Google Scholar] [CrossRef]
- FDES Collective. Fiche de Declaration Environnementale et Sanitaire. Isolation En Bottes de Paille de Plein Champs Issues de L’ Agriculture Conventionnelle; FDES: Telangana, India, 2022. [Google Scholar]
- Mohamed, O.; Hawat, W. Al Density, Compressive Strength and Modulus of Elasticity: Three Properties That Influence the Efficiency of Structural Concrete; IOP Publishing Ltd.: Bristol, UK, 2021. [Google Scholar]
- Hussein, Z.; Ashour, T.; Khalil, M.; Bahnasawy, A.; Ali, S.; Hollands, J.; Korjenic, A. Rice Straw and Flax Fiber Particleboards as a Product of Agriculturalwaste: An Evaluation of Technical Properties. Appl. Sci. 2019, 9, 3878. [Google Scholar] [CrossRef] [Green Version]
- Novais, R.M.; Senff, L.; Carvalheiras, J.; Labrincha, J.A. Bi-Layered Porous/Cork-Containing Waste-Based Inorganic Polymer Composites: Innovative Material towards Green Buildings. Appl. Sci. 2020, 10, 2995. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Xiao, M.; Riffat, S.B.; Su, Y.; Jiang, F. Thermal Conductivity, Structure and Mechanical Properties of Konjac Glucomannan/Starch Based Aerogel Strengthened by Wheat Straw. Carbohydr. Polym. 2018, 197, 284–291. [Google Scholar] [CrossRef]
- Ali, M.; Alabdulkarem, A.; Nuhait, A.; Al-Salem, K.; Iannace, G.; Almuzaiqer, R.; Al-turki, A.; Al-Ajlan, F.; Al-Mosabi, Y.; Al-Sulaimi, A. Thermal and Acoustic Characteristics of Novel Thermal Insulating Materials Made of Eucalyptus Globulus Leaves and Wheat Straw Fibers. J. Build. Eng. 2020, 32, 101452. [Google Scholar] [CrossRef]
- Sair, S.; Mandili, B.; Taqi, M.; El Bouari, A. Development of a New Eco-Friendly Composite Material Based on Gypsum Reinforced with a Mixture of Cork Fibre and Cardboard Waste for Building Thermal Insulation. Compos. Commun. 2019, 16, 20–24. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Chen, B.; Yousefi Oderji, S.; Mohsan, M. Development of a New Bio-Composite for Building Insulation and Structural Purpose Using Corn Stalk and Magnesium Phosphate Cement. Energy Build. 2018, 173, 719–733. [Google Scholar] [CrossRef]
- Mehrzad, S.; Taban, E.; Soltani, P.; Samaei, S.E.; Khavanin, A. Sugarcane Bagasse Waste Fibers as Novel Thermal Insulation and Sound-Absorbing Materials for Application in Sustainable Buildings. Build. Environ. 2022, 211, 108753. [Google Scholar] [CrossRef]
- Ouargui, A.; Belouaggadia, N.; Elbouari, A.; Ezzine, M. Development of a Cellulose-Based Insulating Composite Material for Green Buildings: Case of Treated Organic Waste (Paper, Cardboard, Hash). IOP Conf. Ser. Mater. Sci. Eng. 2018, 353, 012018. [Google Scholar] [CrossRef]
- Le Relais Métisse l’isolation Durable. Available online: http://inno-therm.com/wp-content/uploads/Cata-Metisse-2014.pdf (accessed on 31 November 2022).
- Carcassi, O.B.; Minotti, P.; Habert, G.; Paoletti, I.; Claude, S.; Pittau, F. Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation. Sustainability 2022, 14, 1384. [Google Scholar] [CrossRef]
- Göswein, V.; Reichmann, J.; Habert, G.; Pittau, F. Land Availability in Europe for a Radical Shift toward Bio-Based Construction. Sustain. Cities Soc. 2021, 70, 102929. [Google Scholar] [CrossRef]
- INIES. Les Données Environmentales et Sanitaires de Référence Pour Le Bâtiment: Espace Consultation. Available online: https://www.base-inies.fr/iniesV4/dist/consultation.html (accessed on 2 November 2022).
- WAP Sustainanbility Consulting. Havelock Wool EPD; WAP Sustainanbility Consulting: Nashville, TN, USA, 2020. [Google Scholar]
- DAPHabitat System. Environmental Product Declaration—Expanded Insulation Corkboard (ICB); DAPHabitat System: Aveiro, Portugal, 2015; pp. 1–17. [Google Scholar]
- Pittau, F.; Krause, F.; Lumia, G.; Habert, G. Fast-Growing Bio-Based Materials as an Opportunity for Storing Carbon in Exterior Walls. Build. Environ. 2018, 129, 117–129. [Google Scholar] [CrossRef]
- Carcassi, O.B.; Habert, G.; Malighetti, L.E.; Pittau, F. Material Diets for Climate-Neutral Construction. Environ. Sci. Technol. 2022, 56, 5213–5223. [Google Scholar] [CrossRef] [PubMed]
- Keena, N.; Raugei, M.; Lokko, M.L.; Aly Etman, M.; Achnani, V.; Reck, B.K.; Dyson, A. A Life-Cycle Approach to Investigate the Potential of Novel Biobased Construction Materials toward a Circular Built Environment. Energies 2022, 15, 7239. [Google Scholar] [CrossRef]
- Palumbo, M.; Lacasta, A.M.; Giraldo, M.P.; Haurie, L.; Correal, E. Bio-Based Insulation Materials and Their Hygrothermal Performance in a Building Envelope System (ETICS). Energy Build. 2018, 174, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Dieckmann, E.; Onsiong, R.; Nagy, B.; Sheldrick, L.; Cheeseman, C. Valorization of Waste Feathers in the Production of New Thermal Insulation Materials. Waste Biomass Valorization 2021, 12, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Wu, W.; Tian, Z.; Wang, J.; Zhang, L.; Han, J.; Li, S.; Jiang, S. “Top-down” Fabrication of Anisotropic, Lightweight, Super-Amphiphobic, and Thermal Insulating Rattan Aerogels. Compos. Commun. 2022, 33, 101199. [Google Scholar] [CrossRef]
- STEICO Steico Flex 036 Product Sheet. Available online: https://www.steico.com/fileadmin/user_upload/importer/downloads/4028b6097384810e01749655fc5a27d1/STEICOflex_036_en_i.pdf (accessed on 30 November 2022).
- ETA-017/0247; Thermal Insulation Made of Straw Bales. DIBt: Berlin, Germany, 2017.
- Lehner. Sheep Wool Insulation Isolena Optimal: Product Data Sheet; Lehner: Tamengos, Portugal, 2019. [Google Scholar]
Keywords Combinations | Number of Publications Found | Number of Publications Found after Exclusion Criteria Applied | Number of Publications Found after Title and Abstract Analysis |
---|---|---|---|
“thermal conductivity” AND “green building” AND “insulation” | 59 | 31 | 13 |
“thermal conductivity” AND {“green building” OR “natural construction”} AND {“insulation” OR “insulated” OR “insulated wall”} | 64 | 34 | 11 |
{“thermal conductivity” OR “thermal resistance”} AND {“green building” OR “natural construction” OR “bioconstruction” OR “climate-neutral construction”} AND {“insulation” OR “insulated” OR “insulated wall”} AND {“thermal behavior” OR “energy efficiency” OR “thermal efficiency” OR “thermal performance” | 25 | 14 | 3 |
{“Emissions” OR “embodied carbon” OR “carbon storage” OR “biogenic carbon” OR “carbon footprint” OR “environmental impact” } AND {“thermal behavior” OR “energy efficiency” OR “thermal efficiency” OR “thermal performance”} AND {“climate-neutral construction” OR “bioconstruction” OR “natural construction” OR “green building”} AND {“insulation”} | 46 | 15 | 6 |
{“innovative bio-based panel” OR “reed” OR “hemp” OR “straw” OR “wool” OR “natural fiber”} AND {“thermal behavior” OR “energy efficiency” OR “thermal efficiency” OR “thermal performance”} | 2240 | 942 | 64 |
Total of publications without repetition | 1179 | 81 |
Studied Material | Density (kg/m3) | Compressive Strength (MPa) | Flexural Strength (MPa) | Tensile Strength (MPa) | Modulus of Elasticity (MOE) (MPa) | Modulus of Rupture (MOR) (MPa) | Ref. |
---|---|---|---|---|---|---|---|
Wheat Strawbale | 126–129 | 0.079–0.118 | - | - | - | - | [24] |
Wheat straw and clay | 343–567 | 0.6–3.13 | [51] | ||||
Wheat straw insulation panel | 235–894 | 0.18–5.622 | - | - | - | - | [43] |
Wheat straw | 105–112 | 0.057 | 0.15 | - | - | - | [23] |
Konjac glucomannan/starch-based aerogel strengthened by wheat straw | 43 | 0.0805 | - | - | 0.273 | - | [64] |
Rice straw particle board | 500 | 0.270 | - | 0.003 | 23 | 0.46 | [62] |
Eucalyptus Globulus leaves and wheat straw fibres | 217 | - | 0.16 | - | - | - | [65] |
90% sheep wool, 10% polypropylene | - | - | 55.6 | 10.3 | - | - | [59] |
Wool and clay insulation panel | 452 | 4.9 | - | - | - | - | [51] |
Reed (Arundo donax) particles and citric acid monohydrate | 850 | - | - | 0.07–0.61 | 260–2440 | 1.70–12.50 | [53] |
Reed (Arundo donax) 1 | 510 | 0.678 | 1.325 | 248 | - | - | [29] |
Bi-layered composite with cork | 461 | 0.93 | 0.84 | - | - | - | [63] |
60% cork fiber 40% gypsum | - | 0.17 | 0.014 | - | - | - | [66] |
Corn husk | 119–128 | 0.024 | 0.80 | - | - | - | [23] |
Cornstalk and magnesium phosphate cement | 557–1854 | 1.7–28.4 | - | - | - | - | [67] |
Rice husk composite | 378 | 14 | 1.24 | - | - | - | [38] |
Wheat husk | 448 | 17 | 0.77 | - | - | - | [38] |
Wood fibres insulation board | 100–150 | - | 0.06–2.50 | - | - | - | [31] |
Sugarcane Bagasse | 1200 | - | - | 210–290 | - | - | [68] |
Sabai grass polypropylene composite | 500 | - | - | 493 | - | - | [44] |
15% paper 45% cement composite | 1920 | - | 0.73 | - | - | - | [69] |
Mulberry stems (polystyrene composite) | 50 | - | - | 5.4 | - | - | [46] |
Flax shives particles board | 500 | 12.40 | - | 0.60 | 1722 | 13.85 | [62] |
Cotton/Denim natural fibres insulation board, Inno-Therm/Métisse | 20–25 | - | - | 0.0071 MPa (longitudinal), 0.0007 MPa (parallel) | - | - | [70] |
Grass insulation, Gramitherm | 40 | - | - | >0.02 MPa | - | - | [56] |
Extruded Polystyrene (XPS) Danopren | 32.41 | 0.3 | - | - | - | - | [57] |
Material | Total Primary Energy Use (MJ) | Global Warming Potential (KgCO2 eq.) | Biogenic Carbon (KgC) | Reference |
---|---|---|---|---|
Polyurethane rigid panel 100 mm Knauf Thane Mur B2i | 1.57 × 102 | 6.93 × 100 | 0.00 | [73] |
Expanded Polystyrene (EPS), Knauf Xtherm Ultra | 9.75 × 101 | 2.83 × 100 | 0.00 | [73] |
Extruded Polystyrene (XPS) Danopren | 1.46 × 102 | 6.43 × 100 | 0.00 | [57] |
Wood fibre insulation board, Gutex thermoflex | 1.75 × 102 | −2.88 × 100 | 1.88 | [73] |
Wood fibre insulation board, STEICO Flex | 1.65 × 102 | −5.55 × 100 | 2.10 | [73] |
Expanded Cork Board for internal thermal insulation, French ministry for ecological transition | 3.72 × 103 | 1.65 × 101 | 8.26 | [73] |
Sheep wool batt, Havelock wool | 1.79 × 102 | 6.58 × 100 | 22.50 | [74] |
Cotton/Denim natural fibres insulation board, Inno-Therm/Métisse | 2.78 × 101 | 2.42 × 100 | -- | [73] |
Rice straw, FBT isolation | 1.67 × 102 | −2.54 × 100 | 1.57 | [73] |
Sheep wool loose-fill insulation, havelock wool | 6.45 × 101 | 4.40 × 100 | 22.50 | [74] |
Hemp wool, Technichanvre | 1.74 × 102 | −2.11 × 100 | 0.86 | [73] |
Expanded Insulation Cork Board, Amorim isolamentos S.A. | 7.77 × 102 | −1.98 × 101 | -- | [75] |
Grass insulation, Gramitherm | 2.02 × 102 | −8.04 × 100 | 1.97 | [73] |
Wheat Strawbale from conventional agriculture | 1.86 × 102 | −1.69 × 101 | 4.78 | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosentino, L.; Fernandes, J.; Mateus, R. A Review of Natural Bio-Based Insulation Materials. Energies 2023, 16, 4676. https://doi.org/10.3390/en16124676
Cosentino L, Fernandes J, Mateus R. A Review of Natural Bio-Based Insulation Materials. Energies. 2023; 16(12):4676. https://doi.org/10.3390/en16124676
Chicago/Turabian StyleCosentino, Livia, Jorge Fernandes, and Ricardo Mateus. 2023. "A Review of Natural Bio-Based Insulation Materials" Energies 16, no. 12: 4676. https://doi.org/10.3390/en16124676
APA StyleCosentino, L., Fernandes, J., & Mateus, R. (2023). A Review of Natural Bio-Based Insulation Materials. Energies, 16(12), 4676. https://doi.org/10.3390/en16124676