Principle and Feasibility Study of Proposed Hydrate-Based Cyclopentane Purification Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Apparatus and Materials
2.2. Experimental Procedure and Conditions
3. Results and Discussion
3.1. Nuclear Magnetic Resonance
3.2. X-ray Diffraction
3.3. Raman Spectroscopy
3.4. Purification Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereiro, A.B.; Araújo, J.; Esperan, A.J. Ionic liquids in separations of azeotropic systems—A review. J. Chem. Thermodyn. 2012, 46, 2–28. [Google Scholar] [CrossRef]
- Fair, J.R. The workhorse today & tomorrow—Distillation. Chem. Eng. 2002, 109, 108. [Google Scholar]
- Lei, Z.; Li, C.; Chen, B. Extractive Distillation: A Review. Sep. Purif. Rev. 2003, 32, 121–213. [Google Scholar] [CrossRef]
- Mahdi, T.; Ahmad, A.; Nasef, M.M. State-of-the-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2015, 44, 308–330. [Google Scholar] [CrossRef]
- Marschner, R.F.; Burney, D.E. Cyclopentane and Neohexane in Petroleum. Ind. Eng. Chem. 2002, 44, 1406–1408. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, A.; Jiang, F. Study on the Process of Cyclopentane Oxidation to Cyclopentanol and Cyclopentanone. Fine Spec. Chem. 2020, 28, 5–9. [Google Scholar]
- Tian, Y.; Sun, J.; Wang, Z. 50 kt/a Fine separation of mixed pentane isomers. Chem. Prog. 2005, 24, 27–31. [Google Scholar]
- Qi, L.; Cui, J.; Xu, R. Selection of Cyclopentane/Neohexane Separation Extracts by COSMO-SAC Method and Process Simulation. J. Chang. Univ. 2021, 33, 43–49. [Google Scholar]
- Fu, M.L. Extractive Distillation of Alkane/Cycloalkane Feed Employing Mixed Solvent. U.S. Patent No. 4,948,470A, 14 August 1990. [Google Scholar]
- Sun, Y.B.; Zhao, Q.M.; Gao, Z.R. Development of extraction rectification of cyclopentane/2.2-methyl butane. Chem. Eng. 2012, 26, 17–19. [Google Scholar]
- Fandino, O.; Ruffine, L. Methane hydrate nucleation and growth from the bulk phase: Further insights into their mechanisms. Fuel 2014, 117, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Moridis, G.J.; Collett, T.S.; Boswell, R. Gas Hydrates as a Potential Energy Source: State of Knowledge and Challenges; Springer: New York, NY, USA, 2013; Volume 37, pp. 977–1033. [Google Scholar]
- Wang, J.; Wang, Q.; Meng, Y. Flow characteristic and blockage mechanism with hydrate formation in multiphase transmission pipelines: In-situ observation and machine learning predictions. Fuel 2022, 330, 125669. [Google Scholar] [CrossRef]
- Park, K.N.; Hong, S.Y.; Lee, J.W.; Kang, K.C.; Lee, Y.C.; Ha, M.G.; Lee, J.D. A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+). Desalination 2011, 274, 91–96. [Google Scholar] [CrossRef]
- Steinar, G.J. Method for Production of Gas Hydrates for Transportation and Storage. U.S. Patent No. 5,536,893, 16 July 1996. [Google Scholar]
- Xue, Q.; Wang, X.; Li, Z. Application progress of hydrate utilization technology. Chem. Prog. 2021, 40, 722–735. [Google Scholar]
- Dong, H.; Wang, J.; Xie, Z. Potential applications based on the formation and dissociation of gas hydrates. Renew. Sustain. Energy Rev. 2021, 143, 110928. [Google Scholar] [CrossRef]
- Sun, L.; Sun, H.; Yuan, C. Enhanced clathrate hydrate formation at ambient temperatures (287.2 K) and near atmospheric pressure (0.1 MPa): Application to solidified natural gas technology. Chem. Eng. J. 2023, 454, 140325. [Google Scholar] [CrossRef]
- Xu, C.G.; Chen, Z.Y.; Cai, J. Study on Pilot-Scale CO2 Separation from Flue Gas by the Hydrate Method. Energy Fuels 2014, 28, 1242–1248. [Google Scholar] [CrossRef]
- Huang, L.; Liang, M.; Bei, L. Experimental Studies of the Separation of C2 Compounds from CH4 + C2H4 + C2H6 + N2 Gas Mixtures by an Absorption−Hydration Hybrid Method. Ind. Eng. Chem. Res. 2013, 52, 2707–2713. [Google Scholar]
- Zhang, L.W.; Chen, G.J.; Guo, X.Q. The partition coefficients of ethane between vapor and hydrate phase for methane + ethane + water and methane + ethane + THF + water systems. Fluid Phase Equilibria 2004, 225, 141–144. [Google Scholar] [CrossRef]
- Li, S.; Fan, S.; Wang, J. Clathrate Hydrate Capture of CO2 from Simulated Flue Gas with Cyclopentane/Water Emulsion. Chin. J. Chem. Eng. 2010, 18, 202–206. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Insights into the CO2 Capture by Flue Gas Hydrate Formation: Gas Composition Evolution in Systems Containing Gas Hydrates and Gas Mixtures at Stable Pressures. ACS Sustain. Chem. Eng. 2018, 6, 5732–5736. [Google Scholar] [CrossRef]
- Czarnota, R.; Knapik, E.; Wojnarowski, P. Carbon Dioxide Separation Technologies. Comm. Min. PAS 2019, 64, 487–498. [Google Scholar]
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Q. Thermodynamic Promotion of Tetrahydrofuran on Methane Separation from Low-Concentration Coal Mine Methane Based on Hydrate. Energy Fuels 2010, 24, 2530–2535. [Google Scholar] [CrossRef]
- Ko, G.; Lee, J.; Seo, Y. Separation efficiency and equilibrium recovery ratio of SF6 in hydrate-based greenhouse gas separation. Chem. Eng. J. 2020, 405, 126956. [Google Scholar] [CrossRef]
- Kim, E.; Ko, G.; Seo, Y. Greenhouse Gas (CHF3) Separation by Gas Hydrate Formation. ACS Sustain. Chem. Eng. 2017, 5, 5485–5492. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, G.J.; Yang, L.Y. Study on the recovery of hydrogen from refinery (hydrogen plus methane) gas mixtures using hydrate technology. Sci. China Ser. B-Chem. 2008, 51, 171–178. [Google Scholar] [CrossRef]
- Han, S.; Rhee, Y.W.; Kang, S.P. Investigation of salt removal using cyclopentane hydrate formation and washing treatment for seawater desalination. Desalination 2017, 404, 132–137. [Google Scholar] [CrossRef]
- Wu, L. Study on Separation Technology of Cyclopentane/Neohexane Mixture; China University of Petroleum: Beijing, China, 2017. [Google Scholar]
- Sun, H.; Sun, L.; Zhao, Y. A combined hydrate-based method for removing heavy metals from simulated wastewater with high concentrations. J. Environ. Chem. Eng. 2021, 9, 106633. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, M.; Wang, T. An in-situ MRI method for quantifying temperature changes during crystal hydrate growths in porous medium. J. Therm. Sci. 2022, 31, 1542–1550. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.; Dai, S. Effects of depressurization on gas production and water performance from excess-gas and excess-water methane hydrate accumulations. Chem. Eng. J. 2022, 431, 133223. [Google Scholar] [CrossRef]
- Watson, A.; Chang, C.T. Characterizing porous media with NMR methods. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 343–386. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhang, L.; Song, Y. Quantitative determination of pore-structure change and permeability estimation under hydrate phase transition by NMR. AIChE J. 2020, 66, 16859. [Google Scholar] [CrossRef]
- Chauhan, C.; Bioanal, J.A. Powder XRD Technique and Its Application. J. Anal. Bioanal. Tech. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Dann, S.E. Reactions and Characterization of Solids; Royal Society of Chemistry: London, UK, 2000; pp. 64–65. [Google Scholar]
- Liu, C.; Ye, Y. Natural Gas Hydrates Experimental Techniques and Their Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sloan, E. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–359. [Google Scholar] [CrossRef]
- Yousuf, M.; Qadri, S.B.; Knies, D.L. Novel results on structural investigations of natural minerals of clathrate hydrates. Appl. Phys. A 2004, 78, 925–939. [Google Scholar] [CrossRef]
- Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- Orlando, A.; Franceschini, F.; Muscas, C. A Comprehensive Review on Raman Spectroscopy Applications. Chemosensors. 2021, 9, 262. [Google Scholar] [CrossRef]
- Lv, Q. Formation Kinetics of Cyclopentane plus Methane Hydrates in Brine Water Systems and Raman Spectroscopic Analysis. Energy Fuels 2015, 29, 6104–6110. [Google Scholar] [CrossRef]
- Lo, C.; Zhang, J.; Somasundaran, P. Raman Spectroscopic Studies of Surfactant Effect on the Water Structure around Hydrate Guest Molecules. J. Phys. Chem. Lett. 2010, 1, 2676–2679. [Google Scholar] [CrossRef]
- Lv, Q.; Li, X. Raman Spectroscopic Studies on Microscopic Mechanism of CP—CH 4 Mixture Hydrate. Energy Procedia 2017, 142, 3264–3269. [Google Scholar] [CrossRef]
- Nuchteera, I.; Thirasak, P.; Chavagorn, M. Cyclopentane Purification from Multicomponent Azeotropic Mixtures. Comput. Aided Chem. Eng. 2020, 48, 277–282. [Google Scholar]
- Peng, K. Design and Optimization of Cyclopentane Separation Wall Distillation Tower; Dalian University of Technology: Dalian, China, 2021. [Google Scholar]
Extractive Distillation | Hydrate Separation Technology | |||||
---|---|---|---|---|---|---|
Process stages | addition of extractant, vaporization (22MB), flow, vaporization (CP), condensation | formation, separation, decomposition | ||||
Device | ED column (42~65 plates) | recovery distillation column (10~36 plates) | formation reactor | decomposition reactor | ||
Temperature (°C) | 52.23 (overhead)~114.79 (bottom) | 51.78 (overhead)~162.64 (bottom) | 2 | 20 | ||
Pressure (kPa) | 110 | 160 | 110 | 135 | 101 | 101 |
Additive | N,N-dimethyl formamide (DMF) | water | ||||
Feed: Additives | 1:10 | 1:4 | ||||
References | [31,47,48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Sun, L.; Yuan, C.; Li, M.; Dong, H.; Zhang, L.; Yang, L.; Zhao, J.; Song, Y. Principle and Feasibility Study of Proposed Hydrate-Based Cyclopentane Purification Technology. Energies 2023, 16, 4681. https://doi.org/10.3390/en16124681
Hu X, Sun L, Yuan C, Li M, Dong H, Zhang L, Yang L, Zhao J, Song Y. Principle and Feasibility Study of Proposed Hydrate-Based Cyclopentane Purification Technology. Energies. 2023; 16(12):4681. https://doi.org/10.3390/en16124681
Chicago/Turabian StyleHu, Xianbing, Lingjie Sun, Chengyang Yuan, Man Li, Hongsheng Dong, Lunxiang Zhang, Lei Yang, Jiafei Zhao, and Yongchen Song. 2023. "Principle and Feasibility Study of Proposed Hydrate-Based Cyclopentane Purification Technology" Energies 16, no. 12: 4681. https://doi.org/10.3390/en16124681
APA StyleHu, X., Sun, L., Yuan, C., Li, M., Dong, H., Zhang, L., Yang, L., Zhao, J., & Song, Y. (2023). Principle and Feasibility Study of Proposed Hydrate-Based Cyclopentane Purification Technology. Energies, 16(12), 4681. https://doi.org/10.3390/en16124681