Overview of Signal Processing Problems in Power Electronic Control Circuits †
Abstract
:1. Introduction
- (a)
- Signal sampling rate: This includes considerations such as aliasing, sequential vs. simultaneous sampling in multichannel systems, and the jitter of sampling pulses.
- (b)
- Synchronization: This involves coherent sampling.
- (c)
- Signal resolution: This includes the signal-to-noise ratio and the noise-shaping circuit.
- (d)
- Changing sampling speed: This includes interpolation and decimation.
- (e)
- Conversion of analog circuits to digital form.
2. Power Electronic Circuit
3. Selected Signal Parameters
3.1. SINAD
3.2. SNR
3.3. DR
3.4. THD
4. Signal Sampling
4.1. Oversampling
4.2. Simultaneous Sampling
4.3. Synchronization of the Sampling Process
4.4. Hard Real-Time System
4.5. Jitter
- Software triggering of the sampling pulse;
- Unwanted electromagnetic couplings created between the traces of a printed circuit board and another source of electromagnetic noise;
- Power supply noise in electronic devices and circuits;
- Digital circuit oscillator frequency drifts over time due to noise;
- Flicker noise;
- Thermal noise.
Example 1
5. Multirate Circuits
5.1. Signal Decimation
5.2. Signal Interpolation
Example 2
6. Signal Quantization
6.1. Signal Headroom
6.2. Noise Shaping Circuit
6.3. Propagation of the Quantization Noise
Example 3
7. Conversion of Analog Circuits to Digital Form
8. Conclusions
- Quantization noise;
- Aliasing;
- Jitter;
- A/D and D/A converter noise;
- Computer arithmetic and round-off errors;
- Integral and differential nonlinearity of analog parts;
- Other error sources.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A/D | Analog-to-digital converter |
D/A | Digital-to-analog converter |
DFT | Discrete Fourier transformation |
DSP | Digital signal processor, or digital signal processing |
HRPWM | High-resolution pulse width modulation |
IGBT | Insulated gate bipolar transistor |
MCU | Microcontroller unit |
NSC | Noise-shaping circuit |
PLL | Phase lock loop |
PWM | Pulse width modulation |
A | Amplitude of the signal |
b | Number of bits |
fc | Transistor switching frequency |
fh | PWM counter frequency clock |
f | Frequency |
M | Decimation ratio |
fs | Sampling frequency |
R | Oversampling ratio |
P | Power of the signal |
SNR | Signal-to-noise ratio |
THD | Total harmonic distortion ratio |
t | Time |
tc | A/D conversion time |
Ts | Sampling period |
References
- Mohan, N.; Undeland, T.M.; Robbins, W.P. Power Electronics, Converters, Applications and Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1995. [Google Scholar]
- Kazmierkowski, M.P.; Kishnan, R.; Blaabjerg, F. Control in Power Electronics; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Trzynadlowski, A. Introduction to Modern Power Electronics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bose, B.K. Power Electronics and Motor Drives: Advances and Trends; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Batarseh, I.; Harb, A. Power Electronics Circuit Analysis and Design, 2nd ed.; Springer: London, UK, 2018. [Google Scholar]
- Erickson, R.W.; Maksimovic, D. Fundamentals of Power Electronics; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Rashid, M. SPICE for Power Electronics and Electric Power, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Dokić B., L.; Blanuša, B. Power Electronics: Converters and Regulators; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Rashid, M. Power Electronics Handbook Devices, Circuits, and Applications, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Holmes, D.G.; Lipo, T.A. Pulse Width Modulation for Power Converters; IEEE/Wiley-Interscience: New York, NY, USA, 2003. [Google Scholar]
- Rabiner, L.R.; Gold, B. Theory and Application of Digital Signal Processing; Prentice Hall Inc.: Hoboken, NJ, USA, 1975. [Google Scholar]
- Crochiere, R.E.; Rabiner, L.R. Multirate Digital Signal Processing; Prentice Hall Inc.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Proakis, J.G.; Manolakis, D.M. Digital Signal Processing, Principles, Algorithms, and Application; Prentice Hall Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Orfanidis, S.J. Introduction to Signal Processing; Prentice Hall Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Lyons, R. Understanding Digital Signal Processing, 3rd ed.; Pearson: London, UK, 2010. [Google Scholar]
- Mitra, S. Digital Signal Processing: A Computer-Based Approach, 4th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Owen, M. Practical Signal Processing; Cambridge University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Bateman, A.; Paterson-Stephens, I. The DSP Handbook: Algorithms, Applications and Design Techniques; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Wanhammar, L. DSP Integrated Circuit; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Flige, N. Multirate Digital Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Vaidyanathan, P.P. Multirate Systems and Filter Banks; Prentice Hall Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- Lyons, R.; Fugal, D. Essential Guide to Digital Signal Processing; Pearson: London, UK, 2014. [Google Scholar]
- Lyons, R. Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hussain, Z.; Sadik, A.; O’Shea, P. Digital Signal Processing. An Introduction with MATLAB and Applications; Springer: London, UK, 2011. [Google Scholar]
- Sozanski, K. Signal-to-noise ratio in power electronic digital control circuits. In Proceedings of the Signal Processing, Algorithms, Architectures, Arrangements and Applications—SPA 2016, Poznań, Poland, 11–14 May 2016; Poznan University of Technology: Poznań, Poland, 2016; pp. 162–171. [Google Scholar]
- Radhakrishnan, S. Applications of Digital Signal Processing through Practical Approach; InTech: London, UK, 2015. [Google Scholar] [CrossRef]
- Emadi, A.; Khaligh, A.; Nie, Z.; Lee, Y.J. Integrated Power Electronic Converters and Digital Control; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Rebizant, W.; Szafran, J.; Wiszniewski, A. Digital Signal Processing in Power System Protection and Control; Springer: London, UK, 2011. [Google Scholar]
- Castilla, M. Control Circuits in Power Electronics. Practical Issues in Design and Implementation; The Institution of Engineering and Technology: London, UK, 2016. [Google Scholar]
- Buccella, C.; Cecati, C.; Fellow, L.H. Digital Control of Power Converters—A Survey. IEEE Trans. Ind. Inform. 2012, 8, 3. [Google Scholar] [CrossRef]
- Ukil, A. Intelligent Systems and Signal Processing in Power Engineering; Springer: London, UK, 2007. [Google Scholar]
- Reay, D.S. Digital Signal Processing Using the ARM® CORTEX®-M4; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Corradini, L.; Maksimovic, D.; Mattavelli, P.; Zane, R. Digital Control of High-Frequency Switched-Mode Power Converters; IEEE Press: Piscataway, NJ, USA, 2015. [Google Scholar]
- Vasquez-Plaza, J.D.; Lopez-Chavarro, A.F.; Sanabria-Torres, E.A.; Patarroyo-Montenegro, J.F.; Andrade, F. Benchmarking Real-Time Control Platforms Using a Matlab/Simulink Coder with Applications in the Control of DC/AC Switched Power Converters. Energies 2022, 15, 6940. [Google Scholar] [CrossRef]
- Bagci, B. Programming and Application of a DSP to Control and Regulate Power Electronic Converters: Programming in C++; Anchor Academic Publishing: Albany, NY, USA, 2014. [Google Scholar]
- Sozanski, K. Digital Signal Processing in Power Electronics Control Circuits, 2nd ed.; Springer: London, UK, 2017. [Google Scholar]
- Benysek, G.; Pasko, M. Power Theories for Improved Power Quality; Springer: London, UK, 2012. [Google Scholar]
- Williamson, D. Digital Control and Implementation; Prentice Hall Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Wescott, T. Applied Control Theory for Embedded Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Buso, S.; Mattavelli, P. Digital Control in Power Electronics; Springer: London, UK, 2015. [Google Scholar]
- Sozanski, K. Realization of a digital control algorithm. In Power Theories for Improved Power Quality; Benysek, G., Pasko, M., Eds.; Springer: London, UK, 2012; pp. 117–168. [Google Scholar]
- Oshana, R. DSP Software Development Techniques for Embedded and Real-Time Systems; Newnes: London, UK, 2005. [Google Scholar]
- Srita, S.; Somkun, S.; Kaewchum, T.; Rakwichian, W.; Zacharias, P.; Kamnarn, U.; Thongpron, J.; Amorndechaphon, D.; Phattanasak, M. Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations. Energies 2022, 15, 2535. [Google Scholar] [CrossRef]
- Choi, C.; Lee, W. Extended Digital Programmable Low-Pass Filter for Direct Noise Filtering of Three-Phase Variables in Low-Cost AC Drives. Energies 2022, 15, 2096. [Google Scholar] [CrossRef]
- Odeh, C.I.; Kondratenko, D.; Lewicki, A.; Morawiec, M.; Jąderko, A.; Baran, J. Pulse-Width Modulation Template for Five-Level Switch-Clamped H-Bridge-Based Cascaded Multilevel Inverter. Energies 2021, 14, 7726. [Google Scholar] [CrossRef]
- Maxim Integrated. Coherent Sampling vs. Window Sampling; Tutorial 1040; Maxim Integrated: San Jose, CA, USA, 2002. [Google Scholar]
- Texas Instruments. TMS320F2837xD Dual-Core Microcontrollers, Data Sheet, Texas Instruments, SPRS880O. 2021. Available online: https://www.ti.com/lit/ds/sprs880m/sprs880m.pdf (accessed on 5 January 2023).
- Kester, W. Analog-Digital Conversion; Analog Devices Inc.: Wilmington, MA, USA, 2004. [Google Scholar]
- Kester, W. Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR; MT-053, Tutorial; Analog Devices: Wilmington, MA, USA, 2009. [Google Scholar]
- Kester, W. Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don’t Get Lost in the Noise Floor; Technical Report; Analog Devices Inc.: Wilmington, MA, USA, 2009. [Google Scholar]
- Kester, W. Data Conversion Handbook; Analog Devices, Inc.: Wilmington, MA, USA; Newnes: London, UK; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Plassche, R. Integrated Analog-To-Digital and Digital-To-Analog Converters; Springer: London, UK, 2012. [Google Scholar]
- Hartley, R.V.L. Transmission of information. Bell Syst. Tech. J. 1928, 7, 535–563. [Google Scholar] [CrossRef]
- Nyquist, H. Certain factors affecting telegraph speed. Bell Syst. Tech. J. 1924, 3, 324–346. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. AIEE Trans. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Kotelnikov, A.V. On the capacity of the ‘ether’ and of cables in electrical communication. In Proceedings of the First All-Union Conference on the Technological Reconstruction of the Communications Sector and Low-Current Engineering, Moscow, Russia, 6–11 April 1933. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423 and 623–656. [Google Scholar] [CrossRef] [Green Version]
- Sozanski, K.; Szczesniak, P. Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT. Energies 2023, 16, 1453. [Google Scholar] [CrossRef]
- Data Translation. Benefits of Simultaneous Data Acquisition Modules; Technical Report; Data Translation: Marlboro, MA, USA, 2009. [Google Scholar]
- Peng, X.; Li, J.; Zhang, D.; Hu, C.; Sun, N.; Jiang, J. High-Precision ADC Spectrum Testing under Non-Coherent Sampling Conditions. Sensors 2022, 22, 8170. [Google Scholar] [CrossRef] [PubMed]
- Renesans, A. Tutorial in Coherent and Windowed Sampling with A/D Converters; Application Note, AN9675; Renesans: Koto City, Japan, 1997. [Google Scholar]
- Azeredo-Leme, C. Clock jitter effects on sampling: A tutorial. IEEE Circuits Syst. Mag. 2011, 3, 26–37. [Google Scholar] [CrossRef]
- Brannon, B. Sampled Systems and the Effects of Clock Phase Noise and Jitter; Application Note AN-756; Technical Report; Analog Devices, Inc.: Wilmington, MA, USA, 2004. [Google Scholar]
- Brannon, B.; Barlow, A. Aperture Uncertainty and ADC System Performance; Application Note AN-501; Technical Report; Analog Devices Inc.: Wilmington, MA, USA, 2006. [Google Scholar]
- Redmayne, D.; Trelewicz, E.; Smith, A. Understanding the Effect of Clock Jitter on High Speed ADCs; Design Note 1013; Technical Report; Linear Technology, Inc.: Milpitas, CA, USA, 2006. [Google Scholar]
- Mota, M. Understanding Clock Jitter Effects on Data Converter Performance and How to Minimize Them; Technical Report; Synopsis Inc.: Mountain View, CA, USA, 2010. [Google Scholar]
- Candy, J.; Temes, G. Oversampling Delta-Sigma Data Converters, Theory, Design, and Simulation; IEEE Press: Piscataway, NJ, USA, 1992. [Google Scholar]
- Tewksbury, S. Oversampled, linear predictive and noise-shaping coders of order N > 1. IEEE Trans. Circuits Syst. 1978, 25, 436–447. [Google Scholar] [CrossRef]
- Norsworthy, S.R.; Schreier, R.; Temes, G.C. Delta-Sigma Data Converters. Theory, Design, and Simulation; IEEE Press: Piscataway, NJ, USA, 1997. [Google Scholar]
- Schreier, R.; Temes, G.C. Understanding Delta-Sigma Data Converters; Wiley-IEEE Press: Hoboken, NJ, USA, 2004. [Google Scholar]
- Friis, H.T. Noise Figures of Radio Receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
- Cutler, C. Transmission System Employing Quantization. U.S. Patent 2927962, 8 March 1960. [Google Scholar]
- Spang, H.; Schulthessis, P. Reduction of quantizing noise by use of feedback. IRE Trans. Commun. Syst. 1962, 10, 373–380. [Google Scholar] [CrossRef]
- Sozanski, K.; Sozanska, A. Multirate Shunt Active Power Filter with Improved Dynamic Parameters. In Proceedings of the Signal Processing, Algorithms, Architectures, Arrangements and Applications, Poznan, Poland, 20–22 September 2017; pp. 137–142. [Google Scholar]
- Sozanski, K.; Strzelecki, R.; Fedyczak, Z. Digital control circuit for class-D audio power amplifier. In Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference—PESC 2001, Vancouver, BC, Canada, 17–21 June 2001; pp. 1245–1250. [Google Scholar]
- Chen, W.K. The Circuits and Filters Handbook; IEEE Press: Piscataway, NJ, USA, 1995. [Google Scholar]
- Data Translation The Battle for Data Fidelity: Understanding the SFDR Spec; Technical Report; Data Translation: Marlboro, MA, USA, 2008.
- Sozanski, K. Realization of Digital Audio Signal Interpolator Using Linear-Phase IIR Filter. In Proceedings of the IEEE SPA’ 2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications, Poznań, Poland, 26–28 October 2013. [Google Scholar]
- Lane, J.; Hillman, G. Implementing IIR/FIR Filters with Motorola’s DSP56000/DSP56001, APR7/D Rev. 2; Motorola Inc.: Chicago, IL, USA, 1993. [Google Scholar]
- Orfanidis, S.J. Lecture Notes on Elliptic Filter Design; Rutgers University: New Brunswick, NJ, USA, 2006; Available online: https://eceweb1.rutgers.edu/~orfanidi/ece521/ (accessed on 5 April 2023).
- Mcclellan, J.H.; Parks, T.W.; Rabiner, L.R. A Computer Program for Designing Optimum FIR Linear Phase Digital Filters. IEEE Trans. Audio Electroacoust. 1973, 21, 6. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J. Decimation and Interpolation with IFIR Filters, DSP Related. Available online: https://www.dsprelated.com/showabstract/4012.php (accessed on 5 April 2023).
- Hoffmann, J. Savitzky Golay Filter, DSP Related. Available online: https://www.dsprelated.com/showabstract/4039.php (accessed on 5 April 2023).
- Schwarzinger, A.; Digital Filtering in the Frequency Domain. DSP Related. Available online: https://www.dsprelated.com/showabstract/3961.php (accessed on 5 April 2023).
- Lyons, R. Reducing IIR Filter Computational Workload, DSP Related. Available online: https://www.dsprelated.com/showarticle/1269.php (accessed on 5 April 2023).
- Robertson, N. Design IIR Filters Using Cascaded Biquads, DSP Related. Available online: https://www.dsprelated.com/showarticle/1137.php (accessed on 5 April 2023).
- Lyons, R. The Swiss Army Knife of Digital Networks, DSP Related. Available online: https://www.dsprelated.com/showarticle/972.php (accessed on 5 April 2023).
- Lyons, R. A Beginner’s Guide to Cascaded Integrator-Comb (CIC) Filters, DSP Related. Available online: https://www.dsprelated.com/showarticle/1337.php (accessed on 5 April 2023).
- Valvano, J. Embedded Systems: Realtime Operating Systems for ARM Cortex-M Microcontrollers. 2021. Available online: https://users.ece.utexas.edu/~valvano/ (accessed on 1 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sozański, K. Overview of Signal Processing Problems in Power Electronic Control Circuits. Energies 2023, 16, 4774. https://doi.org/10.3390/en16124774
Sozański K. Overview of Signal Processing Problems in Power Electronic Control Circuits. Energies. 2023; 16(12):4774. https://doi.org/10.3390/en16124774
Chicago/Turabian StyleSozański, Krzysztof. 2023. "Overview of Signal Processing Problems in Power Electronic Control Circuits" Energies 16, no. 12: 4774. https://doi.org/10.3390/en16124774
APA StyleSozański, K. (2023). Overview of Signal Processing Problems in Power Electronic Control Circuits. Energies, 16(12), 4774. https://doi.org/10.3390/en16124774