The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China
Abstract
:1. Introduction
2. The Need for Long-Term Energy Storage
3. Feasibility Analysis of Hydrogen Participation in Long-Term Energy Storage
3.1. Energy Storage Technology Comparison
3.2. Long-Term Hydrogen Storage Technology
4. Economic Analysis of the Long-Term Storage of Hydrogen
4.1. Salt-Cavern Hydrogen Storage
4.2. Hydrogen Blending in Natural Gas
- 1.
- Natural gas storage depots
- 2.
- LNG receiving stations
- 3.
- Emergency reserve peaking stations
4.3. Solid-State Hydrogen Storage
5. Conclusions
- (1)
- By carrying out the simulation of power supply and demand generation of the new power system, when wind power and photovoltaic power account for 32% and 13%, there is a power supply and demand imbalance that lasts for several days and weeks. At this time, the new power system needs to be equipped with long-time energy storage to solve the power balance problem of several hours, days or even across seasons.
- (2)
- By comparing the energy storage capacity, storage length and application scenarios of various types of energy storage means, hydrogen energy storage has the characteristics of high energy density, large storage scale and small energy-capacity cost, which makes it the optimal solution for seasonal and large-scale energy storage. Among the eleven existing hydrogen storage technologies, salt-cavern hydrogen storage, hydrogen blending of natural gas, and solid-state hydrogen storage are the best options for future hydrogen storage to participate in seasonal energy storage of new power systems.
- (3)
- The levelized hydrogen storage costs of natural gas–blended hydrogen, salt-cavity hydrogen storage and solid-state hydrogen storage are 0.74 USD/kg, 1.61 USD/kg, and 2.1 USD/kg, respectively. With the decreasing levelized cost of salt-cavern hydrogen storage and solid hydrogen storage, it will be more competitive in the future. Combining the resource endowment and geological conditions of each region in China, the hydrogen storage system of “solid hydrogen storage above ground and salt cavern storage below ground” will be formed.
- (1)
- New power system construction preparation period (current—2030). The main task of the power grid in this period is to increase the research and development of key technologies and core components in all aspects of hydrogen energy, and actively promote the pilot demonstration of hydrogen energy application scenarios in the new power system. At the same time, electrolysis hydrogen production equipment should be deployed in the new energy base on the power side to support the new energy power consumption.
- (2)
- New power system construction and development period (2030–2050). The main task in this period is to coordinate the construction of hydrogen energy infrastructure and advance the deployment of large-scale salt cavern and solid hydrogen energy storage centers. The government accelerates the construction of a safe, stable and efficient national hydrogen energy supply system, and gradually builds a convenient and low-cost hydrogen pipeline transmission network.
- (3)
- New power system construction maturity period (2050–2060). The main task in this period is to explore the synergistic development model of electricity and hydrogen in accordance with the resources and economic development patterns of each region. By playing the role of energy hub for electricity-hydrogen synergy, we can achieve the goal of carbon neutrality in each field.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Du, X.W. Carbon peaking and carbon neutrality lead the energy revolution. Sci. Grand View Park 2021, 19, 78. [Google Scholar]
- Li, Q.S. Discussion on the path of China’s energy transformation under the goal of carbon neutrality. China Coal 2021, 47, 1–7. [Google Scholar] [CrossRef]
- Yuan, X.; Su, C.W.; Umar, M.; Shao, X.F.; LOBONT, O.R. The race to zero emissions: Can renewable energy be the path to carbon neutrality? J. Environ. Manag. 2022, 308, 114648. [Google Scholar] [CrossRef] [PubMed]
- Gil, L.; Bernardo, J. An approach to energy and climate issues aiming at carbon neutrality. Environ. Energy Focus 2020, 33, 37–42. [Google Scholar] [CrossRef]
- Hasheminasab, H.; Hashemkhani Zolfani, S.; Kazimieras Zavadskas, E.; Kharrazi, M.; Skare, M. A circular economy model for fossil fuel sustainable decisions based on MADM techniques. Econ. Res.-Ekon. Istraživanja 2022, 35, 564–582. [Google Scholar] [CrossRef]
- Song, D.; Jia, B.; Jiao, H. Review of Renewable Energy Subsidy System in China. Energies 2022, 15, 7429. [Google Scholar] [CrossRef]
- Ren, D.W.; Xiao, J.Y.; Hou, J.M.; Du, E.S.; Jin, C.; Liu, X. Construction and Evolution of China’s New Power System Under Dual Carbon Goal. Power Syst. Tech. 2022, 46, 3831–3839. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, Z.C.; Zhou, Q.; Zhang, Y.Q.; Yuan, H. Challenges and Suggestions of Construction of New Power System in Northwest China under the Background of “Double Carbon”. Energy China 2021, 43, 84–88. [Google Scholar]
- Cao, J.; Ho, M.S.; Ma, R.; Teng, F. When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China. J. Repub. Econ. 2021, 200, 104470. [Google Scholar]
- King, M.; Jain, A.; Bhakar, R.; Mathur, J.; Wang, J.H. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK. Renew. Sustain. Energy Rev. 2021, 139, 110705. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Kang, C.Q. Challenges and Prospects for Constructing the New-type Power System Towards a Carbon Neutrality Future. Proc. CSEE 2022, 42, 2806–2819. [Google Scholar] [CrossRef]
- Shen, J.J.; Wang, Y.; Cheng, C.T.; Li, X.F.; Miao, S.M.; Zhang, Y.; Zhang, J.T. Research Status and Prospect of Generation Scheduling for Hydropower-wind-solar Energy Complementary System. Proc. CSEE 2022, 42, 3871–3885. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, S.Y.; Dong, W.J.; Liu, P.; Du, E.S.; Ma, L.W.; He, J.K. Low Carbon Transition Pathway of Power Sector Under Carbon Emission Constraints. Proc. CSEE 2021, 41, 3987–4001. [Google Scholar] [CrossRef]
- Hao, X.; Wang, H.; Lin, Z.; Ouyang, M.G. Seasonal effects on electric vehicle energy consumption and driving range: A case study on personal, taxi, and ridesharing vehicles. J. Clean. Prod. 2020, 249, 119403. [Google Scholar] [CrossRef]
- Guo, Y.; Ming, B.; Huang, Q.; Wang, Y.M.; Zheng, X.D.; Zhang, W. Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery. Appl. Energy 2022, 309, 118467. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, G.; Huang, W.; Chen, S.; Zhang, S. Short-term optimal operation of a wind-PV-hydro complementary installation: Yalong River, Sichuan Province, China. Energies 2018, 11, 868. [Google Scholar] [CrossRef] [Green Version]
- Li, M.J.; Chen, G.P.; Dong, C.; Liang, Z.F.; Wang, W.S.; Fan, Z.G. Research on Power Balance of High Proportion Renewable Energy System. Power Syst. Tech. 2019, 43, 3979–3986. [Google Scholar] [CrossRef]
- Xin, B.A.; Chen, M.; Zhao, P.; Sun, H.D.; Zhou, Q.Y.; Qin, X.H. Research on Coal Power Generation Reduction Path Considering Power Supply Adequacy Constraints Under Carbon Neutrality Target in China. Proc. CSEE 2022, 42, 6919–6931. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, T.J.; Tan, J.; Kai, S.J.; Zhou, Z. Hydrogen Energy System Planning Framework for Unified Energy System. Proc. CSEE 2022, 42, 83–94. [Google Scholar] [CrossRef]
- Yang, W.; Yang, J. Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment. Appl. Energy 2019, 237, 720–732. [Google Scholar] [CrossRef]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective—Guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Du, E.S.; Zhu, G.P.; Huang, J.H.; Qian, M.H.; Zhang, N. Review and Prospect of Seasonal Energy Storage for Power System with High Proportion of Renewable Energy. Autom. Control Electr. Power Syst. 2020, 44, 194–207. [Google Scholar]
- Bistline, J.; Cole, W.; Damato, G.; DeCarolis, J.; Frazier, W.; Linga, V.; Marcy, C.; Namovicz, C.; Podkaminer, K.; Sims, R.; et al. Energy storage in long-term system models: A review of considerations, best practices, and research needs. Prog. Energy 2020, 2, 32001. [Google Scholar] [CrossRef]
- Rimpel, A.; Krueger, K.; Wang, Z.; Li, X.; Palazzolo, A.; Kavosi, J.; Naraghi, M.; Creasy, T.; Anvari, B.; Severson, E.; et al. Mechanical energy storage. In Thermal, Mechanical, and Hybrid Chemical Energy Storage Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 139–247. [Google Scholar]
- Zhang, H.; Sun, C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Sources 2021, 493, 229445. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Akinyele, D.O.; Rayudu, R.K. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Ren, D.W.; Hou, J.M.; Xiao, J.Y. Exploration of Key Technologies for Energy Storage in the Cleansing Transformation of Energy and Power. High Volt. Tech. 2021, 47, 2751–2759. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Aziz, M.; Wijayanta, A.T.; Nandiyanto, A.B.D. Ammonia as effective hydrogen storage: A review on production, storage and utilization. Energies 2020, 13, 3062. [Google Scholar] [CrossRef]
- Li, L.L.; Fan, S.S.; Chen, Q.X.; Yang, G.; Wen, Y.G. Hydrogen storage technology: Current status and prospects. Energy Storage Sci. Technol. 2018, 7, 586–594. [Google Scholar]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Qiu, Y.; Yang, H.; Tong, L.; Wang, L. Research progress of cryogenic materials for storage and transportation of liquid hydrogen. Metals 2021, 11, 1101. [Google Scholar] [CrossRef]
- Sotoodeh, F.; Smith, K.J. An overview of the kinetics and catalysis of hydrogen storage on organic liquids. Can. J. Chem. Eng. 2013, 91, 1477–1490. [Google Scholar] [CrossRef]
- Lamb, K.E.; Dolan, M.D.; Kennedy, D.F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593. [Google Scholar] [CrossRef]
- Onishi, N.; Laurenczy, G.; Beller, M.; Himeda, Y. Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord. Chem. Rev. 2018, 373, 317–332. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Cheng, F.; Chen, J. Storage of hydrogen and lithium in inorganic nanotubes and nanowires. J. Mater. Res. 2006, 21, 2744–2757. [Google Scholar] [CrossRef]
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wang, Y.H.; Lang, X.M.; Fan, S.S. Review of the kinetics enhancement technology of hydrogen storage in clathrate hydrates. Energy Storage Sci. Technol. 2022, 11, 3787–3799. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Zivar, D.; Kumar, S.; Foroozesh, J. Underground hydrogen storage: A comprehensive review. Int. J. Hydrogen Energy 2021, 46, 23436–23462. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Al Shehri, D.; Al-Ahmed, A.; Rahman, M.M.; Zaman, E. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Rep. 2022, 8, 461–499. [Google Scholar] [CrossRef]
- Tarkowski, R.; Uliasz-Misiak, B. Towards underground hydrogen storage: A review of barriers. Renew. Sustain. Energy Rev. 2022, 162, 112451. [Google Scholar] [CrossRef]
- Lanzi, D.; Panzacchi, C.; Coti, C.; Barbieri, D.; Ferraro, P.; Ghidoni, F.M.A.; Scapolo, M.; Vassallo, S. 10 Hydrogen storage. In Hydrogen Storage for Sustainability; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; p. 347. [Google Scholar]
- Raad, S.M.J.; Leonenko, Y.; Hassanzadeh, H. Hydrogen storage in saline aquifers: Opportunities and challenges. Renew. Sustain. Energy Rev. 2022, 168, 112846. [Google Scholar] [CrossRef]
- Heinemann, N.; Scafidi, J.; Pickup, G.; Thaysen, E.M.; Hassanpouryouzband, A.; Wilkinson, M.; Satterley, A.K.; Boot, M.G.; Edlmann, K.; Haszeldine, R.S. Hydrogen storage in saline aquifers: The role of cushion gas for injection and production. Int. J. Hydrogen Energy 2021, 46, 39284–39296. [Google Scholar] [CrossRef]
- Tarkowski, R.; Czapowski, G. Salt domes in Poland–Potential sites for hydrogen storage in caverns. Int. J. Hydrogen Energy 2018, 43, 21414–21427. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability 2020, 13, 298. [Google Scholar] [CrossRef]
- Małachowska, A.; Łukasik, N.; Mioduska, J.; Gębicki, J. Hydrogen storage in geological formations—The potential of salt caverns. Energies 2022, 15, 5038. [Google Scholar] [CrossRef]
- Portarapillo, M.; Di Benedetto, A. Risk assessment of the large-scale hydrogen storage in salt caverns. Energies 2021, 14, 2856. [Google Scholar] [CrossRef]
- Ho, A.; Mohammadi, K.; Memmott, M.; Hedengren, J.; Powell, K.M. Dynamic simulation of a novel nuclear hybrid energy system with large-scale hydrogen storage in an underground salt cavern. Int. J. Hydrogen Energy 2021, 46, 31143–31157. [Google Scholar] [CrossRef]
- Lu, J.M.; Xu, J.H.; Wang, W.D.; Wang, H.; Xu, Z.J.; Chen, L.P. Development of large-scale underground hydrogen storage technology. Energy Storage Sci. Technol. 2022, 11, 3699–3707. [Google Scholar] [CrossRef]
- AbuAisha, M.; Billiotte, J. A discussion on hydrogen migration in rock salt for tight underground storage with an insight into a laboratory setup. J. Energy Storage 2021, 38, 102589. [Google Scholar] [CrossRef]
- Hemme, C.; Van Berk, W. Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields. Appl. Sci. 2018, 8, 2282. [Google Scholar] [CrossRef] [Green Version]
- Scafidi, J.; Wilkinson, M.; Gilfillan, S.M.V.; Heinemann, N.; Haszeldine, R.S. A quantitative assessment of the hydrogen storage capacity of the UK continental shelf. Int. J. Hydrogen Energy 2021, 46, 8629–8639. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, Y.; Zhang, T.; Yu, K.; Wang, X.; Zhao, Q. Natural gas market and underground gas storage development in China. J. Energy Storage 2020, 29, 101338. [Google Scholar] [CrossRef]
- Zhang, G.; Li, B.; Zheng, D.; Ding, G.; Wei, H.; Qian, P.; Li, C. Challenges to and proposals for underground gas storage (UGS) business in China. Nat. Gas Ind. B 2017, 4, 231–237. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Zhang, J.F. Review of Underground Hydrogen Storage Technology. Pet. New Energy 2022, 34, 1–6. [Google Scholar]
- Lankof, L.; Urbańczyk, K.; Tarkowski, R. Assessment of the potential for underground hydrogen storage in salt domes. Renew. Sustain. Energy Rev. 2022, 160, 112309. [Google Scholar] [CrossRef]
- Caglayan, D.G.; Weber, N.; Heinrichs, H.U.; Linßen, J.; Robinius, M.; Kukla, P.A.; Stolten, D. Technical potential of salt caverns for hydrogen storage in Europe. Int. J. Hydrogen Energy 2020, 45, 6793–6805. [Google Scholar] [CrossRef]
- Allsop, C.; Yfantis, G.; Passaris, E.; Edlmann, K. Utilizing Publicly Available Datasets for Identifying Offshore Salt Strata and Developing Salt Caverns for Hydrogen Storage; Geological Society: London, UK, 2023; Volume 528, pp. 1–31. [Google Scholar]
- Chen, F.; Ma, Z.; Nasrabadi, H.; Chen, B.; Mehana, M.Z.S.; Van Wijk, J. Capacity assessment and cost analysis of geologic storage of hydrogen: A case study in Intermountain-West Region USA. Int. J. Hydrogen Energy 2023, 48, 9008–9022. [Google Scholar] [CrossRef]
- Djizanne, H.; Murillo Rueda, C.; Brouard, B.; Bérest, P.; Hévin, G. Blowout prediction on a salt cavern selected for a hydrogen storage pilot. Energies 2022, 15, 7755. [Google Scholar] [CrossRef]
- Takach, M.; Sarajlić, M.; Peters, D.; Kroener, M.; Schuldt, F.; von Maydell, K. Review of hydrogen production techniques from water using renewable energy sources and its storage in salt caverns. Energies 2022, 15, 1415. [Google Scholar] [CrossRef]
- Williams, J.D.O.; Williamson, J.P.; Parkes, D.; Evans, D.J.; Kirk, K.L.; Sunny, N.; Hough, E.; Vosper, H.; Akhurst, M.C. Does the United Kingdom have sufficient geological storage capacity to support a hydrogen economy? Estimating the salt cavern storage potential of bedded halite formations. J. Energy Storage 2022, 53, 105109. [Google Scholar] [CrossRef]
- Lemieux, A.; Shkarupin, A.; Sharp, K. Geologic feasibility of underground hydrogen storage in Canada. Int. J. Hydrogen Energy 2020, 45, 32243–32259. [Google Scholar] [CrossRef]
- Sambo, C.; Dudun, A.; Samuel, S.A.; Esenenjor, P.; Muhammed, N.S.; Haq, B. A review on worldwide underground hydrogen storage operating and potential fields. Int. J. Hydrogen Energy 2022, 47, 22840–22880. [Google Scholar] [CrossRef]
- Iordache, M.; Schitea, D.; Deveci, M.; Akyurt, İ.Z.; Iordache, I. An integrated ARAS and interval type-2 hesitant fuzzy sets method for underground site selection: Seasonal hydrogen storage in salt caverns. J. Pet. Sci. Eng. 2019, 175, 1088–1098. [Google Scholar] [CrossRef]
- Zhang, F.Q.; Zeng, P.; Zhou, L.J.; Li, B.; Zhang, S.H. Underground Gas Storage Research Status Quo and Application Expectations at Home and Abroad. Coal Geol. China 2021, 33, 39–42+52. [Google Scholar]
- Jiang, Z.M.; Tang, D.; Li, P.; Li, Y. Research on Selection Method for the Types and Sites of Underground Repository for Compressed Air Storage. South. Energy Constr. 2019, 6, 6–16. [Google Scholar] [CrossRef]
- Callas, C.; Saltzer, S.D.; Davis, J.S.; Hashemi, S.S.; Kovscek, A.R.; Okoroafor, E.R.; Wen, G.; Zoback, M.D.; Benson, S.M. Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage. Appl. Energy 2022, 324, 119668. [Google Scholar] [CrossRef]
- Lord, A.S.; Kobos, P.H.; Borns, D.J. Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrogen Energy 2014, 39, 15570–15582. [Google Scholar] [CrossRef] [Green Version]
- Papadias, D.D.; Ahluwalia, R.K. Bulk storage of hydrogen. Int. J. Hydrogen Energy 2021, 46, 34527–34541. [Google Scholar] [CrossRef]
- Thiyagarajan, S.R.; Emadi, H.; Hussain, A.; Patange, P.; Watson, M. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage. J. Energy Storage 2022, 51, 104490. [Google Scholar] [CrossRef]
- Epelle, E.I.; Obande, W.; Udourioh, G.A.; Afolabi, I.C.; Desongu, K.S.; Orivri, U.; Gunes, B.; Okolie, J.A. Perspectives and prospects of underground hydrogen storage and natural hydrogen. Sustain. Energy Fuels 2022, 6, 3324–3343. [Google Scholar] [CrossRef]
- Ren, R.X.; You, S.J.; Zhu, X.Y.; Yue, X.W.; Jiang, Z.C. Development Status and Prospects of Hydrogen Compressed Natural Gas Transportation Technology. Pet. New Energy 2021, 33, 26–32. [Google Scholar]
- Sridhar, P.; Kaisare, N.S. A critical analysis of transport models for refueling of MOF-5 based hydrogen adsorption system. J. Ind. Eng. Chem. 2020, 85, 170–180. [Google Scholar] [CrossRef]
- Shi, H.; Lv, Y.; Tan, G.B. Feasibility study on pipeline transportation of hydrogen-blended natural gas. Nat. Gas Oil 2022, 40, 23–31. [Google Scholar]
- Song, P.F.; Shan, T.W.; Li, Y.W.; Hou, J.G.; Wang, X.L.; Zhang, D. Impact of hydrogen into natural gas grid and technical feasibility analysis. Mod. Chem. Ind. 2020, 40, 5–10. [Google Scholar] [CrossRef]
- Li, J.F.; Su, Y.; Zhang, H.; Yu, B. Research progresses on pipeline transportation of hydrogen-blended natural gas. Nat. Gas Ind. 2021, 41, 137–152. [Google Scholar]
- Mouli-Castillo, J.; Heinemann, N.; Edlmann, K. Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study. Appl. Energy 2021, 283, 116348. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, X.X.; Zhang, B.; Peng, S.P. Industrial Development of Hydrogen Blending in Natural Gas Pipelines in China. Strateg. Study CAE 2022, 24, 100–107. [Google Scholar] [CrossRef]
- Li, J.J. Development status and prospect of underground gas storage in China. Oil Gas Storage Transp. 2022, 41, 780–786. [Google Scholar]
- Liu, J.X.; Liu, Y. Development status and prospects of China’s underground gas storage construction. Appl. Chem. Ind. 2022, 51, 1136–1140. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.D.; Wang, L.; Zhang, H.; Ni, J.Q. Analysis on the Development Prospects of China’s Gas Storage Business and the Development Path of Operation Models. Pet. New Energy 2021, 33, 11–15+38. [Google Scholar]
- Ma, H.X. A Preliminary Study on the Development Current Situation of Salt Cavern Gas Storage in Domestic. China Well Rock Salt 2021, 52, 12–15. [Google Scholar]
- Tian, X.; Zhang, Z.C.; Yuan, Y.L. Potential market risk of China’s boosting import of LNG. Int. Pet. Econ. 2019, 27, 56–64. [Google Scholar]
- Wang, X.Q.; Liu, W.; Luo, H.H. Opportunities and challenges of the natural gas industry under the “dual carbon” goal. Int. Pet. Econ. 2021, 29, 35–42. [Google Scholar]
- Al-Breiki, M.; Bicer, Y. Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses. Int. J. Hydrogen Energy 2020, 45, 34927–34937. [Google Scholar] [CrossRef]
- Che, X.B. Suggestions Related to the Construction of Natural Gas Storage and Peak Shaving System in China. China Oil Gas 2022, 29, 47–52. [Google Scholar]
- Zhang, S.C. Research progress of natural gas peak regulation technology. Pet. Technol. 2021, 28, 85–86. [Google Scholar]
- Hitam, C.N.C.; Aziz, M.A.A.; Ruhaimi, A.H.; Taib, M.R. Magnesium-based alloys for solid-state hydrogen storage applications, a review. Int. J. Hydrogen Energy 2021, 46, 31067–31083. [Google Scholar] [CrossRef]
- Liu, H.Z.; Xu, L.; Wang, X.H.; Liu, S.Y.; Sheng, P.; Zhao, G.Y.; Wang, B.; Li, H.; Ma, G.; Han, Y.; et al. Technical Indicators for Solid-State Hydrogen Storage Systems and Hydrogen Storage Materials for Grid-Scale Hydrogen Energy Storage Application. Power Syst. Technol. 2017, 41, 3376–3384. [Google Scholar] [CrossRef]
- Jurczyk, M.; Nowak, M. 3 Materials overview for hydrogen storage. In Hydrogen Storage for Sustainability; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; p. 195. [Google Scholar]
- Ding, X.; Chen, R.R.; Chen, X.Y.; Cao, W.C.; Ding, H.S.; Su, Y.Q.; Guo, J.J. De-/hydrogenation mechanism of Mg-based hydrogen storage alloys and their microstructure and property control. Chin. J. Nat. 2020, 42, 179–186. [Google Scholar]
- Schneemann, A.; White, J.L.; Kan, S.Y.; Jeong, S.; Wan, L.F.; Cho, E.S.; Heo, T.W.; Prendergast, D.; Urban, J.J.; Wood, B.C.; et al. Nanostructured metal hydrides for hydrogen storage. Chem. Rev. 2018, 118, 10775–10839. [Google Scholar] [CrossRef]
- Ali, N.A.; Sazelee, N.A.; Ismail, M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. Int. J. Hydrogen Energy 2021, 46, 31674–31698. [Google Scholar] [CrossRef]
- Nam, J.; Ko, J.; Ju, H. Three-dimensional modeling and simulation of hydrogen absorption in metal hydride hydrogen storage vessels. Appl. Energy 2012, 89, 164–175. [Google Scholar] [CrossRef]
- Ye, Y.; Lu, J.; Ding, J.; Wang, W.; Yan, J. Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank. Appl. Energy 2020, 278, 115682. [Google Scholar] [CrossRef]
- Liang, L.; Yang, Q.; Zhao, S.; Wang, L.; Liang, F. Excellent catalytic effect of LaNi5 on hydrogen storage properties for aluminium hydride at mild temperature. Int. J. Hydrogen Energy 2021, 46, 38733–38740. [Google Scholar] [CrossRef]
- Yang, C.C.; Wang, C.C.; Li, M.M.; Jiang, Q. A start of the renaissance for nickel metal hydride batteries, a hydrogen storage alloy series with an ultra-long cycle life. J. Mater. Chem. A 2017, 5, 1145–1152. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.J.; Zhang, L.Z.; Huang, D.J. Talking about metal hydride hydrogen storage and common metal hydrogen storage materials. Appl. Chem. Ind. 2022, 51, 2975–2978+2984. [Google Scholar] [CrossRef]
- Amica, G.; Larochette, P.A.; Gennari, F.C. Light metal hydride-based hydrogen storage system: Economic assessment in Argentina. Int. J. Hydrogen Energy 2020, 45, 18789–18801. [Google Scholar] [CrossRef]
Storage Method | Advantages | Disadvantages | Application Areas |
---|---|---|---|
High-pressure gaseous [35] | Mature technology, low cost, fast charging and discharging | Small storage capacity, high energy consumption and safety problems | Transportation, hydrogen refueling stations |
Low-temperature liquid [36] | High bulk density and high hydrogen storage capacity | High requirements for conversion technology and storage materials, high costs | Aerospace, Vehicle Mounted |
Organic liquid [37] | High storage density, recycling of hydrogen storage materials, low cost | High plant cost, low dehydrogenation efficiency and prone to side reactions | Chemical, Fuel |
Liquid ammonia [38] | Can be used directly as fuel, mild storage conditions | Stronger corrosiveness | Industrial, combined heat and power supply |
Methanol [39] | Good economy of application, easy storage and transportation | Not zero carbon emissions | Industrial, fuel, automotive |
Metal Hydride [40] | High bulk density, easy to handle and transport | Low quality efficiency and immaturity | Hydrogen refueling stations, automotive |
Inorganic compounds [41] | Easy activation, storage and transportation | Poor hydrogen storage capacity and reversibility | Laboratory phase |
Metal adsorption [42] | High efficiency and easy dehydrogenation | High cost | Transportation |
clathrate hydrates [43] | Low energy consumption, low cost, high safety | Low hydrogen storage density | Laboratory phase |
Underground hydrogen storage [44] | Good physical properties, simple operation, rapid charging and discharging, low cost | Difficult to build storage depots | Seasonal Storage |
Hydrogen blending of natural gas | Expanding hydrogen application scenarios and scale, relieving the tight supply of natural gas | Risk of hydrogen embrittlement, hydrogen penetration and corrosion of gas meters and burners | Fuel, combined heat and power supply, transportation |
Storage Type | Advantages | Disadvantages |
---|---|---|
depleted hydrocarbon reservoirs | large gas storage and peaking capacity for seasonal peaking and strategic reserves | high requirements for ground treatment and high mat air volume |
salt caverns | large gas storage capacity, second only to depleted hydrocarbon reservoirs | low geological awareness, long construction period and high cost of building the reservoir |
aquifers | high ratio of working air volume, capable of fully recovering mat air | few developable pits, and manual excavation is limited by geological conditions |
caverns | good sealing, less bedding gas volume, flexible injection and extraction conversion | Small volume, slow expansion speed, high construction cost |
Project Name | Operating Conditions/MPa | Depth/Meters | Capacity/m3 |
---|---|---|---|
Teesside (UK) | 4.5 | 365 | 210,000 |
Clemens (USA) | 7–13.7 | 1000 | 580,000 |
Moss Bluff (USA) | 5.5–15.2 | 1200 | 566,000 |
Spindletop (USA) | 6.8–20.2 | 1340 | 906,000 |
Technical Specifications | Salt Caverns | Depleted Hydrocarbon Reservoirs | Caverns | Aquifers |
---|---|---|---|---|
Operating pressure/MPa | 13.789 | 13.755 | 13.789 | 13.755 |
Volume/m3 | 580,000 | 676,941 | 580,000 | 676,941 |
Depth/meters | 1158 | 1403 | 1158 | 1403 |
Operating capacity/ton | 1912 | 1912 | 1912 | 1912 |
Air cushion ratio/% | 30 | 50 | 30 | 50 |
Air cushion capacity/ton | 574 | 956 | 574 | 956 |
Total reserves/ton | 2486 | 2868 | 2486 | 2868 |
Technical Specifications | Salt Caverns | Depleted Hydrocarbon Reservoirs | Caverns | Aquifers |
---|---|---|---|---|
Cost of gas cushion/million USD | 11.228 | 21.492 | 11.228 | 21.492 |
Cost of storage construction/million USD | 23.34 | - | 48.72 | - |
Cost of compression/million USD | 27.539 | 18.36 | 27.539 | 18.36 |
Hydrogen injection rate/(kg/h) | 2960 | 2487 | 2960 | 2487 |
Hydrogen absorption rate/(kg/h) | 4920 | 2487 | 4920 | 2487 |
Compressor power/(kWh/kg) | 2.2 | 2.2 | 2.2 | 2.2 |
Operating days/(days/year) | 350 | 350 | 350 | 350 |
Compressor capacity factor/% | 96 | 96 | 96 | 96 |
Electricity price/(USD/KW·h) | 5 | 5 | 5 | 5 |
Pipeline Costs/(USD/ton) | 4.39 | 6.26 | 4.39 | 6.26 |
Reservoir life/year | 30 | 30 | 30 | 30 |
Discount rate/% | 10 | 10 | 10 | 10 |
Total Cost/million USD | 63.255 | 40.107 | 89.644 | 40.999 |
Levelized Costs/(USD/kg) | 1.61 | 1.23 | 2.77 | 1.29 |
The Company | Underground Gas Storage | Capacity/108 m3 | Working Capacity/108 m3 |
---|---|---|---|
China National Petroleum Corporation | Dagang, Huabei, Banan, Suqiao, Shuang 6, Hutubi, Xiangguosi, Shaanxi 224, Jintan, Liuzhuang | 408 | 190 |
China Petrochemical Corporation | Chubun original 96, Chubun original 23, Jintan | 122 | 43 |
Gang Hua Gas Company | Jintan | 10 | 6 |
Underground Gas Storage | Capacity/108 m3 | Working Capacity/108 m3 | Stage |
---|---|---|---|
Kunming, Yunnan | 0.852 | 0.338 | construction |
Jianghan | 48.09 | 28.04 | construction |
Chuzhou | 31.3 | 18.5 | construction |
Huai’an | 6.24 | 5.554 | field test |
Shandong Tai’an | 5 | 2.38 | field test |
Shandong Heze | 0.39 | 0.33 | field test |
Hunan Hengyang | 19.34 | 7.35 | pre-feasibility |
Yunying, Hubei | 8.67 | 5.78 | pre-feasibility |
Pingdingshan, Henan | 19.17 | 10.57 | pre-feasibility |
Technical Specifications | 2020 | 2030 | 2050 |
---|---|---|---|
Hydrogen absorption rate/(Nm3/kWh) | 0.22 | 0.24 | 0.34 |
Hydrogen release rate/(Nm3/kWh) | 0.9 | 1.2 | 1.2 |
Hydrogen absorption pressure/Mpa | <4 | ≤3 | ≤2 |
Hydrogen release pressure/Mpa | ≥0.3 | ≥0.3 | ≥0.3 |
Hydrogen purity/% | 99.95 | 99.97 | 99.99 |
Purity of hydrogen supply/°C | 10–80 | 0–650 | 0–1000 |
Cycle life/times | 3000 | 4500 | 6000 |
Hydrogen storage density/(kg/m3) | 50 | 70 | 100 |
Technical Specifications | High Pressure Gaseous Hydrogen Storage | Solid State Hydrogen Storage |
---|---|---|
Cycle life/times | 1000 | 1000 |
Hydrogen storage capacity/(kg/times) | 5.6 | 4 |
Cost of storage tanks/USD | 4300 | 5300–6700 |
Hydrogen compression pressure/Mpa | 70 | 6 |
Hydrogen compression costs/USD | 1400 | 500 |
Total Cost/USD | 5700 | 8000–12,100 |
Levelized Costs/(USD/kg/times) | 1 | 2–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Zhang, W.; Kang, J.; Yuan, T. The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China. Energies 2023, 16, 4837. https://doi.org/10.3390/en16134837
Yan H, Zhang W, Kang J, Yuan T. The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China. Energies. 2023; 16(13):4837. https://doi.org/10.3390/en16134837
Chicago/Turabian StyleYan, Huaguang, Wenda Zhang, Jiandong Kang, and Tiejiang Yuan. 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China" Energies 16, no. 13: 4837. https://doi.org/10.3390/en16134837
APA StyleYan, H., Zhang, W., Kang, J., & Yuan, T. (2023). The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China. Energies, 16(13), 4837. https://doi.org/10.3390/en16134837