A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications
Abstract
:1. Introduction
2. Proposed Converter Topology
2.1. Analysis of the Operating Principle
2.2. Variable Inductor Operation
3. Analysis and Selection of Components
3.1. Voltage Gain
3.2. Inductor Sizing
3.3. Capacitor Sizing
4. Dynamic Analysis and Control Scheme
4.1. Switched Converter Model
4.2. Linearized Average Model
4.3. Control Design
5. Experimental Results and Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Allowable steady-state error | |
System matrix | |
Input matrix for voltage gain transfer function | |
Input matrix for audio susceptibility transfer function | |
Output matrix | |
The capacitance of each capacitor in the voltage multiplier | |
Duty cycle | |
Unstructured uncertainty | |
Voltage ripple of | |
ESR | Equivalent series resistance |
Current controller gain | |
Lower linear fractional transformation | |
Uncertain plant | |
Voltage gain transfer function | |
Audio susceptibility transfer function | |
Output function | |
Control current | |
ICR | Input current ripple |
Voltage controller | |
LFT | Linear fractional transformation |
Ideal gain | |
Practical gain | |
Generalized plant | |
PI | Proportional–integral controller |
Switching function | |
Average control input | |
Linearized average control input | |
Equilibrium average control input | |
VI | Variable inductor |
Exogenous input | |
State vector | |
Linearized state vector | |
Equilibrium point vector | |
System output | |
Linearized output | |
Error signal vector |
References
- Rajesh, R.; Prabaharan, N. Design of New Nonisolated High Gain Converter for Higher Power Density. Int. Trans. Electr. Energy Syst. 2023, 2023, 2011926. [Google Scholar] [CrossRef]
- Wu, Y.-E.; Tai, C.-H. Novel Bidirectional Isolated DC/DC Converter with High Gain Ratio and Wide Input Voltage for Electric Vehicle Storage Systems. Batteries 2022, 8, 240. [Google Scholar] [CrossRef]
- Khan, R.A.; Liu, H.-D.; Lin, C.-H.; Lu, S.-D.; Yang, S.-J.; Sarwar, A. A Novel High-Voltage Gain Step-Up DC–DC Converter with Maximum Power Point Tracker for Solar Photovoltaic Systems. Processes 2023, 11, 1087. [Google Scholar] [CrossRef]
- Mumtaz, F.; Yahaya, N.Z.; Meraj, S.T.; Singh, N.S.S.; Rahman, S.; Hossain, L. A High Voltage Gain Interleaved DC-DC Converter Integrated Fuel Cell for Power Quality Enhancement of Microgrid. Sustainability 2023, 15, 7157. [Google Scholar] [CrossRef]
- Lotfi Nejad, M.; Poorali, B.; Adib, E.; Motie Birjandi, A.A. New Cascade Boost Converter with Reduced Losses. IET Power Electron. 2016, 9, 1213–1219. [Google Scholar] [CrossRef]
- Divya Navamani, J.; Lavanya, A.; Almakhles, D.; Jagabar Sathik, M. A Review on Segregation of Various High Gain Converter Configurations for Distributed Energy Sources. Alex. Eng. J. 2022, 61, 675–700. [Google Scholar] [CrossRef]
- Leyva-Ramos, J.; Mota-Varona, R.; Ortiz-Lopez, M.G.; Diaz-Saldierna, L.H.; Langarica-Cordoba, D. Control Strategy of a Quadratic Boost Converter with Voltage Multiplier Cell for High-Voltage Gain. IEEE J. Emerg. Sel. Top Power Electron. 2017, 5, 1761–1770. [Google Scholar] [CrossRef]
- Meraj, M.; Bhaskar, M.S.; Iqbal, A.; Al-Emadi, N.; Rahman, S. Interleaved Multilevel Boost Converter with Minimal Voltage Multiplier Components for High-Voltage Step-Up Applications. IEEE Trans. Power Electron. 2020, 35, 12816–12833. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. A Survey on Voltage Boosting Techniques for Step-up DC-DC Converters. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–8. [Google Scholar]
- de Carvalho, M.R.S.; Neto, R.C.; Barbosa, E.J.; Limongi, L.R.; Bradaschia, F.; Cavalcanti, M.C. An Overview of Voltage Boosting Techniques and Step-Up DC-DC Converters Topologies for PV Applications. Energies 2021, 14, 8230. [Google Scholar] [CrossRef]
- Akhormeh, A.R.N.; Abbaszadeh, K.; Moradzadeh, M.; Shahirinia, A. High-Gain Bidirectional Quadratic DC–DC Converter Based on Coupled Inductor with Current Ripple Reduction Capability. IEEE Trans. Ind. Electron. 2021, 68, 7826–7837. [Google Scholar] [CrossRef]
- Wong, Y.-S.; Chen, J.-F.; Liu, K.-B.; Hsieh, Y.-P. A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems. Energies 2017, 10, 378. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Li, J.; Du, C.; Zhao, C.; Zhang, W.; Zhang, Y. A Coupled-Inductor DC-DC Converter with Input Current Ripple Minimization for Fuel Cell Vehicles. Energies 2019, 12, 1689. [Google Scholar] [CrossRef] [Green Version]
- Villarreal-Hernandez, C.A.; Loranca-Coutiño, J.; Mayo-Maldonado, J.C.; Valdez-Resendiz, J.E.; García-Vite, P.M.; Valderrabano-Gonzalez, A.; Rosas-Caro, J.C. A Double Dual Boost Converter with Switching Ripple Cancellation for PEMFC Systems. Electronics 2020, 9, 1592. [Google Scholar] [CrossRef]
- Li, Q.; Huangfu, Y.; Xu, L.; Wei, J.; Ma, R.; Zhao, D.; Gao, F. An Improved Floating Interleaved Boost Converter with the Zero-Ripple Input Current for Fuel Cell Applications. IEEE Trans. Energy Convers. 2019, 34, 2168–2179. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Alajmi, B.N.; Abdelsalam, I.; Marei, M.I. Soft Switching Multiphase Interleaved Boost Converter with High Voltage Gain for EV Applications. IEEE Access 2022, 10, 27698–27716. [Google Scholar] [CrossRef]
- Liu, H.; Qu, L.; Tong, Q.; Jia, G. Novel Filter Approach for Ripple-Free Input Current Boost Converters Based on Variable Inductors. J. Power Electron. 2023, 1–13. [Google Scholar] [CrossRef]
- Hidalgo, H.; Vázquez, N.; Orosco, R.; Huerta-Ávila, H.; Pinto, S.; Estrada, L. Floating Interleaved Boost Converter with Zero-Ripple Input Current Using Variable Inductor. Technologies 2023, 11, 21. [Google Scholar] [CrossRef]
- Beraki, M.W.; Trovão, J.P.F.; Perdigão, M.S. Performance Enhancement of Powertrain DC–DC Converter Using Variable Inductor. IET Electr. Syst. Transp. 2021, 11, 161–170. [Google Scholar] [CrossRef]
- Martins, S.; Seidel, Á.R.; Perdigão, M.S.; Roggia, L. Core Volume Reduction Based on Non-Linear Inductors for a PV DC–DC Converter. Electr. Power Syst. Res. 2022, 213, 108716. [Google Scholar] [CrossRef]
- Sureshkumar, A.; Gunabalan, R. Design of Robust Guaranteed Margin Stability Region PI Controller for Automotive LED Lighting with Parameter Uncertainty. IEEE Access 2022, 10, 15657–15670. [Google Scholar] [CrossRef]
- Yanarates, C.; Zhou, Z. Design and Cascade PI Controller-Based Robust Model Reference Adaptive Control of DC-DC Boost Converter. IEEE Access 2022, 10, 44909–44922. [Google Scholar] [CrossRef]
- Khayat, Y.; Naderi, M.; Shafiee, Q.; Batmani, Y.; Fathi, M.; Bevrani, H. Robust Control of a DC-DC Boost Converter: H2 and H Techniques. In Proceedings of the 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC), Mashhad, Iran, 14–16 February 2017; pp. 407–412. [Google Scholar]
- Shaw, P.; Veerachary, M. Mixed-Sensitivity Based Robust H∞ Controller Design for High-Gain Boost Converter. In Proceedings of the 2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India, 1–2 July 2017; pp. 612–617. [Google Scholar]
- Villarreal-Hernandez, C.A.; Ruiz-Martinez, O.F.; Mayo-Maldonado, J.C.; Escobar, G.; Valdez-Resendiz, J.E.; Rosas-Caro, J.C. Minimum Current Ripple Point Tracking Control for Interleaved Dual Switched-Inductor DC–DC Converters. IEEE Trans. Ind. Electron. 2021, 68, 175–185. [Google Scholar] [CrossRef]
- Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control: Analysis and Design, 2nd ed.; Wiley: Chichester, West Sussex, England, 2005. [Google Scholar]
- Gahinet, P.; Apkarian, P. Structured H∞ Synthesis in MATLAB. IFAC Proc. Vol. 2011, 44, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- Dulau, M.; Oltean, S.-E. The Effects of Weighting Functions on the Performances of Robust Control Systems. In Proceedings of the 14th International Conference on Interdisciplinarity in Engineering—INTER-ENG 2020, Târgu Mureș, Romania, 25 December 2020; MDPI: Basel, Switzerland, 2020; p. 46. [Google Scholar]
- Saeed, S.; Georgious, R.; Garcia, J. Modeling of Magnetic Elements Including Losses—Application to Variable Inductor. Energies 2020, 13, 1865. [Google Scholar] [CrossRef] [Green Version]
Parameter | Nominal Value | Uncertainty Radius |
---|---|---|
0 | ||
0 | ||
0 | ||
Parameter Component | Value and Information |
---|---|
Rated power | 250 W |
Switching frequency f | 40 kHz |
Input voltage | 20–30 V |
Output voltage | 200 V |
Transistors , , and | C3M0065090D |
Diodes , , , , and | GE10MPS06A |
Electrolytic capacitor | 100 μF |
Electrolytic capacitors , , and | 47 μF |
Inductor | 95 μH |
Variable inductor | 25–95 μH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, H.; Orosco, R.; Huerta, H.; Vázquez, N.; Hernández, C.; Pinto, S. A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies 2023, 16, 4860. https://doi.org/10.3390/en16134860
Hidalgo H, Orosco R, Huerta H, Vázquez N, Hernández C, Pinto S. A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies. 2023; 16(13):4860. https://doi.org/10.3390/en16134860
Chicago/Turabian StyleHidalgo, Héctor, Rodolfo Orosco, Héctor Huerta, Nimrod Vázquez, Claudia Hernández, and Sergio Pinto. 2023. "A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications" Energies 16, no. 13: 4860. https://doi.org/10.3390/en16134860
APA StyleHidalgo, H., Orosco, R., Huerta, H., Vázquez, N., Hernández, C., & Pinto, S. (2023). A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies, 16(13), 4860. https://doi.org/10.3390/en16134860