Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico
Abstract
:1. Introduction
2. Methodology
2.1. Optimal Logistic Combination and Energy Consumption of Modal Transport Options of CVs
- Combination 1. Electric van.
- Combination 2. Electric van combined with E-bikes.
- Combination 3. Efficient-engine diesel van combined with E-bikes.
- Combination 4. Efficient-engine diesel van.
2.2. Calculation of Total GHG Emissions from Well-To-Wheel
2.2.1. Calculation of the Total GHG Emission Factor of Diesel from Well-To-Wheel (WTW)
- Upstream. This upstream emission factor of diesel includes crude oil exploration, drilling, development, extraction, processing and transport to the refinery gate [50]. This factor depends on the location of the crude oil reserve, the extraction methods and the modes of transportation to the refinery gate; however, this article adopts the average value from Masnadi [50]: 10.3 /MJ for global average, 11.27 /MJ for the United States and 9.86 /MJ for Mexico.
- Refining. Each type of crude oil has different characteristics and is refined relying on diverse processes and quality specifications depending on the demand of the destination markets [30,51]. However, on average, the refining process to produce oil fuels is the third largest source of stationary GHG emissions worldwide [51]. The refining average values are adopted from Elowainy et al. [52].
- Delivery and dispensing. These values are assumed to represent 5% and 0.1% of WTT and 0.91% and 0.02% of WTW, respectively [30].
2.2.2. Calculation of the Total GHG Emission Factor of Electricity from Well-To-Wheel (WTW)
- Upstream. For the upstream GHG emission factors of electricity and due to the unavailability of specific data for individual processes and information for all countries, this article adopts the values from Moro and Lonza, Prussi et al. and Scarlat et al. and [54,55,56] for coal, oil, oil products, natural gas, biofuels and waste to generate electricity. The upstream of these fuels includes materials extraction and transport, refining or processing and delivery to the electricity or CHP plants [54,55,56,57,59]. The upstream values for utility-scale electricity generation from nuclear, hydropower, wind, solar photovoltaics, concentrating solar thermal, geothermal and ocean energy vary according to the specific characteristics of technologies per energy source. However, the emission factors considered in this article are adopted from the harmonized values of the National Renewable Energy Laboratory (NREL) [57], also due to the unavailability of specific data. The GHG upstream emission factor of these sources comprises resource extraction, material manufacturing, component manufacturing and construction.
- Generation. The GHG emission factor of the electricity generation stage is based on the overall fossil fuels (coal, oil, oil products and natural gas) consumed in the electricity and CHP plants, divided by the total electricity generated from all fossil and non-fossil energy sources [60]. The calculation of this emission factor is determined using Equation (2), in accordance with the methodology proposed by the International Energy Agency (IEA) [60]; and the energy input data are obtained from the Energy Statistics of the IEA by 2020 [58].= Emission factor of electricity= Sum of fuels from emitting sources consumed to generate electricity= Fuel input into electricity plants (kWh)= Total heat generated in the combined heat and power (CHP) plants (kWh)= Efficiency of heat generation in the CHP plants (assumed to be 90%)= Electricity self-consumption in electricity and CHP plants (kWh)= Default GHG emission factors of fossil fuels from the IPCC Guidelines for GHG inventories (gCO2e/kWh) [47,49]= electricity generation from all sources, including the non-emitting sources (kWh)The emission factor values for the fossil fuels are obtained from the default GHG emission factors of fossil fuels according to the IPCC Guidelines for GHG inventories (g/kWh) [47,49] and, for the specific case of coal and oil products consumed to generate electricity, the contribution of each individual fuel is considered.
- Delivery. The delivery emission factor of electricity includes transmission and distribution, including losses. The emissions generated in this stage vary, on average, from 3% to 13%, according to the IEA [30]. In particular, the emission factor regarding electricity losses during transmission and distribution (T&D losses) through the grid (from the generation point to the consumption point) is calculated according to Equation (3) [60]:= Emission factor electricity losses= Emission factor of electricity= Total grid T&D losses (kWh)= Total electricity transiting through the national electricity grid, which corresponds to the gross electricity production plus imports minus own use in electricity and CHP plants (kWh)
- Charging. The emission factor of the vehicle charging phase represented 5.5%. This last percentage is assumed in this article as an average between slow and ultrafast charring [30].
2.2.3. Calculation of Total GHG Emissions from Well-To-Wheel for Each Combination of Transportation Modes
2.3. Worldwide Comparison of GHG Emissions from the Well-To-Wheel
3. Results
3.1. Combinations of Transportation Modes of CVs
3.2. Total GHG Emissions from Well-To-Wheel
3.2.1. Total GHG Emission Factor of Diesel from Well-To-Wheel
3.2.2. Total GHG Emission Factor of Electricity from Well-To-Wheel
3.2.3. Total GHG Emissions from Well-To-Wheel for Each Combination of Transportation Modes
3.3. Comparison of GHG Emissions from the Well-To-Wheel in Selected Countries
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CO2 | Carbon dioxide |
CO2e | Carbon dioxide equivalent |
CHP | Combined heat and power |
CVs | Commercial vehicles |
E-bike | Cargo electric bicycles |
BEVs | Battery electric vehicles |
GHG | Greenhouse gases |
ICE | Internal combustion engine |
IEA | International Energy Agency |
IPCC | Intergovernmental Panel on Climate Change |
CH4 | Methane |
NZE | Net Zero Emissions |
N2O | Nitrous oxide |
PM | Particulate matter |
SEMOVI | Ministry of Mobility (acronym in Spanish of Secretaría de Movilidad) |
TTW | Tank-To-Wheel |
T&D | Transmission and Distribution |
WTT | Well-To-Tank |
WTW | Well-To-Wheel |
ZMVM | Metropolitan Zone of the Valley of Mexico |
References
- Nema, P.; Nema, S.; Roy, P. An overview of global climate changing in current scenario and mitigation action. Renew. Sustain. Energy Rev. 2012, 16, 2329–2336. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Benson, C.H. Expectations for coal demand in response to evolving carbon policy and climate change awareness. Energies 2022, 15, 3739. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, A.; Ashraf, F.; Shakoor, S.; Mustafa, A.; Rehman, A.; Altaf, M.M. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environ. Sci. Pollut. Res. Int. 2020, 27, 38513–38536. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme (UN-Habitat). World Cities Report 2022. Envisagining the Future of Cities HS/004/22E. 2022. Available online: https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf (accessed on 25 May 2023).
- International Energy Agency (IEA). Greenhouse Gas Emissions from Energy 2021—Highlights; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Kumar, P.; Rivas, I.; Singh, A.P.; Ganesh, V.J.; Ananya, M.; Frey, H.C. Dynamics of coarse and fine particle exposure in transport microenvironments. NPJ Clim. Atmos. Sci. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, R.; Ruggeri, M.; Vinci, G.; Poponi, S. Electric mobility in a smart city: European overview. Energies 2021, 14, 315. [Google Scholar] [CrossRef]
- Fayyazbakhsh, A.; Bell, M.L.; Zhu, X.; Mei, X.; Koutný, M.; Hajinajaf, N.; Zhang, Y. Engine emissions with air pollutants and greenhouse gases and their control technologies. J. Clean. Prod. 2022, 376, 134260. [Google Scholar] [CrossRef]
- Ardila-Gomez, A.; Bianchi-Alves, B.; Moody, J. Decarbonizing Cities by Improving Public Transport and Managing Land Use and Traffic. Transport Decarbonization Investment Series. 2021. Available online: https://openknowledge.worldbank.org/handle/10986/36517 (accessed on 10 March 2023).
- Wei, T.; Wu, J.; Chen, S. Keeping track of greenhouse gas emission reduction progress and targets in 167 cities worldwide. Front. Sustain. Cities 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Decarbonising Urban Mobility with Land Use and Transport Policies: The Case of Auckland; OECD Publishing: Paris, Italy, 2020. [Google Scholar] [CrossRef]
- Arioli, M.S.; D’Agosto, M.d.A.; Amaral, F.G.; Cybis, H.B.B. The evolution of city-scale GHG emissions inventory methods: A systematic review. Environ. Impact Assess. Rev. 2020, 80, 106316. [Google Scholar] [CrossRef]
- Duren, R.M.; Miller, C.E. Measuring the carbon emissions of megacities. Nat. Clim. Chang. 2012, 2, 560–562. [Google Scholar] [CrossRef]
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean. Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Satterthwaite, D. The contribution of cities to global warming and their potential contributions to solutions. Environ. Urban. Asia 2010, 1, 1–12. [Google Scholar] [CrossRef]
- Secretaría del Medio Ambiente de la Ciudad de México (SEDEMA). Inventario de Emisiones de la Zona Metropolitana del Valle de México 2018. Contaminantes criterio, tóxicos y gases y compuestos de efecto invernadero de efecto invernadero. Dir. Gral. de Calidad del Aire, Dir. de Proyectos de Calidad del Aire, SEDEMA, Gobierno de la CDMX, Mexico. Available online: http://www.sadsma.cdmx.gob.mx:9000/datos/storage/app/media/docpub/sedema/InventarioDeEmisionesZMVM2018.pdf (accessed on 30 June 2022).
- Instituto Nacional de Estadística y Geografía (INEGI). Programas de información. Instituto Nacional de Estadística y Geografía (INEGI), México. 2023. Available online: https://www.inegi.org.mx (accessed on 15 March 2023).
- Bouton, S.; Hannon, E.; Haydamous, L.; Heid, B.; Knupfer, S.; Naucler, T.; Florian, N.; Nijssen, J.T.; Ramanathan, S. An integrated Perspective on the Future of Mobility, Part 2: Transforming Urban Delivery; McKinsey Center for Business and Environment, McKinsey & Company: Munich, Germany, 2017. [Google Scholar]
- Vasquez Treviño, D.M.V.; Cabeza Llanos, L.V.; Galindo Mora, J.P. Impacto del e-commerce mediante plataformas digitales en México. VinculaTéca EFAN 2021, 7, 576–583. [Google Scholar] [CrossRef]
- BlackSip. Reporte de la industria. El E-commerce en México 2021–2022. BlackSip Digital Commerce Consultants. México. 2022. Available online: https://imt.com.mx/wp-content/uploads/2020/11/Reporte-industria-2020-MX.pdf (accessed on 12 February 2023).
- Helms, H.; Pehnt, M.; Lambrecht, U.; Liebich, A. Electric Vehicle and Plug-In Hybrid Energy Efficiency and Life Cycle Emissions. In Proceedings of the 18th International Symposium Transport and Air Pollution, Dubendorf, Switzerland, 18–19 May 2010. [Google Scholar]
- International Energy Agency (IEA). Net Zero by 2050. A Roadmap for the Global Energy Sector, 4th Revised Version; IEA: Paris, France, 2021; Available online: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf (accessed on 14 May 2023).
- Bohnes, F.A.; Gregg, J.S.; Laurent, A. Environmental impacts of future urban deployment of electric vehicles: Assessment framework and case study of Copenhagen for 2016–2030. Environ. Sci. Technol. 2017, 51, 13995–14005. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Zhang, S.; He, X.; Wu, Y.; Hao, J. Well-To-Wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Appl. Energy 2017, 188, 367–377. [Google Scholar] [CrossRef]
- Marmiroli, B.; Messagie, M.; Dotelli, G.; Van Mierlo, J. Electricity generation in LCA of electric vehicles: A review. Appl. Sci. 2018, 8, 1384. [Google Scholar] [CrossRef] [Green Version]
- Velandia Vargas, J.E.; Falco, D.G.; da Silva Walter, A.C.; Cavaliero, C.K.N.; Seabra, J.E.A. Life-cycle assessment of electric vehicles and buses in Brazil: Effects of local manufacturing, mass reduction and energy consumption evolution. Int. J. Life Cycle Assess. 2019, 24, 1878–1897. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, Y.; Cao, H.; Li, Y.; Wang, J. Are the electric vehicles more sustainable than the conventional ones? Influences of the assumptions and modeling approaches in the case of typical cars in China. Resour. Conserv. Recycl. 2021, 167, 105210. [Google Scholar] [CrossRef]
- International Energy Agency (IEA)/Global Fuel Economy Initiative. Vehicle Fuel Economy in Major Markets 2005–2019—Working Paper 22; IEA: París, France, 2021; Available online: https://iea.blob.core.windows.net/assets/79a0ee25-9122-4048-84fe-c6b8823f77f8/GlobalFuelEconomyInitiative2021.pdf (accessed on 11 January 2023).
- Gustafsson, M.; Svensson, N.; Eklund, M.; Dahl Öberg, J.; Vehabovic, A. Well-To-Wheel greenhouse gas emissions of heavy-duty transports: Influence of electricity carbon intensity. Transp. Res. Part D Transp. Environ. 2021, 93, 102757. [Google Scholar] [CrossRef]
- Ramírez-Díaz, A.J.; Ramos-Real, F.J.; Barrera-Santana, J. Well-To-Wheels for light-duty vehicle powertrains by segments in isolated systems. Energies 2023, 16, 1018. [Google Scholar] [CrossRef]
- Yan, X.; Crookes, R.J. Life-cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China. Renew. Sustain. Energy Rev. 2009, 13, 2505–2514. [Google Scholar] [CrossRef]
- Li, X.; Ou, X.; Zhang, X.; Zhang, Q.; Zhang, X. Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010. Energy 2013, 50, 15–23. [Google Scholar] [CrossRef]
- Koç, C.; Bektaş, T.; Jabali, O.; Laporte, G. The impact of depot location, fleet composition and routing on emissions in city logistics. Transp. Res. Part B Methodol. 2016, 84, 81–102. [Google Scholar] [CrossRef]
- Bi, K.; Yang, M.; Zahid, L.; Zhou, X. A New Solution for City Distribution to Achieve Environmental Benefits within the Trend of Green Logistics: A Case Study in China. Sustainability 2020, 12, 8312. [Google Scholar] [CrossRef]
- Erdoĝan, S.; Miller-Hooks, E. A Green Vehicle Routing Problem. Transp. Res. Part Logist. Transp. Rev. 2012, 48, 100–114. [Google Scholar] [CrossRef]
- Xiao, Y.; Konak, A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transp. Res. Part E Logist. Transp. Rev. 2016, 88, 146–166. [Google Scholar] [CrossRef]
- Zulvia, F.E.; Kuo, R.J.; Nugroho, D.Y. A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products. J. Clean. Prod. 2020, 242, 68. [Google Scholar] [CrossRef]
- Zhang, W.; Gajpal, Y.; Appadoo, S.S.; Wei, Q. Multi-depot green vehicle routing problem to minimize carbon emissions. Sustainability 2020, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Macrina, G.; Laporte, G.; Guerriero, F.; Di Puglia Pugliese, L. An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows. Eur. J. Oper. Res. 2019, 276, 971–982. [Google Scholar] [CrossRef]
- Xu, Z.; Elomri, A.; Pokharel, S.; Mutlu, F. A model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windows. Comput. Ind. Eng. 2019, 137, 59. [Google Scholar] [CrossRef]
- Paul, A.; Kumar, R.S.; Rout, C.; Goswami, A. A bi-objective two-echelon pollution routing problem with simultaneous pickup and delivery under multiple time windows constraint. Opsearch. Q. J. Oper. Res. Soc. India 2021, 58, 962–993. [Google Scholar] [CrossRef]
- Xue, G. A two-stage heuristic solution for multi-depot collaborative pickup and delivery network with transfers to reduce carbon emissions. J. Clean. Prod. 2022, 373, 133839. [Google Scholar] [CrossRef]
- McLeod, F.; Cherrett, T.; Bektas, T.; Allen, J.; Martinez-Sykora, A.; Lamas-Fernandez, C.; Bates, O.; Cheliotis, K.; Friday, A.; Piecyk, M.; et al. Quantifying environmental and financial benefits of using porters and cycle couriers for last-mile parcel delivery. Transp. Res. Part D Transp. Environ. 2020, 82, 102311. [Google Scholar] [CrossRef]
- Galindo-Muro, A.B.; Cespi, R.; Vallarta-Serrano, S.I. Applications of electric vehicles in instant deliveries. Energies 2023, 16, 1967. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy. Task Force on National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol2.html (accessed on 3 December 2022).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) and Instituto Nacional de Ecología y Cambio Climático (INECC). México: Inventario Nacional de Emisiones de Gases y Compuestos de Efecto Invernadero (INEGIyCEI) 1990–2019. Primera Edición. 2022. Available online: https://unfccc.int/sites/default/files/resource/InventarioGEI_Mexico_1990_2019.pdf (accessed on 19 March 2023).
- Calvo, E.; Guendehou, S.; Limmeechokchai, B.; Pipatti, R.; Rojas, Y.; Sturgiss, R.; Tanabe, K.; Wirth, T.; Romano, D.; Witi, J.; et al. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf (accessed on 23 March 2023).
- Masnadi, M.S.; El-Houjeiri, H.M.; Schunack, D.; Li, Y.; Englander, J.G.; Badahdah, A.; Monfort, J.C.; Anderson, J.E.; Wallington, T.J.; Bergerson, J.A.; et al. Global carbon intensity of crude oil production. Science 2018, 361, 851–853. [Google Scholar] [CrossRef]
- Jing, L.; El-Houjeiri, H.M.; Monfort, J.C.; Brandt, A.R.; Masnadi, M.S.; Gordon, D.; Bergerson, J.A. Carbon intensity of global crude oil refining and mitigation potential. Nat. Clim. Chang. 2020, 10, 526–532. [Google Scholar] [CrossRef]
- Elgowainy, A.; Han, J.; Cai, H.; Wang, M.; Forman, G.S.; DiVita, V.B. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries. Environ. Sci. Technol. 2014, 48, 7612–7624. [Google Scholar] [CrossRef] [Green Version]
- Secretaría de Energía (SENER). Balance Nacional de Energía 2018–2021. Subsecretaría de Planeación y Transición Energética, Dir. Gral. de Planeación e Información Energéticas, SENER, Gobierno de México, México. 2023. Available online: https://www.gob.mx/sener (accessed on 20 February 2023).
- Moro, A.; Lonza, L. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transp. Res. Part D Transp. Environ. 2018, 64, 5–14. [Google Scholar] [CrossRef]
- Prussi, M.; Yugo, M.; De Prada, L.; Padella, M.; Edwards, R.; Lonza, L. JEC Well-to-Tank Report v5—EUR 30269 EJCR 119036. 2020. Available online: https://www.nrel.gov/docs/fy21osti/80580.pdf (accessed on 12 February 2023).
- Scarlat, N.; Prussi, M.; Padella, M. Quantification of the carbon intensity of electricity produced and used in Europe. Appl. Energy 2022, 305, 117901. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory (NREL). Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update. NREL/FS-6A50-80580. 2021. Available online: https://www.nrel.gov/docs/fy21osti/80580.pdf (accessed on 5 February 2023).
- International Energy Agency (IEA). Energy Statistics Data Browser. 2023. Available online: https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser (accessed on 6 April 2023).
- Woo, J.; Choi, H.; Ahn, J. Well-To-Wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transp. Res. Part D Transp. Environ. 2017, 51, 340–350. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Emission Factors 2022 Edition. Database Documentation. Available online: https://iea.blob.core.windows.net/assets/631bfd9a-fea7-4ef3-8cc0-a11ab416805d/CO2KWH_Methodology.pdf (accessed on 21 March 2023).
- Ohms, P.K.; Laurent, A.; Hauschild, M.Z.; Ryberg, M.W. Consumption-based screening of climate change footprints for cities worldwide. J. Clean. Prod. 2022, 377, 134197. [Google Scholar] [CrossRef]
- Sethi, M.; Lamb, W.; Minx, J.; Creutzig, F. Climate change mitigation in cities: A systematic scoping of case studies. Environ. Res. Lett. 2020, 15, 093008. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Global EV Outlook 2022. In Securing Supplies for an Electric Future; IEA: Paris, France; Available online: https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a44/GlobalElectricVehicleOutlook2022.pdf (accessed on 3 April 2023).
- Bamwesigye, D.; Hlavackova, P. Analysis of sustainable transport for smart cities. Sustainability 2019, 11, 2140. [Google Scholar] [CrossRef] [Green Version]
- Pase, F.; Chiariotti, F.; Zanella, A.; Zorzi, M. Bike sharing and urban mobility in a post-pandemic world. IEEE Access Pract. Innov. Open Solut. 2020, 8, 187291–187306. [Google Scholar] [CrossRef]
- Crossin, E.; Doherty, P.J.B. The effect of charging time on the comparative environmental performance of different vehicle types. Appl. Energy 2016, 179, 716–726. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, S.; Wu, Y.; Xing, J.; He, X. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2019, 2, 962–971. [Google Scholar] [CrossRef]
- Zeng, D.; Dong, Y.; Cao, H.; Li, Y.; Hon, B.; Ma, C.; Yuan, C.; Hauschild, M.Z. Can planned control measures for private passenger vehicles achieve China’s carbon peak goal and mitigate the environmental impact? Resour. Conserv. Recycl. 2023, 192, 106934. [Google Scholar] [CrossRef]
- Grubert, E. Emissions projections for US utilities through 2050. Environ. Res. Lett. 2021, 16, 084049. [Google Scholar] [CrossRef]
- Saboori, H.; Jadid, S. Mobile battery-integrated charging station for reducing electric vehicles charging queue and cost via renewable energy curtailment recovery. Int. J. Energy Res. 2022, 46, 1077–1093. [Google Scholar] [CrossRef]
- Bakhtyar, B.; Qi, Z.; Azam, M.; Rashid, S. Global declarations on electric vehicles, carbon life-cycle and Nash equilibrium. Clean Technol. Environ. Policy 2023, 25, 21–34. [Google Scholar] [CrossRef] [PubMed]
Diesel | Units | Well-To-Tank | Tank-To-Wheel | Total WTW | ||||
---|---|---|---|---|---|---|---|---|
Upstream | Production (Diesel Refining) | Delivery | Dispensing | Total (WTT) | Consumption (Fuel Combustion) | |||
World average | 37.08 | 17.40 | 2.87 | 0.06 | 57.41 | 266.80 | 324.21 | |
USA | 40.58 | 17.64 | 3.07 | 0.06 | 61.34 | 266.80 | 328.14 | |
Mexico | 35.49 | 17.40 | 2.79 | 0.06 | 55.74 | 266.80 | 322.53 | |
70%USA/30%MX | 39.05 | 17.57 | 2.98 | 0.06 | 59.66 | 266.80 | 326.46 | |
Share from WTT | % | 65.5% | 29.4% | 5.0% | 0.1% | 10% | ||
Share from WTW | % | 18.3% | 81.7% | 100% |
Electricity | Units | Well-To-Tank | Tank-To-Wheel | Total WTW | ||||
---|---|---|---|---|---|---|---|---|
Upstream | Production (Electricity Generation) | Delivery | Charging | Total (WTT) | Consumption (Fuel Combustion) | |||
Mexico | 43.08 | 419.94 | 51.21 | 29.93 | 544.16 | 0.00 | 544.16 | |
Share from WTT | % | 7.8% | 77.3% | 9.4% | 5.5% | 100% | ||
Share from WTW | % | 100.0% | 0% | 100% |
Combination | Nodes Delivery Sequence | Energy Consumption | GHG Emissions | Energy Consumption | GHG Emissions |
---|---|---|---|---|---|
kWh | gCO2e | kWh | gCO2e | ||
Electric van | Diesel van | ||||
Van | 0 to 1 | 1.640 | 892.423 | 3.640 | 1188.388 |
Van | 1 to 2 | 0.028 | 15.182 | 0.062 | 20.217 |
Van | 2 to 4 | 0.088 | 47.668 | 0.194 | 63.477 |
Van | 4 to 3 | 0.072 | 39.343 | 0.160 | 52.391 |
Van | 3 to 0 | 0.100 | 54.146 | 0.222 | 72.463 |
TOTAL | 1.928 | 1049.032 | 4.279 | 1396.936 | |
Electric van + E-bike | Diesel van + E-bike | ||||
Van | 0 to 4 | 0.271 | 147.429 | 0.601 | 196.323 |
E-bike | 4 to 1 to 4 | 0.011 | 5.882 | 0.011 | 5.882 |
E-bike | 4 to 2 to 4 | 0.008 | 4.333 | 0.008 | 4.333 |
E-bike | 4 to 3 to 4 | 0.008 | 4.118 | 0.008 | 4.118 |
Van | 4 to 0 | 0.101 | 54.879 | 0.224 | 73.079 |
TOTAL | 0.398 | 216.614 | 0.852 | 283.735 |
Country | Electricity Generation | Well-To-Wheel Electricity Emission Factor | Electric van and E-bikes Emissions (Optimal Route) | ||
---|---|---|---|---|---|
Fossil % | Nuclear % | Renewable % | |||
South Africa | 88.5% | 4.1% | 7.3% | 1090.19 | 434.03 |
India | 76.0% | 2.8% | 21.2% | 853.12 | 339.64 |
Poland | 81.2% | 0.0% | 18.7% | 865.65 | 344.63 |
Indonesia | 81.2% | 0.0% | 18.8% | 882.63 | 351.39 |
Saudi Arabia | 99.8% | 0.0% | 0.2% | 842.44 | 335.39 |
Australia | 77.4% | 0.0% | 22.6% | 816.71 | 325.15 |
P.R China | 66.6% | 4.7% | 28.7% | 719.98 | 286.64 |
Japan | 72.5% | 3.8% | 22.1% | 545.88 | 217.33 |
Mexico | 77.3% | 2.6% | 20.1% | 544.16 | 216.64 |
Korea | 65.1% | 27.7% | 6.6% | 542.32 | 215.91 |
Republic of Turkiye | 57.7% | 0.0% | 41.9% | 514.45 | 204.81 |
Russian Federation | 59.9% | 19.8% | 20.3% | 476.96 | 189.89 |
United States | 60.4% | 19.3% | 20.2% | 426.51 | 169.80 |
Argentina | 66.6% | 7.5% | 26.0% | 359.97 | 143.31 |
Netherlands | 68.1% | 3.3% | 28.2% | 343.04 | 136.57 |
Germany | 42.5% | 11.2% | 46.0% | 338.91 | 134.93 |
Italy | 56.6% | 0.0% | 43.2% | 315.53 | 125.62 |
United Kingdom | 38.3% | 16.2% | 45.6% | 234.67 | 93.43 |
Spain | 32.9% | 22.1% | 44.9% | 194.36 | 77.38 |
Canada | 17.8% | 15.1% | 67.1% | 145.62 | 57.97 |
Brazil | 13.2% | 2.3% | 84.5% | 126.80 | 50.48 |
France | 8.6% | 66.5% | 24.7% | 61.88 | 24.64 |
Norway | 1.3% | 0.0% | 98.5% | 15.28 | 6.08 |
Sweden | 0.5% | 30.0% | 69.4% | 13.19 | 5.25 |
Diesel (world average) | 326.46 | 283.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallarta-Serrano, S.I.; Galindo-Muro, A.B.; Cespi, R.; Bustamante-Bello, R. Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico. Energies 2023, 16, 4992. https://doi.org/10.3390/en16134992
Vallarta-Serrano SI, Galindo-Muro AB, Cespi R, Bustamante-Bello R. Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico. Energies. 2023; 16(13):4992. https://doi.org/10.3390/en16134992
Chicago/Turabian StyleVallarta-Serrano, Stephany Isabel, Ana Bricia Galindo-Muro, Riccardo Cespi, and Rogelio Bustamante-Bello. 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico" Energies 16, no. 13: 4992. https://doi.org/10.3390/en16134992
APA StyleVallarta-Serrano, S. I., Galindo-Muro, A. B., Cespi, R., & Bustamante-Bello, R. (2023). Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico. Energies, 16(13), 4992. https://doi.org/10.3390/en16134992