Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation
Abstract
:1. Introduction
2. Generalities on Machine Learning
2.1. Random Forest Regression
2.2. Deep Neural Network Regression
2.3. Catboost Regression
3. Methodology of Digital Twin
4. Results
4.1. Machine Learning
4.1.1. Pv Panel Part
4.1.2. DC–DC Converter Part
4.1.3. Grid Part
4.2. Digital Twin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
DC | Direct current |
AC | Alternating current |
MAE | Mean absolute error |
MSE | Mean square error |
RMAE | Root mean absolute error |
RF | Random forrest |
DNN | Deep neural network |
KW | Kilowatt |
GW | Gigawatt |
DT | Digital Twin |
IoT | Internet of Things |
MIMO | Multiple Input Multiple Output |
AI | Artificial intelligence |
MLP | Multi layer perceptron |
ML | Machine learning |
O&M | Operation and maintenance |
References
- BP. bp Energy Outlook 2022; Technical Report. 2022. Available online: https://www.bp.com/content/dam/bp/businesssites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf (accessed on 25 January 2023).
- International Renewable Energy Agency. Renewable Capacity Highlights; Irena: Abu Dabi, United Arab Emirates, 2021; pp. 1–3. [Google Scholar]
- Giving Intelligence Teams an AI-Powered Advantage; Technical Report. 2019. Available online: https://www.reportlinker.com/ (accessed on 20 January 2023).
- Hernández-Callejo, L.; Gallardo-Saavedra, S.; Alonso-Gómez, V. A review of photovoltaic systems: Design, operation and maintenance. Sol. Energy 2019, 188, 426–440. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shakeri, M.; Tiong, S.K.; Khatun, F.; Amin, N.; Pasupuleti, J.; Hasan, M.K. Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks. Sustainability 2021, 13, 2393. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Dai, Y.; Wang, B.; Zheng, T.; Liao, Q.; Liang, Y.; Zhang, F.; Song, X. Time series prediction for output of multi-region solar power plants. Appl. Energy 2020, 257, 114001. [Google Scholar] [CrossRef]
- Martín, L.; Zarzalejo, L.F.; Polo, J.; Navarro, A.; Marchante, R.; Cony, M. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning. Sol. Energy 2010, 84, 1772–1781. [Google Scholar] [CrossRef]
- Testad, I.; Corbett, A.; Aarsland, D. ORE Open Research Exeter. J. Clean. Prod. 2013. [Google Scholar]
- Essam, Y.; Ahmed, A.N.; Ramli, R.; Chau, K.W.; Idris Ibrahim, M.S.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Investigating photovoltaic solar power output forecasting using machine learning algorithms. Eng. Appl. Comput. Fluid Mech. 2022, 16, 2002–2034. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Patiño, J.; Duque-Grisales, E. A comparison of the performance of supervised learning algorithms for solar power prediction. Energies 2021, 14, 4424. [Google Scholar] [CrossRef]
- O’Leary, D.; Kubby, J. Feature selection and ANN solar power prediction. J. Renew. Energy 2017, 2017, 2437387. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Yang, S.; Cheng, H. An application framework of digital twin and its case study. J. Ambient Intell. Humaniz. Comput. 2019, 10, 1141–1153. [Google Scholar] [CrossRef]
- Asimov, R.M. Digital twin in the analysis of a big data. In Proceedings of the 4th International Conference on Scientific Practice “Big data and Advanced Analysis”, “Big data and high-level analysis”, Minsk, Republic of Belarus, 3–4 May 2018. [Google Scholar]
- He, R.; Chen, G.; Dong, C.; Sun, S.; Shen, X. Data-driven digital twin technology for optimized control in process systems. ISA Trans. 2019, 95, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Tran, Q.T.; Besanger, Y.; Jung, M.; Nguyen, T.L. Digital twin integrated power-hardware-in-the-loop for the assessment of distributed renewable energy resources. Electr. Eng. 2022, 104, 377–388. [Google Scholar] [CrossRef]
- Pimenta, F.; Pacheco, J.; Branco, C.M.; Teixeira, C.M.; Magalhaes, F. Development of a digital twin of an onshore wind turbine using monitoring data. J. Phys. Conf. Ser. 2020, 1618. [Google Scholar] [CrossRef]
- Yuchi, W.; Gombojav, E.; Boldbaatar, B.; Galsuren, J.; Enkhmaa, S.; Beejin, B.; Naidan, G.; Ochir, C.; Legtseg, B.; Byambaa, T.; et al. Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city. Environ. Pollut. 2019, 245, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Ishwaran, H.; Lu, M. Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Stat. Med. 2019, 38, 558–582. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G.; Huang, Y.; Sun, J.; Aslani, F.; Nener, B. Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression. Constr. Build. Mater. 2019, 210, 713–719. [Google Scholar] [CrossRef]
- Mercadier, M.; Lardy, J.P. Credit spread approximation and improvement using random forest regression. Eur. J. Oper. Res. 2019, 277, 351–365. [Google Scholar] [CrossRef]
- Singh, B.; Sihag, P.; Singh, K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model. Earth Syst. Environ. 2017, 3, 999–1004. [Google Scholar] [CrossRef]
- He, T.; Kong, R.; Holmes, A.J.; Nguyen, M.; Sabuncu, M.R.; Eickhoff, S.B.; Bzdok, D.; Feng, J.; Yeo, B.T. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. NeuroImage 2020, 206, 116276. [Google Scholar] [CrossRef] [PubMed]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Xu, Y.; Du, J.; Dai, L.R.; Lee, C.H. A regression approach to speech enhancement based on deep neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 7–19. [Google Scholar] [CrossRef]
- Bosse, S.; Maniry, D.; Müller, K.R.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Trans. Image Process. 2018, 27, 206–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achieng, K.O. Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Comput. Geosci. 2019, 133, 104320. [Google Scholar] [CrossRef]
- Du, J.; Tu, Y.; Dai, L.R.; Lee, C.H. A regression approach to single-channel speech separation via high-resolution deep neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 1424–1437. [Google Scholar] [CrossRef]
- Massaoudi, M.; Refaat, S.S.; Abu-Rub, H.; Chihi, I.; Wesleti, F.S. A hybrid Bayesian ridge regression-CWT-catboost model for PV power forecasting. In Proceedings of the 2020 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 13–14 July 2020; pp. 1–5. [Google Scholar]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. Adv. Neural Inf. Process. Syst. 2018, 31, 6639–6649. [Google Scholar]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.; Liang, S.; Li, X.; Li, M. An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sens. 2020, 12, 4015. [Google Scholar] [CrossRef]
- Detailed Model of a 100-kW Grid-Connected PV Array. 2022. Available online: https://es.mathworks.com/help/sps/ug/detailed-model-of-a-100-kw-grid-connected-pv-array.html (accessed on 25 January 2023).
- European Commission, Joint Research Centre Energy Efficiency and Renewables Unit. Photovoltaic Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 25 January 2023).
- Martínez, R.; Bolea, Y.; Grau, A.; Martínez, H. Fractional DC/DC converter in solar-powered electrical generation systems. In Proceedings of the ETFA 2009—2009 IEEE Conference on Emerging Technologies and Factory Automation, Palma de Mallorca, Spain, 22–25 September 2009; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Del Moral, D.L.; Barrado, A.; Sanz, M.; Lazaro, A.; Fernandez, C.; Zumel, P. High efficiency DC-DC autotransformer forward-flyback converter for DMPPT architectures in solar plants. In Proceedings of the 2015 9th International Conference on Compatibility and Power Electronics, CPE 2015, Costa da Caparica, Portugal, 24–26 June 2015; pp. 431–436. [Google Scholar] [CrossRef]
DNN | RF | CatBoost | |
---|---|---|---|
RMSE | 0.8 | 6.10 | 12.20 |
MAE | 0.2 | 3.06 | 8.80 |
DNN | RF | CatBoost | |
---|---|---|---|
RMSE | 2.58 | 0.59 | 1.25 |
MAE | 1.68 | 0.17 | 0.67 |
DNN | RF | CatBoost | |
---|---|---|---|
RMSE | 0.19 | 0.02 | 0.3 |
MAE | 0.10 | 0.01 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalçin, T.; Paradell Solà, P.; Stefanidou-Voziki, P.; Domínguez-García, J.L.; Demirdelen, T. Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation. Energies 2023, 16, 5044. https://doi.org/10.3390/en16135044
Yalçin T, Paradell Solà P, Stefanidou-Voziki P, Domínguez-García JL, Demirdelen T. Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation. Energies. 2023; 16(13):5044. https://doi.org/10.3390/en16135044
Chicago/Turabian StyleYalçin, Tolga, Pol Paradell Solà, Paschalia Stefanidou-Voziki, Jose Luis Domínguez-García, and Tugce Demirdelen. 2023. "Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation" Energies 16, no. 13: 5044. https://doi.org/10.3390/en16135044
APA StyleYalçin, T., Paradell Solà, P., Stefanidou-Voziki, P., Domínguez-García, J. L., & Demirdelen, T. (2023). Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation. Energies, 16(13), 5044. https://doi.org/10.3390/en16135044