Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids
Abstract
:1. Introduction
2. Smart Grid Technologies for the Electrification of the Transport Sector
2.1. Grid-to-Vehicle
2.2. Vehicle-to-X
3. Smart Grid Technologies Related to Power Flow and Voltage Control
3.1. Soft Open Point
3.2. Dynamic Line Rating
3.3. Coordinated Voltage Control
4. Smart Grid Technologies Related to the Storage and Delay of Consumption of Electricity
4.1. Energy Storage
4.2. Demand Side Response
5. Including Smart Grid Technologies in Large Optimisation Problems
6. Conclusions and Future Work
Funding
Conflicts of Interest
References
- Bar Gai, D.H.; Ogunrinde, O.; Shittu, E. Self-Reporting Firms: Are Emissions Truly Declining for Improved Financial Performance? IEEE Eng. Manag. Rev. 2020, 48, 163–170. [Google Scholar] [CrossRef]
- Climate Change 2022: Impacts, Adaptation and Vulnerability. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 1 September 2022).
- COP26 Summary Report. Available online: https://www.ieta.org/resources/Resources/COP/COP26-Summary-Report.pdf (accessed on 1 September 2022).
- The Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 1 September 2022).
- Global Status Report for Buildings and Construction. Available online: https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction (accessed on 1 September 2022).
- Pudjianto, D.; Djapic, P.; Aunedi, M.; Gan, C.K.; Strbac, G.; Huang, S.K.; Infield, D. Smart control for minimizing distribution network reinforcement cost due to electrification. Energy Policy 2013, 52, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option value of dynamic line rating and storage. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. [Google Scholar]
- Borozan, S.; Giannelos, S.; Strbac, G. Strategic network expansion planning with electric vehicle smart charging concepts as investment options. Adv. Appl. Energy 2021, 5, 100077. [Google Scholar] [CrossRef]
- Borozan, S.; Giannelos, S.; Aunedi, M.; Strbac, G. Option Value of EV Smart Charging Concepts in Transmission Expansion Planning under Uncertainty. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 63–68. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option Value of Demand-Side Response Schemes under Decision-Dependent Uncertainty. IEEE Trans. Power Syst. 2018, 33, 5103–5113. [Google Scholar] [CrossRef]
- Konstantelos, I.; Giannelos, S.; Strbac, G. Strategic Valuation of Smart Grid Technology Options in Distribution Networks. IEEE Trans. Power Syst. 2017, 32, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Giannelos, S.; Jain, A.; Borozan, S.; Falugi, P.; Moreira, A.; Bhakar, R.; Mathur, J.; Strbac, G. Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty. Energies 2021, 14, 7813. [Google Scholar] [CrossRef]
- Giannelos, S.; Moreira, A.; Papadaskalopoulos, D.; Borozan, S.; Pudjianto, D.; Konstantelos, I.; Sun, M.; Strbac, G. A Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector. Energies 2023, 16, 2915. [Google Scholar] [CrossRef]
- McDonald, R.; Siegel, D. The Value of Waiting to Invest. Q. J. Econ. 1986, 101, 707–728. [Google Scholar] [CrossRef]
- Dixit, A. Entry and Exit Decisions under Uncertainty. J. Political Econ. 1989, 97, 620–638. [Google Scholar] [CrossRef]
- Pindyck, R.S. Irreversible Investment, Capacity Choice, and the Value of the Firm. Am. Econ. Rev. 1988, 78, 969–985. [Google Scholar]
- Strbac, G.; Konstantelos, I.; Aunedi, M.; Pollitt, M.; Green, R. Delivering Future-Proof Energy Infrastructure: Report for National Infrastructure Commission; University of Cambridge & Imperial College London: London, UK, 2016. [Google Scholar]
- Ding, Z.; Yu, K.; Wang, C.; Lee, W.-J. Transmission Line Overload Risk Assessment Considering Dynamic Line Rating Mechanism in a High-Wind-Penetrated Power System: A Data-Driven Approach. IEEE Trans. Sustain. Energy 2022, 13, 1112–1122. [Google Scholar] [CrossRef]
- Jiang, A.; Jiang, Z.; Dai, H.; Liu, J.; Fu, L.; Tang, L. Design and Application of Dynamic Line Rating System for Distribution Lines. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 17–19 September 2018; pp. 332–336. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Stochastic optimisation-based valuation of smart grid options under firm DG contracts. In Proceedings of the 2016 IEEE International Energy Conference (EnergyCon), Leuven, Belgium, 4–8 April 2016; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chau, K.T.; Wu, D.; Gao, S. Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.P.; Kumar, Y.V.P. Smart Grid Communication and Networking: Review of Standards. In Proceedings of the 2021 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 27–29 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Anand, D.; Bharti, V.; Singh, S. Systematic review on the smart energy transmission through “SMART GRID”—An application of IoT. In Proceedings of the 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 17–18 December 2021; pp. 563–568. [Google Scholar] [CrossRef]
- Mohammed, A.; George, G. Vulnerabilities and Strategies of Cybersecurity in Smart Grid—Evaluation and Review. In Proceedings of the 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 20–22 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Mahela, O.P.; Khosravy, M.; Gupta, N.; Khan, B.; Alhelou, H.H.; Mahla, R.; Patel, N.; Siano, P. Comprehensive overview of multi-agent systems for controlling smart grids. CSEE J. Power Energy Syst. 2022, 8, 115–131. [Google Scholar] [CrossRef]
- Zhou, X.; Li, K.; Ma, Y.; Gao, Z. Research Review on Big Data of the Smart Grid. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 2030–2035. [Google Scholar] [CrossRef]
- Massaoudi, M.; Abu-Rub, H.; Refaat, S.S.; Chihi, I.; Oueslati, F.S. Deep Learning in Smart Grid Technology: A Review of Recent Advancements and Future Prospects. IEEE Access 2021, 9, 54558–54578. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Soong, W.L.; Chiba, A. Guest Editorial Design and Optimisation of Electric Motors for Transport Electrification. IEEE Trans. Ind. Appl. 2023, 59, 1240–1241. [Google Scholar] [CrossRef]
- Manríquez, F.; Sauma, E.; Aguado, J.; de la Torre, S.; Contreras, J. The impact of electric vehicle charging schemes in power system expansion planning. Appl. Energy 2020, 262, 114527. [Google Scholar] [CrossRef]
- Taljegard, M.; Göransson, L.; Odenberger, M.; Johnsson, F. Impacts of electric vehicles on the electricity generation portfolio—A Scandinavian-German case study. Appl. Energy 2019, 235, 1637–1650. [Google Scholar] [CrossRef]
- Gomes, P.V.; Saraiva, J.T.; Coelho, M.D.P.; Dias, B.H.; Willer, L.; Junior, A.C. Impact of large fleets of plug-in-electric vehicles on transmission systems expansion planning. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018. [Google Scholar] [CrossRef]
- Graabak, I.; Wu, Q.; Warland, L.; Liu, Z. Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050. Energy 2016, 107, 648–660. [Google Scholar] [CrossRef]
- Aunedi, M.; Woolf, M.; Strbac, G.; Babalola, O.; Clark, M. Characteristic demand profiles of residential and commercial EV users and opportunities for smart charging. In Proceedings of the CIRED 2015—23rd International Conference on Electricity Distribution, Lyon, France, 15–18 June 2015. [Google Scholar]
- Kempton, W.; Tomić, J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. J. Power Sources 2005, 144, 268–279. [Google Scholar] [CrossRef]
- Pang, C.; Dutta, P.; Kezunovic, M. BEVs/PHEVs as Dispersed Energy Storage for V2B Uses in the Smart Grid. IEEE Trans. Smart Grid 2012, 3, 473–482. [Google Scholar] [CrossRef]
- Teng, F.; Aunedi, M.; Strbac, G. Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system. Appl. Energy 2016, 167, 420–431. [Google Scholar] [CrossRef] [Green Version]
- Kempton, W.; Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 2005, 144, 280–294. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces. IEEE Trans. Power Electron. 2013, 28, 5673–5689. [Google Scholar] [CrossRef]
- Lund, H.; Kempton, W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 2008, 36, 3578–3587. [Google Scholar] [CrossRef]
- Shabazbegian, V.; Ameli, H.; Ameli, M.T.; Strbac, G.; Qadrdan, M. Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach. Appl. Energy 2021, 284, 116284. [Google Scholar] [CrossRef]
- Zeng, B.; Feng, J.; Zhang, J.; Liu, Z. An optimal integrated planning method for supporting growing penetration of electric vehicles in distribution systems. Energy 2017, 126, 273–284. [Google Scholar] [CrossRef]
- Abdi-Siab, M.; Lesani, H. Distribution expansion planning in the presence of plug-in electric vehicle: A bilevel optimization approach. Int. J. Electr. Power Energy Syst. 2020, 121, 106076. [Google Scholar] [CrossRef]
- Arias, N.B.; Tabares, A.; Franco, J.F.; Lavorato, M.; Romero, R. Robust Joint Expansion Planning of Electrical Distribution Systems and EV Charging Stations. IEEE Trans. Sustain. Energy 2018, 9, 884–894. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, S.N.; Askarzadeh, A.; Abdollahi, A. Modelling probabilistic transmission expansion planning in the presence of plug-in electric vehicles uncertainty by multi-state Markov model. IET Gener. Transm. Distrib. 2017, 11, 1716–1725. [Google Scholar] [CrossRef]
- Tirunagari, S.; Gu, M.; Meegahapola, L. Reaping the Benefits of Smart Electric Vehicle Charging and Vehicle-to-Grid Technologies: Regulatory, Policy and Technical Aspects. IEEE Access 2022, 10, 114657–114672. [Google Scholar] [CrossRef]
- Deakin, M.; Sarantakos, I.; Greenwood, D.M.; Bialek, J.; Taylor, P.C.; Ming, W.; Patsios, C. Hybrid Open Points: An Efficient Tool for Increasing Network Capacity in Distribution Systems. IEEE Trans. Power Deliv. 2022, 37, 1340–1343. [Google Scholar] [CrossRef]
- Ivic, D.R.; Stefanov, P.C. An Extended Control Strategy for Weakly Meshed Distribution Networks With Soft Open Points and Distributed Generation. IEEE Access 2021, 9, 137886–137901. [Google Scholar] [CrossRef]
- Fuad, K.S.; Hafezi, H.; Kauhaniemi, K.; Laaksonen, H. Soft Open Point in Distribution Networks. IEEE Access 2020, 8, 210550–210565. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option value of Soft Open Points in distribution networks. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Investment Model for Cost-effective Integration of Solar PV Capacity under Uncertainty using a Portfolio of Energy Storage and Soft Open Points. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Sarantakos, I.; Peker, M.; Zografou-Barredo, N.M.; Deakin, M.; Patsios, C.; Sayfutdinov, T.; Taylor, P.C.; Greenwood, D. A Robust Mixed-Integer Convex Model for Optimal Scheduling of Integrated Energy Storage—Soft Open Point Devices. IEEE Trans. Smart Grid 2022, 13, 4072–4087. [Google Scholar] [CrossRef]
- Saaklayen, M.A.; Shabbir, M.N.S.K.; Liang, X.; Faried, S.O.; Janbakhsh, M. A Two-Stage Multi-Scenario Optimization Method for Placement and Sizing of Soft Open Points in Distribution Networks. IEEE Trans. Ind. Appl. 2023, 59, 2877–2891. [Google Scholar] [CrossRef]
- Shafik, M.B.; Chen, H.; Rashed, G.I.; El-Sehiemy, R.A.; Elkadeem, M.R.; Wang, S. Adequate Topology for Efficient Energy Resources Utilization of Active Distribution Networks Equipped with Soft Open Points. IEEE Access 2019, 7, 99003–99016. [Google Scholar] [CrossRef]
- Bloemink, J.M.; Green, T.C. Benefits of Distribution-Level Power Electronics for Supporting Distributed Generation Growth. IEEE Trans. Power Deliv. 2013, 28, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Bloemink, J. Distribution-Level Power Electronics: Soft Open-Points. Ph.D. Thesis, Department of Electrical and Electronic Engineering, Imperial College London, London, UK, 2013. [Google Scholar]
- You, R.; Lu, X. Voltage Unbalance Compensation in Distribution Feeders Using Soft Open Points. J. Mod. Power Syst. Clean Energy 2022, 10, 1000–1008. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, Y.; Ming, W.; Yang, P.; Wu, J. An Overview of Soft Open Points in Electricity Distribution Networks. IEEE Trans. Smart Grid 2022, 13, 1899–1910. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Liu, Z. Soft Open Points-Assisted Resilience Enhancement of Power Distribution Networks Against Cyber Risks. IEEE Trans. Power Syst. 2023, 38, 31–41. [Google Scholar] [CrossRef]
- De Azevedo, G.P.; Pellanda, P.C.; Campos, M.B. Addressing the Cybersecurity Challenges of Electrical Power Systems of the Future. In Proceedings of the 2020 12th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 26–29 May 2020; pp. 293–308. [Google Scholar] [CrossRef]
- Dawson, L.; Knight, A.M. Applicability of Dynamic Thermal Line Rating for Long Lines. IEEE Trans. Power Deliv. 2018, 33, 719–727. [Google Scholar] [CrossRef]
- Alvarez, D.L.; da Silva, F.F.; Mombello, E.E.; Bak, C.L.; Rosero, J.A. Conductor Temperature Estimation and Prediction at Thermal Transient State in Dynamic Line Rating Application. IEEE Trans. Power Deliv. 2018, 33, 2236–2245. [Google Scholar] [CrossRef] [Green Version]
- Madadi, S.; Mohammadi-Ivatloo, B.; Tohidi, S. Probabilistic Real-Time Dynamic Line Rating Forecasting Based on Dynamic Stochastic General Equilibrium with Stochastic Volatility. IEEE Trans. Power Deliv. 2021, 36, 1631–1639. [Google Scholar] [CrossRef]
- Madadi, S.; Mohammadi-Ivatloo, B.; Tohidi, S. Probabilistic Available Transfer Capability Evaluation Considering Dynamic Line Rating Based on a Sequential Game-Theoretic Approach. IEEE Syst. J. 2022, 16, 891–901. [Google Scholar] [CrossRef]
- Kirilenko, A.; Esmaili, M.; Chung, C.Y. Risk-Averse Stochastic Dynamic Line Rating Models. IEEE Trans. Power Syst. 2021, 36, 3070–3079. [Google Scholar] [CrossRef]
- Saatloo, A.M.; Moradzadeh, A.; Moayyed, H.; Mohammadpourfard, M.; Mohammadi-Ivatloo, B. Hierarchical Extreme Learning Machine Enabled Dynamic Line Rating Forecasting. IEEE Syst. J. 2022, 16, 4664–4674. [Google Scholar] [CrossRef]
- Douglass, D.A.; Gentle, J.; Nguyen, H.M.; Chisholm, W.; Xu, C.; Goodwin, T.; Chen, H.; Nuthalapati, S.; Hurst, N.; Grant, I.; et al. A Review of Dynamic Thermal Line Rating Methods with Forecasting. IEEE Trans. Power Deliv. 2019, 34, 2100–2109. [Google Scholar] [CrossRef]
- Morozovska, K.; Heleno, M.; Meza, A.V.; Hilber, P. Including Dynamic Line Rating into the Optimal Planning of Distributed Energy Resources. IEEE Trans. Smart Grid 2021, 12, 5052–5059. [Google Scholar] [CrossRef]
- Khoo, W.C.; Teh, J.; Lai, C.-M. Demand Response and Dynamic Line Ratings for Optimum Power Network Reliability and Ageing. IEEE Access 2020, 8, 175319–175328. [Google Scholar] [CrossRef]
- Teh, J.; Lai, C.M.; Muhamad, N.A.; Ooi, C.A.; Cheng, Y.H.; Zainuri, M.A.A.M.; Ishak, M.K. Prospects of Using the Dynamic Thermal Rating System for Reliable Electrical Networks: A Review. IEEE Access 2018, 6, 26765–26778. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X.; Li, Z. A Secure Dispatch Strategy Subject to the Uncertainties of DLR and Wind Power. IEEE Trans. Ind. Inform. 2022, 18, 4499–4509. [Google Scholar] [CrossRef]
- Seppa, T.O. FACTS and real time thermal rating—Synergistic network technologies. IEEE Power Eng. Soc. Gen. Meet. 2005, 3, 2416–2418. [Google Scholar]
- Rahim, A.A.; Abidin, I.Z.; Tarlochan, F.; Hashim, M.F. Thermal rating monitoring of the TNB overhead transmission line using line ground clearance measurement and weather monitoring techniques. In Proceedings of the 2010 4th International Power Engineering and Optimization Conference (PEOCO), Shah Alam, Malaysia, 23–24 June 2010; pp. 274–280. [Google Scholar]
- Li, P.; Ji, H.; Wang, C.; Zhao, J.; Song, G.; Ding, F.; Wu, J. Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point. IEEE Trans. Sustain. Energy 2017, 8, 1430–1442. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Bhattarai, R.; Hossain, S.J.; Abdelrazek, S.; Kamalasadan, S. Coordinated Voltage Control Strategy for Voltage Regulators and Voltage Source Converters Integrated Distribution System. IEEE Trans. Ind. Appl. 2019, 55, 4235–4246. [Google Scholar] [CrossRef]
- Sun, X.; Qiu, J.; Yi, Y.; Tao, Y. Cost-Effective Coordinated Voltage Control in Active Distribution Networks with Photovoltaics and Mobile Energy Storage Systems. IEEE Trans. Sustain. Energy 2022, 13, 501–513. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, H.; Xing, H.; Wu, Q.; Lin, Z. Decentralized Coordinated Voltage Control for VSC-HVDC Connected Wind Farms Based on ADMM. IEEE Trans. Sustain. Energy 2019, 10, 800–810. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Chen, J.; Wu, Q.; Li, C.; Zhou, B.; Huang, S. Distributed Coordinated Voltage Control for Distribution Networks with DG and OLTC Based on MPC and Gradient Projection. IEEE Trans. Power Syst. 2022, 37, 680–690. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Wang, Y.; Dong, Z.Y.; Zhang, R. Three-Stage Hierarchically-Coordinated Voltage/Var Control Based on PV Inverters Considering Distribution Network Voltage Stability. IEEE Trans. Sustain. Energy 2022, 13, 868–881. [Google Scholar] [CrossRef]
- Mudaliyar, S.; Mishra, S. Real-Time Coordinated Control of Low-Voltage DC Distribution Network with Soft Opening Point. IEEE Trans. Power Electron. 2021, 36, 7123–7137. [Google Scholar] [CrossRef]
- Liao, W.; Wu, Q.; Cui, H.; Huang, S.; Gong, Y.; Zhou, B. Model Predictive Control Based Coordinated Voltage Control for Offshore Radial DC-connected Wind Farms. J. Mod. Power Syst. Clean Energy 2023, 11, 280–289. [Google Scholar] [CrossRef]
- Dutta, A.; Ganguly, S.; Kumar, C. Coordinated Volt/Var Control of PV and EV Interfaced Active Distribution Networks Based on Dual-Stage Model Predictive Control. IEEE Syst. J. 2022, 16, 4291–4300. [Google Scholar] [CrossRef]
- Cao, D.; Hu, W.; Zhao, J.; Huang, Q.; Chen, Z.; Blaabjerg, F. A Multi-Agent Deep Reinforcement Learning Based Voltage Regulation Using Coordinated PV Inverters. IEEE Trans. Power Syst. 2020, 35, 4120–4123. [Google Scholar] [CrossRef]
- Strbac, G.; Pudjianto, D.; Aunedi, M.; Djapic, P.; Teng, F.; Zhang, X.; Ameli, H.; Moreira, R.; Brandon, N. Role and value of flexibility in facilitating cost-effective energy system decarbonisation. Prog. Energy 2020, 2, 042001. [Google Scholar] [CrossRef]
- Aunedi, M.; Wills, K.; Strbac, G.; Green, T.C. Net-Zero GB Electricity: Cost-Optimal Generation and Storage Mix. Energy Futur. Lab White Pap. 2021. Available online: https://www.imperial.ac.uk/energy-futures-lab/reports/white-papers/net-zero-gb-electricity/ (accessed on 28 June 2023).
- Pudjianto, D.; Aunedi, M.; Djapic, P.; Strbac, G. Whole-Systems Assessment of the Value of Energy Storage in Low-Carbon Electricity Systems. IEEE Trans. Smart Grid 2014, 5, 1098–1109. [Google Scholar] [CrossRef]
- Aunedi, M.; Pudjianto, D.; Strbac, G. Calculating system integration costs of low-carbon generation technologies in future GB electricity system. In Proceedings of the 5th IET International Conference on Renewable Power Generation (RPG) 2016, London, UK, 21–23 September 2016. [Google Scholar] [CrossRef] [Green Version]
- Strbac, G.; Aunedi, M. Whole-System Cost of Variable Renewables in Future GB Electricity System. Technical Report. 2016. Available online: http://energysuperstore.org/esrn/wp-content/uploads/2016/11/Whole-system-cost-of-variable-renewables-in-future-GB-electricity-system-Imperial_Nov2016.pdf (accessed on 28 June 2023).
- Strbac, G.; Pudjianto, D.; Aunedi, M.; Papadaskalopoulos, D.; Djapic, P.; Ye, Y.; Moreira, R.; Karimi, H.; Fan, Y. Cost-Effective Decarbonization in a Decentralized Market: The Benefits of Using Flexible Technologies and Resources. IEEE Power Energy Mag. 2019, 17, 25–36. [Google Scholar] [CrossRef]
- Shabazbegian, V.; Ameli, H.; Ameli, M.T. Investigating the Role of Flexibility Options in Multi-vector Energy Systems. In Whole Energy Systems: Bridging the Gap via Vector-Coupling Technologies; Springer International Publishing: Cham, Switzerland, 2022; pp. 215–231. [Google Scholar]
- Strbac, G.; Aunedi, M.; Konstantelos, I.; Moreira, R.; Teng, F.; Moreno, R.; Pudjianto, D.; Laguna, A.; Papadopoulos, P. Opportunities for Energy Storage: Assessing Whole-System Economic Benefits of Energy Storage in Future Electricity Systems. IEEE Power Energy Mag. 2017, 15, 32–41. [Google Scholar] [CrossRef]
- Teng, F.; Pudjianto, D.; Aunedi, M.; Strbac, G. Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe. Energies 2018, 11, 246. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, S.; Aunedi, M.; Strbac, G.; Markides, C.N. On the Value of Liquid-Air and Pumped-Thermal Electricity Storage Systems in Low-Carbon Electricity Systems. Energy 2020, 193, 116680. [Google Scholar] [CrossRef]
- Al-Kindi, A.; Aunedi, M.; Pantaleo, A.M.; Strbac, G.; Markides, C.N. Thermo-economic assessment of flexible nuclear power plants in future low-carbon electricity systems: Role of thermal energy storage. Energy Convers. Manag. 2022, 258, 115484. [Google Scholar] [CrossRef]
- Davari, M.M.; Ameli, H.; Ameli, M.T.; Strbac, G. Impact of Local Emergency Demand Response Programs on the Operation of Electricity and Gas Systems. Energies 2022, 15, 2144. [Google Scholar] [CrossRef]
- Aunedi, M.; Strbac, G. Efficient System Integration of Wind Generation through Smart Charging of Electric Vehicles. In Proceedings of the 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 27–30 March 2013. [Google Scholar]
- Aunedi, M.; Strbac, G. Whole-system Benefits of Vehicle-to-Grid Services from Electric Vehicle Fleets. In Proceedings of the 15th International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 10–12 September 2020. [Google Scholar]
- Aunedi, M.; Strbac, G. System Benefits of Residential Heat Storage for Electrified Heating Sector in the United Kingdom. In Proceedings of the 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Novi Sad, Serbia, 10–12 October 2022. [Google Scholar]
- Sun, M.; Djapic, P.; Aunedi, M.; Pudjianto, D.; Strbac, G. Benefits of smart control of hybrid heat pumps: An analysis of field trial data. Appl. Energy 2019, 247, 525–536. [Google Scholar] [CrossRef]
- Aunedi, M.; Kountouriotis, P.A.; Ortega Calderon, J.E.; Angeli, D.; Strbac, G. Economic and Environmental Benefits of Dynamic Demand in Providing Frequency Regulation. IEEE Trans. Smart Grid 2013, 4, 2036–2048. [Google Scholar] [CrossRef]
- Teng, F.; Aunedi, M.; Pudjianto, D.; Strbac, G. Benefits of Demand Side Response in Providing Frequency Response Service in the Future GB Power System. Front. Energy Res. 2015, 3, 36. [Google Scholar] [CrossRef]
- Ameli, H.; Qadrdan, M.; Strbac, G.; Ameli, M.T. Investing in flexibility in an integrated planning of natural gas and power systems. IET Energy Syst. Integr. 2020, 2, 101–111. [Google Scholar] [CrossRef]
- Konstantelos, I. A Stochastic Optimization Framework for Anticipatory Transmission Investments. Ph.D. Thesis, Department of Electrical and Electronic Engineering, Imperial College London, London, UK, 2012. [Google Scholar]
- Ameli, H.; Qadrdan, M.; Strbac, G. Coordinated operation strategies for natural gas and power systems in presence of gas-related flexibilities. IET Energy Syst. Integr. 2019, 1, 3–13. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. A new class of planning models for option valuation of storage technologies under decision-dependent innovation uncertainty. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Strbac, G. A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies 2022, 15, 3334. [Google Scholar] [CrossRef]
- Giannelos, S.; Djapic, P.; Pudjianto, D.; Strbac, G. Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology. Energies 2020, 13, 826. [Google Scholar] [CrossRef] [Green Version]
- Falugi, P.; Konstantelos, I.; Strbac, G. Application of novel nested decomposition techniques to long-term planning problems. In Proceedings of the 19th Power Systems Computation Conference (PSCC), Genoa, Italy, 20–24 June 2016. [Google Scholar]
- Qiu, D.; Ye, Y.; Papadaskalopoulos, D.; Strbac, G. Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach. Appl. Energy 2021, 292, 116940. [Google Scholar] [CrossRef]
- Qiu, D.; Dong, Z.; Zhang, X.; Wang, Y.; Strbac, G. Safe reinforcement learning for real-time automatic control in a smart energy-hub. Appl. Energy 2022, 309, 118403. [Google Scholar] [CrossRef]
- Qiu, D.; Wang, J.; Dong, Z.; Wang, Y.; Strbac, G. Mean-Field Multi-Agent Reinforcement Learning for Peer-to-Peer Multi-Energy Trading. IEEE Trans. Power Syst. 2022. [Google Scholar] [CrossRef]
Charging Concept | Characteristics | Load Range Capability |
---|---|---|
G2V |
| Between 0 and |
V2G |
| Between and |
V2B |
| Between and or Between and |
Technology | Characteristics |
---|---|
Soft Open Point |
|
Dynamic Line Rating |
|
Coordinated Voltage Control |
|
Technology | Characteristics |
---|---|
Demand Side Response |
|
Energy Storage |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannelos, S.; Borozan, S.; Aunedi, M.; Zhang, X.; Ameli, H.; Pudjianto, D.; Konstantelos, I.; Strbac, G. Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids. Energies 2023, 16, 5088. https://doi.org/10.3390/en16135088
Giannelos S, Borozan S, Aunedi M, Zhang X, Ameli H, Pudjianto D, Konstantelos I, Strbac G. Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids. Energies. 2023; 16(13):5088. https://doi.org/10.3390/en16135088
Chicago/Turabian StyleGiannelos, Spyros, Stefan Borozan, Marko Aunedi, Xi Zhang, Hossein Ameli, Danny Pudjianto, Ioannis Konstantelos, and Goran Strbac. 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids" Energies 16, no. 13: 5088. https://doi.org/10.3390/en16135088
APA StyleGiannelos, S., Borozan, S., Aunedi, M., Zhang, X., Ameli, H., Pudjianto, D., Konstantelos, I., & Strbac, G. (2023). Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids. Energies, 16(13), 5088. https://doi.org/10.3390/en16135088