Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars
Abstract
1. Introduction
2. Passive Heat Removal from Surfaces and Enclosures
2.1. Reducing the Cooling Load of Buildings
2.2. Reducing the Cooling Load of Electric Vehicles
2.2.1. Shell/Body
2.2.2. Windows
2.2.3. Fabrics for Interior of the Vehicle
Shell/Body | Windows | Seat’s Fabric |
---|---|---|
(i) Transparent radiative cooler that can be combined with paint. Daytime cooling ∼10.1 °C–14.4 °C [41]. | (i) IR transparent metamaterial for windows, ∼7 °C cooling [42]. | (i) Coating on cotton fabrics with high durability, for daytime cooling with reflectivity of 90% and emissivity of 92%, corresponding to ∼5.4 °C cooling. [43]. |
(ii) Janus Emitter; selective emission, broadband absorption. ∼6 °C subambient cooling from a surface, ∼4 °C subambient space cooling (from an enclosure) [34]. | (ii) A transparent dual-layer film for daytime radiative cooling. ∼6 °C subambient cooling of an interior space [44] | (ii) A cover (fabric) for parked vehicles keeps cabin air temperature within comfortable range [40]. |
(iii) Engineered photonic-based metamaterial as an enhanced color-preserving radiative cooling (ECRC) system. Lowering the exterior surface temperature by ∼21 °C, enclosure temperature up to ∼5.8 °C, saving of cooling power up to 63% [24]. | (iii) A scalable thermochromic smart window with tunable emissivity of long-wave infrared with potential use for windows [45] | (iii) Wrapping films with potential use as fabric/covers ∼5.6 °C subambient cooling [46]. |
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EV | Electric vehicle |
EC | Evaporative cooler |
AC | Air conditioning |
VS | Visible spectra |
IR | Infrared spectra |
RC | Radiative cool |
References
- Air Quality—Multiple Benefits of Energy Efficiency—Analysis. International Energy Agency (IEA). 2016. Available online: https://www.iea.org/reports/multiple-benefits-of-energy-efficiency/air-quality (accessed on 10 May 2023).
- McDuffie, E.; Martin, R.V.; Spadaro, J.V.; Burnett, R.; Smith, S.J.; O’Rourke, P.; Hammer, M.S.; van Donkelaar, A.; Bindle, L.; Shah, V.; et al. Source Sector and Fuel Contributions to Ambient PM 2.5 and Attributable Mortality Across Multiple Spatial Scales. Nat. Commun. 2021, 12, 3594. [Google Scholar] [CrossRef] [PubMed]
- Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (EPA). 12 March 2013. The Sources and Solutions: Fossil Fuels. Overviews and Factsheets. (Last Updated on 2023). Available online: https://www.epa.gov/nutrientpollution/sources-and-solutions-fossil-fuels (accessed on 10 May 2023).
- The Law of Energy Reform, Legislated and Implemented on 2011. Available online: https://rc.majlis.ir/fa/law/show/789793 (accessed on 10 May 2023).
- Share of Steam Power Plants in Electricity Generation in Iran, IRNA. Available online: https://en.irna.ir/news/84718089/Iran-s-thermal-power-generation-grows-by-8 (accessed on 10 May 2023).
- Renewable Energy-Directive, Targets and Rules. European Commision. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules_en (accessed on 10 May 2023).
- Clean Energy Council. Clean Energy Australia Report. Available online: https://www.cleanenergycouncil.org.au/resources/resources-hub/clean-energy-australia-report (accessed on 10 May 2023).
- Iran: Power Production Share by Source 2020. Statista. Available online: https://www.statista.com/statistics/1236239/iran-distribution-of-electricity-production-by-source/ (accessed on 20 June 2023).
- Energy. Towards an Energy Union. A Summary of Full Version Contained in the 3rd Energy Union Report (November 2017) Malta. Available online: https://energy.ec.europa.eu/index_en (accessed on 6 May 2023).
- Malta—Countries & Regions. IEA. Available online: https://www.iea.org/countries/malta (accessed on 10 May 2023).
- Lu, X.; Xu, P.; Wang, H.; Yang, T.; Hou, J. Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renew. Sustain. Energy Rev. 2016, 65, 1079–1097. [Google Scholar] [CrossRef]
- Electric Vehicles—Malta|Statista Market Forecast. Retrieved 23 March 2023. Available online: https://www.statista.com/outlook/mmo/electric-vehicles/malta (accessed on 5 July 2023).
- Jose, S.S.; Chidambaram, R.K. Electric Vehicle Air Conditioning System and Its Optimization for Extended Range—A Review. World Electr. Veh. J. 2022, 13, 204. [Google Scholar] [CrossRef]
- Granqvist, C.; Hjortsberg, A.; Eriksson, T. Radiative cooling to low temperatures with selectivity IR-emitting surfaces. Thin Solid Films. 1982, 90, 187–190. [Google Scholar] [CrossRef]
- Bijarniya, J.; Sarkar, J.; Maiti, P. Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities. Renew. Sustain. Energy Rev. 2020, 133, 110263. [Google Scholar] [CrossRef]
- Lim, X. The Super-Cool Materials That Send Heat to Space. Nature 2019, 577, 18–20. [Google Scholar] [CrossRef]
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A. Paints as a scalable and effective radiative cooling technology for buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A Radiative Cooling Structural Material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, J.; Song, A.Y.; Catrysse, P.B.; Hsu, P.; Cai, L.; Liu, B.; Zhu, Y.; Zhou, G.; Wu, D.S.; et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112. [Google Scholar] [CrossRef]
- Raman, A.; Anoma, M.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef]
- Huang, Z.; Ruan, X. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 2017, 104, 890–896. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, H.; Yang, C.; Qin, B.; Ghosh, P.; Kaur, S.; Shen, W.; Qiu, M.; Belov, P.; Li, Q. Color-Preserving Passive Radiative Cooling for an Actively Temperature-Regulated Enclosure. Light Sci. Appl. 2022, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Hu, M.; Ao, X.; Xuan, Q.; Pei, G. Spectrally selective approaches for passive cooling of solar cells: A review. Appl. Energy 2020, 262, 114548. [Google Scholar] [CrossRef]
- Miller, W.; Crompton, G.; Bell, J. Analysis of Cool Roof Coatings for Residential Demand Side Management in Tropical Australia. Energies 2015, 8, 5303–5318. [Google Scholar] [CrossRef]
- Statistics on Energy Consumption for the City Household Customers in Iran. 2011. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.amar.org.ir/Portals/0/Files/fulltext/1390/n_energy_90.pdf (accessed on 10 May 2023).
- Mousavi, N.S.; Susan. Radiative Cooling for Energy Efficiency in Buildings of Tehran. In Proceedings of the 13th Mediterranean Conference on Power Generation, Transmission; Distribution and Energy Conversion Institution of Engineering and Technology: Hybrid Conference, Valletta, Malta, 7–9 November 2022; pp. 508–513. [Google Scholar] [CrossRef]
- Rain Guard Water Sealers SP-2001 Cool Coat White Thermal Barrier. Available online: https://www.amazon.com/Rainguard-International-SP-2005-Acrylic-Thermal/dp/B0733K2YZ4?ref_=ast_sto_dp&th=1&psc=1 (accessed on 25 November 2022).
- Wang, N.; Lv, Y.; Zhao, D.; Zhao, W.; Xu, J.; Yang, R. Performance Evaluation of Radiative Cooling for Commercial-Scale Warehouse. Mater. Today Energy 2022, 24, 100927. [Google Scholar] [CrossRef]
- Fakharan, Z.; Dabirian, A.; Mousavi, N.S.S. Innovative and Technological Eco-Friendly Approaches for Reducing Energy Consumption in Buildings; A Review and Analysis. Danesh Shahr Magazine. 2023. (In Persian) [Google Scholar] [CrossRef]
- Leroy, A. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 2019, 5, eaat9480. [Google Scholar] [CrossRef] [PubMed]
- Simion, M.; Socaciu, L.; Unguresan, P. Factors which Influence the Thermal Comfort Inside of Vehicles. Energy Procedia 2016, 85, 472–480. [Google Scholar] [CrossRef]
- Heo, S.-Y.; Lee, G.J.; Kim, D.H.; Kim, Y.J.; Ishii, S.; Kim, M.S.; Seok, T.J.; Lee, B.J.; Lee, H.; Song, Y.M. A Janus emitter for passive heat release from enclosures. Sci. Adv. 2020, 6, eabb1906. [Google Scholar] [CrossRef] [PubMed]
- Penning, A.K.; Weibel, J.A. Assessing the Influence of Glass Properties on Cabin Solar Heating and Range of an Electric Vehicle Using a Comprehensive System Model. Appl. Energy 2023, 339, 120973. [Google Scholar] [CrossRef]
- Ozeki, Y.; Harita, Y.; Hirano, A.; Nishihama, J. Evaluation on the Solar Reduction Glass in an Electric Vehicle by Experimental Measurements in a Climate Chamber; SAE Technical Paper 2014-01–0703; SAE Technical Paper: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Shin, S.; Chen, R. Cool Textile. Joule 2021, 5, 2258–2260. [Google Scholar] [CrossRef]
- Peng, Y.; Cui, Y. Advanced Textiles for Personal Thermal Management and Energy. Joule 2020, 4, 724–742. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Y.; Zhu, Y.; Xu, Z.; Liu, Y.; Ge, D.; Yang, L. Enhanced IR Radiative Cooling of Silver Coated PA Textile. Polymers 2021, 14, 147. [Google Scholar] [CrossRef]
- Lv, Y.; Huang, A.; Yang, J.; Xu, J.; Yang, R. Improving cabin thermal environment of parked vehicles under direct sunlight using a daytime radiative cooling cover. Appl. Therm. Eng. 2021, 190, 116776. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Son, S.; Yang, Y.; Lee, H.; Rho, J. Visibly Transparent Radiative Cooler under Direct Sunlight. Adv. Opt. Mater. 2021, 9, 2002226. [Google Scholar] [CrossRef]
- Jin, Y.; Jeong, Y.; Yu, K. Infrared-Reflective Transparent Hyperbolic Metamaterials for Use in Radiative Cooling Windows. Adv Funct Mater. 2023, 33, 2207940. [Google Scholar] [CrossRef]
- Zhong, S.; Yi, L.; Zhang, J.; Xu, T.; Xu, L.; Zhang, X.; Zuo, T.; Cai, Y. Self-Cleaning and Spectrally Selective Coating on Cotton Fabric for Passive Daytime Radiative Cooling. Chem. Eng. J. 2021, 407, 127104. [Google Scholar] [CrossRef]
- Lei, M.-Q.; Hu, Y.-F.; Song, Y.-N.; Li, Y.; Deng, Y.; Liu, K.; Xie, L.; Tang, J.-H.; Han, D.-L.; Lei, J.; et al. Transparent radiative cooling films containing poly(Methylmethacrylate), silica, and silver. Opt. Mater. 2021, 122, 111651. [Google Scholar] [CrossRef]
- Wang, S.; Tengyao, J.; Yun, M.; Ronggui, Y.; Gang, T.; Yi, L. Scalable Thermochromic Smart Windows with Passive Radiative Cooling Regulation. Science 2021, 374, 1501–1504. [Google Scholar] [CrossRef]
- Park, C.; Park, C.; Park, S.; Lee, J.; Choi, J.; Kim, Y.S.; Yoo, Y. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. ChemSusChem 2022, 15, e202201842. [Google Scholar] [CrossRef] [PubMed]
Roof | Electricity Consumption (kWh/m2) | Electricity Saving | Improved Share in Total Cooling Load | |||||
---|---|---|---|---|---|---|---|---|
Cool Roof | Radiative Cool Roof | Cool Roof | Radiative Cool Roof | |||||
% 14.5 | kWh/m2 3.8 | % 22.4 | kWh/m2 5.9 | |||||
Share in Total Cooling Load | 12% | 16.54 | 31,811.13 | 12.74 | 28,871.86 | 10.64 | 9.25% | 10% |
Annual Cooling Electricity Consumption (kWh) | 37,206 | |||||||
Roof Area (m2) | 270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, N.S.S.; Azzopardi, B. Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars. Energies 2023, 16, 5256. https://doi.org/10.3390/en16145256
Mousavi NSS, Azzopardi B. Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars. Energies. 2023; 16(14):5256. https://doi.org/10.3390/en16145256
Chicago/Turabian StyleMousavi, N. S. Susan, and Brian Azzopardi. 2023. "Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars" Energies 16, no. 14: 5256. https://doi.org/10.3390/en16145256
APA StyleMousavi, N. S. S., & Azzopardi, B. (2023). Perspectives on the Applications of Radiative Cooling in Buildings and Electric Cars. Energies, 16(14), 5256. https://doi.org/10.3390/en16145256