Experimental Validation of Different Control Techniques Applied to a Five-Phase Open-End Winding Induction Motor
Abstract
:1. Introduction
- Different control techniques are designed and analyzed to ensure the robustness of an OeW-5PIM drive against uncertainties and load torque that are usually present in real systems.
- A comprehensive comparison and performance analysis is accomplished between the BSC and RFOC strategy.
- The validation of the proposed control strategies is achieved using experimental implementation, which demonstrates the improved performance of the suggested strategies under different situations of operation.
2. Description of the Studied Motor Topology
2.1. Modeling of the 5PIM Drive
2.2. Electric Circuit of the OeW Configuration
3. Designed Control Methods
3.1. RFOC Method
3.2. BSC Method
3.3. SVPWM Strategy
4. Experimental Setup
5. Simulation and Experimental Results
5.1. First Test
5.2. Second Test
5.3. Third Test
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Geng, C.; Chen, Q. Sensorless Control for Five-Phase IPMSM Drives by Injecting HF Square-Wave Voltage Signal into Third Harmonic Space. IEEE Access 2020, 8, 69712–69721. [Google Scholar] [CrossRef]
- Khadar, S.; Kouzou, A.; Hafaifa, A.; Iqbal, A. Investigation on SVM-Backstepping sensorless control of five-phase open-end winding induction motor based on model reference adaptive system and parameter estimation. Eng. Sci. Technol. Int. J. 2019, 22, 1013–1026. [Google Scholar]
- Mohamed, I.D.; Ahmed, A.E.; Ahmed, M.M.; Radu, B.; Shehab, A. Zero-/low-speed operation of multiphase drive systems with modular multilevel converters. IEEE Access 2019, 7, 14353–14365. [Google Scholar]
- Khadar, S.; Abdelaziz, A.Y.; Elbarbary, Z.M.S.; Mossa, M.A. An Improved Sensorless Nonlinear Control Based on SC-MRAS Estimator of Open-End Winding Five-Phase Induction Motor Fed by Dual NPC Inverter: Hardware-in-the-Loop Implementation. Machines 2023, 11, 469. [Google Scholar] [CrossRef]
- Payami, S.; Behera, R.K.; Iqbal, A. DTC of three-level NPC in verter fed five-phase induction motor drive with novel neutral point voltage balancing scheme. IEEE Trans. Power Electron. 2018, 33, 1487–1500. [Google Scholar] [CrossRef]
- Hosseyni, A.; Trabelsi, R.; Mimouni, M.F.; Iqbal, A.; Alammari, R. Sensorless sliding mode observer for a five-phase perma-nent magnet synchronous motor drive. ISA Trans. 2015, 58, 462–473. [Google Scholar] [CrossRef]
- Holakooie, M.H.; Ojaghi, M.; Taheri, A. Direct Torque Control of Six-phase Induction Motor with a Novel MRAS-Based Stator Resistance Estimator. IEEE Trans. Ind. Electron. 2018, 65, 7685–7696. [Google Scholar] [CrossRef]
- Khadar, S.; Abu-Rub, H.; Kouzou, A. Sensorless Field-Oriented Control for Open-End Winding Five-Phase Induction Motor with Parameters Estimation. IEEE Open J. Ind. Electron. Soc. 2021, 2, 266–279. [Google Scholar] [CrossRef]
- Echeikh, H.; Trabels, R.; Iqbal, A.; Mimouni, M.F. Adaptive direct torque control using Luenberger-sliding mode observer for online stator resistance estimation for five-phase induction motor drives. Electr. Eng. 2018, 100, 1639–1649. [Google Scholar] [CrossRef]
- Khadar, S.; Kouzou, A.; Rezaoui, M.M.; Hafaifa, A. Fault-tolerant sensorless sliding mode control by parameters estimation of an open-end winding five-phase induction motor. Model. Meas. Control 2019, 92, 6–15. [Google Scholar] [CrossRef]
- Taheri, S.; Hai-Peng, R.; Chun-Huan, S. Sensorless Direct Torque Control of the Six-Phase Induction Motor by Fast Reduced Order Extended Kalman Filter. Complexity 2020, 2020, 8985417. [Google Scholar] [CrossRef]
- Echeikh, H.; Trabels, R.; Iqbal, A.; Mimouni, M.F. Real time implementation of indirect rotor flux-oriented control of a five-phase induction motor with novel rotor resistance adaption using sliding mode observer. J. Frankl. Inst. 2018, 355, 2112–2141. [Google Scholar] [CrossRef]
- Mossa, A.M.; Quynh, N.; Echeikh, H.; Do, T.D. Deadbeat-Based Model Predictive Voltage Control for a Sensorless Five-Phase Induction Motor Drive. Math. Probl. Eng. 2020, 2020, 30. [Google Scholar] [CrossRef]
- Bojoi, R.; Cavagnino, A.; Tenconi, A.; Vaschetto, S. Control of shaft-line-embedded multiphase starter/generator for aero-engine. IEEE Trans. Ind. Electron. 2016, 63, 641–652. [Google Scholar] [CrossRef]
- De-Lillo, L.; Empringham, L.; Wheeler, P.; Khwan, S.; Gerada, C.; Othman, M.; Huang, X. Multiphase power converter drive for fault-tolerant machine development in aerospace applications. IEEE Trans. Ind. Electron. 2010, 57, 575–583. [Google Scholar] [CrossRef]
- Bojoi, R.; Cavagnino, A.; Cossale, M.; Tenconi, A. Multiphase starter generator for a 48 V mini-hybrid power train: Design and testing. IEEE Trans. Ind. Appl. 2016, 52, 1750–1758. [Google Scholar]
- Maia, A.C.N.; Jacobina, C.B.; Freitas, N.B.D.; Pinheiro, I.F.M. Open-end multilevel six-phase machine drive system with five three leg converters. IEEE Trans. Ind. Appl. 2017, 53, 2271–2281. [Google Scholar] [CrossRef]
- Haifeng, W.; Xinzhen, W.; Xiaoqin, Z.; Xibo, Y. Model Predictive Current Control of Nine-Phase Open-End Winding PMSMs with an Online Virtual Vector Synthesis Strategy. IEEE Trans. Ind. Electron. 2023, 70, 2199–2208. [Google Scholar]
- Wang, H.; Wu, X.; Zheng, X.; Yuan, X. Virtual Voltage Vector Based Model Predictive Control for a Nine-Phase Open-End Winding PMSM with a Common DC Bus. IEEE Trans. Ind. Electron. 2022, 69, 5386–5397. [Google Scholar] [CrossRef]
- Du, Y.; Ji, J.; Zhao, W.; Tao, T.; Xu, D. Self-Adapted Model Predictive Current Control for Five-Phase Open-End Winding PMSM with Reduced Switching Loss. IEEE Trans. Power Electron. 2022, 37, 11007–11018. [Google Scholar] [CrossRef]
- Surana, P.; Majumder, M.G.; Resalayyan, R.; Gopakumar, K.; Umanand, L.; Jarzyna, W. A Fault-Tolerant 24-Sided Voltage Space Vector Structure for Open-End Winding Induction Motor Drive. IEEE Trans. Power Electron. 2022, 37, 10738–10746. [Google Scholar] [CrossRef]
- Dong, Z.; Wen, H.; Song, Z.; Liu, C. 3-D SVM for Three-Phase Open-End Winding Drives with Common DC Bus. IEEE Trans. Power Electron. 2023, 38, 9340–9346. [Google Scholar] [CrossRef]
- Ramahlingam, S.; Bin Jidin, A.; Victor Raj, L.R.; Bin Said, M.A.; Bin Abdul, K. Improved Performance of DTC for 5-Phase Induction Machine Using Open-End Topology. In Proceedings of the 2014 IEEE International Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 13–14 October 2014. [Google Scholar]
- Mavila, P.C.; Rajeevan, P.P. A new direct torque control scheme for five phase open-end winding induction motor drives with reduced DC voltage requirement. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Muthu, R.; Govindarajan, K.; Anbazhagan, D.; Mahadevan, S. Direct Torque Control of Open–End Winding Induction Motor using Matrix Converter. In Proceedings of the 2014 IEEE International Conference on Power Electronics (IICPE), Kurukshetra, India, 8–10 December 2014. [Google Scholar]
- Sun, X.; Liu, Z.; Jiang, D.; Kong, W. Control of Five-Phase Open-End Induction Machine Drive Topology with Floating Capacitors at Optimized DC Voltage. In Proceedings of the 2019 IEEE International Conference on Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019. [Google Scholar]
- Listwan, J.; Pieńkowski, K. Field-oriented control of five-phase induction motor with open-end stator winding. Arch. Electr. Eng. 2016, 65, 395–410. [Google Scholar] [CrossRef]
- Fatemi, J.R.; Abjadi, N.R.; Soltani, J.; Abazari, S. Speed sensorless control of a six-phase induction motor drive using backstepping control. IET Power Electron. 2014, 7, 114–123. [Google Scholar] [CrossRef]
- Ammar, A.; Kheldoun, K.; Metidji, B.; Ameid, T.; Azzoug, Y. Feedback linearization based sensorless direct torque control using stator flux MRAS-sliding mode observer for induction motor drive. ISA Trans. 2020, 98, 382–392. [Google Scholar] [CrossRef]
- Hamida, M.A.; de Leon, J.; Glumineau, A. Experimental sensorless control for IPMSM by using integral backstepping strategy and adaptive high gain observer. Control Eng. Pract. 2017, 59, 64–76. [Google Scholar] [CrossRef]
- Yang, Q.; Peng, D.; Cai, J.; Guo, D.; He, Z. Adaptive backstepping control for permanent magnet linear motors against uncertainties and disturbances. Proc. Inst. Mech. Eng. 2023. [Google Scholar] [CrossRef]
- Khadar, S.; Kouzou, A.; Benguesmia, H. Remedial Robust Control of Five-Phase Fault-Tolerant Induction Motor with Open-End Winding using Reduced-Order Transformation Matrices. Model. Meas. Control A 2019, 92, 16–23. [Google Scholar] [CrossRef]
- Gonzalez-Prieto, I.; Duran, M.; Aciego, J.; Martin, C.; Barrero, F. Model predictive control of six-phase induction motor drives using virtual voltage vectors. IEEE Trans. Ind. Electron. 2018, 65, 27–37. [Google Scholar] [CrossRef]
- Khan, M.R.; Atif, I. Experimental investigation of five-phase induction motor drive using extended Kalman-filter. Asian Power Electron. J. 2009, 3, 1–7. [Google Scholar]
- Strankowski, P.; Guzinski, J.; Morawiec, M.; Lewicki, A.; Wilczynski, F. Sensorless five-phase induction motor drive with third harmonic injection and inverter output filter. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 133369. [Google Scholar]
- Tavana, N.R.; Dinavahi, V. Real-time nonlinear magnetic equivalent circuit model of induction machine on FPGA for hardware-in-the-loop simulation. IEEE Trans. Energy Convers. 2016, 31, 520–530. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rated power | 2.2 kW |
Number of poles | 1 |
Rotor resistance | 2.7 Ω |
Stator resistance | 2.9 Ω |
Magnetizing inductance | 785.2 mH |
Rotor inductance | 796.4 mH |
Stator inductance | 796.4 mH |
Moment of inertia | 0.007 Kg·m2 |
Friction coefficient | 0.0018 N·m·s |
RFOC Strategy | BSC Strategy | |
---|---|---|
Rising time (rad/s) | 2 | 0.12 |
Dynamic performance (Response time (s)) | 0.15 | 0.04 |
Open-phase fault (Ripple (N·m)) | 2.8 | 1.2 |
Possibilities of controller design | Low | High |
Stability proprieties | Good | High |
Complexity of implementation | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadar, S.; Kaddouri, A.M.; Kouzou, A.; Hafaifa, A.; Kennel, R.; Abdelrahem, M. Experimental Validation of Different Control Techniques Applied to a Five-Phase Open-End Winding Induction Motor. Energies 2023, 16, 5288. https://doi.org/10.3390/en16145288
Khadar S, Kaddouri AM, Kouzou A, Hafaifa A, Kennel R, Abdelrahem M. Experimental Validation of Different Control Techniques Applied to a Five-Phase Open-End Winding Induction Motor. Energies. 2023; 16(14):5288. https://doi.org/10.3390/en16145288
Chicago/Turabian StyleKhadar, Saad, Ameur Miloud Kaddouri, Abdellah Kouzou, Ahmed Hafaifa, Ralph Kennel, and Mohamed Abdelrahem. 2023. "Experimental Validation of Different Control Techniques Applied to a Five-Phase Open-End Winding Induction Motor" Energies 16, no. 14: 5288. https://doi.org/10.3390/en16145288
APA StyleKhadar, S., Kaddouri, A. M., Kouzou, A., Hafaifa, A., Kennel, R., & Abdelrahem, M. (2023). Experimental Validation of Different Control Techniques Applied to a Five-Phase Open-End Winding Induction Motor. Energies, 16(14), 5288. https://doi.org/10.3390/en16145288