Geological Environment and Controlling Factors of Panlongdong Karst Cave in Northeastern Sichuan Basin
Abstract
:1. Introduction
2. Geological Setting
2.1. Tectonic Evolution
2.2. Terrain and Climate Characteristics
2.3. Stratigraphic Characteristics
3. Methods
3.1. Outcrop Geological Investigation
3.2. 14C Isotope Dating
3.3. C and O Isotope Analysis
4. Results
4.1. Karst Cave Morphology
4.2. Petrology Characteristics
4.3. Stalactite Chronology and C, O Isotopes
5. Discussion
5.1. Impact of Sedimentary Characteristics
5.1.1. Microscopic Dissolution
5.1.2. Sedimentary Environment and Dissolution
5.2. Impact of Geologic Structures
5.2.1. Fold
5.2.2. Fault and Joint
5.2.3. The Relationship between the Direction of Regional Tectonic Trend and Karst Caves
5.3. Impact of Paleoclimate
5.3.1. Stalactite Growth Rate
5.3.2. Paleoclimate Evolution
5.4. Formation Process of Panlongdong Karst Cave
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, Y.H.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Wu, L.H.; Chen, F.; Wang, J.F.; Li, Q.; Li, C.J.; Yang, Y.J.; et al. Spatiotemporal dynamics of soil moisture in the karst areas of China based on reanalysis and observations data. J. Hydrol. 2020, 585, 124744. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth-Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; American Geophysical Union: Washington, DC, USA, 2007; p. 562. [Google Scholar]
- Billi, A.; Filippis, L.D.; Poncia, P.P.; Sella, P.; Faccenna, C. Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy). Geomorphology 2016, 255, 63–80. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, Z. Geological and geomorphic exploration and formation mechanism of the Shilin Geopark in Zecha, Gansu Province. Arab. J. Geosci. 2020, 13, 1013. [Google Scholar] [CrossRef]
- Navidtalab, A.; Moghim, G.M. Climate, lithology, and tectonics interaction in shaping a hazardous salt karst: A case from the middle–late Miocene (?) evaporite succession of NE Iran. Geomorphology 2020, 356, 107067. [Google Scholar] [CrossRef]
- Mosser, L.; Dubrule, O.; Blunt, M.J. Stochastic reconstruction of an oolitic limestone by generative adversarial networks. Transp. Porous Media 2018, 125, 81–103. [Google Scholar] [CrossRef] [Green Version]
- Wray, R. A global review of solutional weathering forms on quartz sandstones. Earth-Sci. Revi. 1997, 42, 137–160. [Google Scholar] [CrossRef]
- Moradi, S.; Kalantari, N.; Charchi, A. Geomorphology of karst features in the northeast of Khuzestan, Iran. Carbonates Evaporite 2018, 33, 107–121. [Google Scholar] [CrossRef]
- Silva, O.L.; Bezerra, F.H.R.; Maia, R.P.; Cazarin, C.L. Karst landforms revealed at various scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification processes and methodological constraints. Geomorphology 2017, 295, 611–630. [Google Scholar] [CrossRef]
- Liu, S.G.; Yang, Y.; Deng, B.; Zhong, Y.; Wen, L.; Sun, W.; Li, Z.W.; Jansa, L.; Li, J.X.; Song, J.M.; et al. Tectonic evolution of the Sichuan Basin, Southwest China. Earth-Sci. Rev. 2021, 213, 103470. [Google Scholar] [CrossRef]
- Wilson, J.P. Digital terrain modeling. Geomorphology 2012, 137, 107–121. [Google Scholar] [CrossRef]
- Grasmueck, M.; Moser, T.J.; Pelissier, M.A.; Pajchel, J.; Pomar, K. Diffraction signatures of fracture intersections. Interpretation 2015, 3, SF55–SF68. [Google Scholar] [CrossRef]
- Gosar, A.; Čeru, T. Search for an artificially buried karst cave entrance using ground penetrating radar: A successful case of locating the S-19 Cave in the Mt. Kanin massif (NW Slovenia). Int. J. Speleol. 2016, 45, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.P.; Sarkar, A. Terrain characterization using SRTM data. J. Indian Soc. Remote. 2010, 38, 11–24. [Google Scholar] [CrossRef]
- Choi, Y. A new algorithm to calculate weighted flow-accumulation from a DEM by considering surface and underground stormwater infrastructure. Environ. Modell. Softw. 2012, 30, 81–91. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, A.X. The recent advancement in digital terrain analysis and modeling. Int. J. Geogr. Inf. Sci. 2013, 27, 1269–1271. [Google Scholar] [CrossRef]
- Hu, X.Q.; Shi, Z.J.; Tian, Y.M.; Wang, C.C. The restoration of karst ancient landform of the Maokou Formation in southeastern Sichuan basin. Geol. Bull. China 2014, 33, 874–882. [Google Scholar]
- Zhong, Y.; Yang, Y.M.; Wen, L.; Luo, B.; Xiao, D.; Li, M.L.; Chen, C.; Zhao, L.K.; Lu, F.F.; Tan, X.C. Reconstruction and petroleum geological significance of lithofacies paleogeography and paleokarst geomorphology of the Middle Permian Maokou Formation in northwestern Sichuan Basin, SW China. Petrol Explor. Dev. 2020, 48, 81–93. [Google Scholar] [CrossRef]
- Hao, Y.X.; Bell, R.; Hu, D.F.; Fan, R.; Wang, Y.H. Prediction of permian karst reservoirs in the yuanba gas field, northern sichuan basin, China. Mar. Petrol. Geo. 2023, 154, 106160. [Google Scholar] [CrossRef]
- Shi, X.H.; Yang, Z.; Dong, Y.P.; Qu, H.J.; Zhou, B.; Cheng, B. Geomorphic indices and longitudinal profile of the Daba Shan, northeastern Sichuan Basin: Evidence for the late Cenozoic eastward growth of the Tibetan Plateau. Geomorphology 2020, 353, 107031. [Google Scholar] [CrossRef]
- Hu, X.Z.; Zhang, Y.Q.; Li, Y.X.; Ma, S.X.; Li, J.P. Post-orogenic tectonic evolution of the Qinling belt, central China: Insights from a magnetostratigraphic study of a Cretaceous intra-mountain basin sedimentary succession. J. Asian Earth Sci. 2020, 202, 104496. [Google Scholar] [CrossRef]
- Miao, Z.S.; Pei, Y.W.; Su, N.; Sheng, S.Z.; Feng, B.; Jiang, H.; Liang, H.; Hong, H.T. Spatial and temporal evolution of the Sinian and its implications on petroleum exploration in the Sichuan Basin, China. J. Petrol. Sci. Eng. 2022, 210, 110036. [Google Scholar] [CrossRef]
- Sun, Z.M. Superimposed hydrocarbon accumulation through multi-source and multi-stage evolution in the Cambrian Xixiangchi Group of eastern Sichuan Basin: A case study of the Pingqiao gas-bearing anticline. Energy Geosci. 2022, 4, 131–142. [Google Scholar] [CrossRef]
- Yao, Y.H.; Cui, L.L. Vegetation Dynamics in the Qinling-Daba Mountains through Climate Warming with Land-Use Policy. Forests 2022, 13, 1361. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, J.Y.; Liu, S.Y.; Wang, Z.Y.; Wang, L.H.; Gu, H.T.; Li, W.L. Assessing the dividing line between warm temperate and subtropical zones based on the zonality discussion on multi-dimensional response of Net Primary Productivity to climate change in the Qinling-Daba Mountains. Acta Ecol. Sin. 2020, 41, 57–68. [Google Scholar]
- Lowe, J.J.; Walker, M.J.C. Reconstructing Quaternary Environments; Addison Wesley Longman: London, UK, 1997. [Google Scholar]
- Ye, Y.G.; Wang, X.E.; Diao, X.B. A preliminary study on the reliability of radiocarbon age from Shidao Island of Xisha Archipelago. Mar. Geol. Quat. Geol. 1987, 7, 121–130. [Google Scholar]
- Kollias, K.; Godelitsas, A.; Astilleros, J.M.; Ladas, S.; Lagoyannis, A.; Mavromoustakos, T. Dissolution and sorption mechanisms at the aluminosilicate and carbonate mineral-AMD (Acid Mine Drainage) interface. Appl. Geochem. 2021, 131, 105027. [Google Scholar] [CrossRef]
- Sun, F.N.; Hu, W.X.; Wu, H.G.; Fu, B.; Wang, X.L.; Tang, Y.; Cao, J.; Yang, S.C.; Hu, Z.Y. Two-stage mineral dissolution and precipitation related to organic matter degradation: Insights from in situ C–O isotopes of zoned carbonate cements. Mar. Petrol. Geol. 2021, 124, 104812. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhou, F.J.; Zhang, Y.; Wang, Y.C.; Su, H.; Dong, R.C.; Wang, Q.; Bai, H. Numerical studies and analysis on reaction characteristics of limestone and dolomite in carbonate matrix acidizing. Geoenergy Sci. Eng. 2023, 222, 211452. [Google Scholar] [CrossRef]
- Hu, A.P.; Shen, A.J.; Yang, H.X.; Zhang, J.; Wang, X.; Yang, L.; Meng, S.X. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system. Petrol. Explor. Dev. 2019, 46, 969–982. [Google Scholar] [CrossRef]
- Kirstein, J.; Hellevang, H.; Haile, B.G.; Gleixner, G.; Gaupp, R. Experimental determination of natural carbonate rock dissolution rates with a focus on temperature dependency. Geomorphology 2016, 261, 30–40. [Google Scholar] [CrossRef]
- Ma, D.Q.; Tian, J.C.; Lin, X.B.; Wen, L.; Xu, L. Differences and controlling factors of Changxing Formation reefs of the Permian in the Sichuan Basin. Oil Gas Geol. 2020, 41, 1176–1187. [Google Scholar]
- Addesso, R.; Gonzalez-Pimentel, J.L.; D’Angeli, I.M.; De Waele, J.; SaizJimenez, C.; Jurado, V.; Miller, A.Z.; Cubero, B.; Vigliotta, G.; Baldantoni, D. Microbial Community Characterizing Vermiculations from Karst Caves and Its Role in Their Formation. Microb. Ecol. 2021, 81, 884–896. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.J.; Martin, J.B.; Screaton, E.J.; Neuhof, P.S. Conduit enlargement in an eogenetic karst aquifer. J. Hydrol. 2011, 393, 143–155. [Google Scholar] [CrossRef]
- Kan, H.; Urata, K.; Nagao, M.; Hori, N.; Fujita, K.; Yokoyama, Y.; Nakashima, Y.; Ohashi, T.; Goto, K.; Suzuki, A. Submerged karst landforms observed by multibeam bathymetric survey in Nagura Bay, Ishigaki Island, southwestern Japan. Geomorphology 2015, 229, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Che, Z.Q.; Tan, X.C.; Deng, J.T.; Jin, M.D. The characteristics and controlling factors of facies-controlled coastal eogenetic karst: Insights from the Fourth Member of Neoproterozoic Dengying Formation, Central Sichuan Basin, China. Carbonates Evaporites 2019, 34, 1771–1783. [Google Scholar] [CrossRef]
- Gorbatikov, A.V.; Gabsatarova, I.P.; Rogozhin, E.A.; Stepanova, M.Y.; Kharazova, Y.V.; Sysolin, A.I.; Pogrebchenko, V.A. Refinement of the Deep Structure and Tectonic Movement Kinematics in the Area of the 2001 Salsk Earthquake Based on New Geophysical Data. Seism. Instrum. 2019, 55, 633–641. [Google Scholar] [CrossRef]
- Timothy, J.; Daniel, J.R.; Ronald, F.; Lawrence, M.; Henry, L.; Christophe, J.G. Darnault, Hydrogeologic and geomorphic processes in a karst landscape and seasonably-cold climate: Linking spatial distribution and morphometric dynamics of closed depressions to bedrock fractures in a wastewater spray irrigated agricultural and forest system located at the site of the Living Filter in Central Pennsylvania, United States. Agr. Water Manag. 2023, 279, 108170. [Google Scholar] [CrossRef]
- Dreybrodt, W.; Scholz, D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite. Geochim. Cosmochim. Acta 2011, 75, 734–752. [Google Scholar] [CrossRef]
- Woo, K.S.; Ji, H.; Jo, K.; Yi, S.; Cheng, H.; Edwards, R.L.; Hong, G.H. Reconstruction of the Northeast Asian monsoon climate history for the past 400 years based on textural, carbon and oxygen isotope record of a stalagmite from Yongcheon lava tube cave, Jeju Island, Korea. Quatern. Int. 2015, 384, 37–51. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Smith, C.L.; Baker, A.; Fuller, L.; Spötl, C.; Mattey, D. Modification and preservation of environmental signals in speleothems. Earth-Sci. Rev. 2006, 75, 105–153. [Google Scholar] [CrossRef] [Green Version]
- Sade, Z.; Hegyi, S.; Hansen, M.; Scholz, D. Itay Halevy, The effects of drip rate and geometry on the isotopic composition of speleothems: Evaluation with an advection-diffusion-reaction model. Geochim. Cosmochim. Acta 2022, 317, 409–432. [Google Scholar] [CrossRef]
- Mcdermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Wang, Y. Speleothem Mg, Sr and Ba records during the MIS 5c-d, and implications for paleoclimate change in NE Sichuan, Central China. Chin. Sci. Bull. 2011, 56, 3445–3450. [Google Scholar] [CrossRef] [Green Version]
Analysis Points | δ13CVPBD (‰) | δ18OVSMOW (‰) | 14C Dating (a.B.P.) | Correction of 14Cdating (a.B.P.) |
---|---|---|---|---|
PLD01-11 | −9.363 | −9.732 | >43,500 | |
PLD01-12 | −9.673 | −9.965 | 38,090 ± 420 | 38,330 ± 420 |
PLD01-29 | −7.868 | −9.573 | ||
PLD01-28 | −9.065 | −10.309 | ||
PLD01-27 | −10.569 | −10.142 | ||
PLD01-26 | −9.263 | −9.854 | ||
PLD01-10 | −5.234 | −8.767 | ||
PLD01-09 | −9.067 | −9.447 | 29,190 ± 190 | 29,500 ± 190 |
PLD01-25 | −8.5 | −9.853 | ||
PLD01-24 | −8.665 | −10.087 | ||
PLD01-23 | −9.035 | −9.904 | ||
PLD01-22 | −9.087 | −10.173 | ||
PLD01-08 | −10.65 | −8.267 | ||
PLD01-07 | −5.879 | −9.398 | 13,030 ± 50 | 13,340 ± 50 |
PLD01-21 | −10.89 | −10.086 | ||
PLD01-20 | −7.297 | −10.34 | ||
PLD01-19 | −6.023 | −9.693 | ||
PLD01-18 | −5.64 | −9.643 | ||
PLD01-06 | −11.449 | −8.959 | ||
PLD01-05 | −6.38 | −8.903 | 10,380 ± 40 | 10,690 ± 40 |
PLD01-17 | −7.169 | −8.432 | ||
PLD01-16 | −6.231 | −8.111 | ||
PLD01-15 | −7.004 | −10.25 | ||
PLD01-04 | −11.786 | −8.222 | ||
PLD01-03 | −5.505 | −9.655 | 9390 ± 40 | 9650 ± 40 |
PLD01-14 | −6.12 | −10.242 | ||
PLD01-13 | −5.853 | −8.41 | ||
PLD01-02 | −6.019 | −10.259 | ||
PLD01-01 | −10.993 | −8.146 | 6140 ± 40 | 6420 ± 30 |
Types | Classification Based on the Morphology of the Bending and Turning Ends of the Fold Surface | Classification by Axial Plane and Two-Side Occurrence | Classification by Combination Form | Summation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Box Fold | Chevron Fold | Arcual Fold | Fan-Type Fold | Kink | Upright Fold | Inclined Fold | Overturned Fold | Recumbent Fold | Anticlinorium | Synclinorium | ||
Large-scale | 2 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 8 |
Small-sized | 1 | 4 | 2 | 1 | 1 | 5 | 5 | 1 | 1 | 4 | 1 | 26 |
Summation | 3 | 4 | 6 | 1 | 1 | 5 | 6 | 1 | 1 | 5 | 1 | 34 |
Code Name | Coordinate | Name | Type | Stratum and Lithology | |
---|---|---|---|---|---|
Latitude | Longitude | ||||
F1 | 31°43′56″ | 108°21′59″ | Tianjingliang-Hejialiang fault | Strike–slip fault | P3w-T1j; the trend is NW–SE, the sides of NE and SW sinistral strike–slip |
F2 | 31°44′41″ | 108°25′32″ | Zhulintan fault | Thrust fault | P1q/S1xh; hanging wall side is 65°∠78°, foot wall side is 43°∠85°; stratification is 40°∠71° |
F3 | 31°45′32″ | 108°25′44″ | Xuanguandong fault | Thrust fault | P3c/T1d; hanging wall side is 53°∠76°, foot wall side is 50°∠65°; stratification is 266°∠51° |
F4 | 31°45′22″ | 108°27′31″ | Panlongdong fault | Thrust fault | P3c/T1d; hanging wall side is 40°∠83°, foot wall side is 50°∠65°; stratification is 73°∠67° |
Observation Point | Coordinate | Type | Formation and Lithology | σ1 (az/pl) | Scratches on the Joint Surface | Stages | |
---|---|---|---|---|---|---|---|
Longitude | Latitude | ||||||
bts01 | 108°14′31″ | 31°37′28″ | X-conjugate joint | T1d, marlstone | 45°/12° | / | 1 |
lth01 | 108°16′04″ | 31°50′14″ | P3c, limestone | 35°/2° | / | 1 | |
lth04 | 108°14′43″ | 31°37′26″ | P3c, limestone | 71°/11° | / | 1 | |
lth02 | 108°24′12″ | 31°37′32″ | T1j, dolomite limestone | NE–SW | ∠43°NE | 1 | |
blx01 | 108°21′38″ | 31°43′31″ | P3c, limestone | NE–SW | / | 1 | |
lth03 | 108°15′09″ | 31°23′42″ | P3c, limestone | 21°/3° | / | 1 | |
blx04 | 108°26′15″ | 31°45′19″ | Left lateral thrust joint | P3w, biolithite limestone | 25°/34° | ∠55°SW | 2 |
blx05 | 108°25′01″ | 31°43′35″ | P3c, limestone | NE–SW | / | 2 | |
blx02 | 108°22′29″ | 31°41′08″ | Right lateral thrust joint | P3w, biolithite limestone | SE–NW | ∠71°SW | 3 |
blx06 | 108°20′54″ | 31°46′57″ | P2q, chert-banded limestone | SE–NW | ∠49°NE | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Tian, J.; Fu, S.; Liang, Q.; Li, J. Geological Environment and Controlling Factors of Panlongdong Karst Cave in Northeastern Sichuan Basin. Energies 2023, 16, 5514. https://doi.org/10.3390/en16145514
Ma D, Tian J, Fu S, Liang Q, Li J. Geological Environment and Controlling Factors of Panlongdong Karst Cave in Northeastern Sichuan Basin. Energies. 2023; 16(14):5514. https://doi.org/10.3390/en16145514
Chicago/Turabian StyleMa, Deqin, Jingchun Tian, Shun Fu, Qingshao Liang, and Jian Li. 2023. "Geological Environment and Controlling Factors of Panlongdong Karst Cave in Northeastern Sichuan Basin" Energies 16, no. 14: 5514. https://doi.org/10.3390/en16145514
APA StyleMa, D., Tian, J., Fu, S., Liang, Q., & Li, J. (2023). Geological Environment and Controlling Factors of Panlongdong Karst Cave in Northeastern Sichuan Basin. Energies, 16(14), 5514. https://doi.org/10.3390/en16145514