Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Hydrothermal Carbonization
2.3. Physicochemical Characterization of Hydrochars
2.4. Fuel Characterization
2.5. Combustion and Combustion Indices
2.6. Characterization of HTC Process Liquid
3. Result and Discussion
3.1. Effect of HTC Temperature on Product Distribution and Properties of Hydrochars
3.2. Combustion Characteristics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture. Opportunities and challenges. Food and Agriculture Organization of the United Nations. 2012. Available online: https://www.fao.org/3/i2727e/i2727e.pdf (accessed on 7 May 2023).
- Nirmal, N.P.; Santivarangkna, C.; Rajput, M.S.; Benjakul, S. Trends in shrimp processing waste utilization: An industrial prospective. Trends Food Sci. Technol. 2020, 103, 20–35. [Google Scholar] [CrossRef]
- Senphan, T.; Benjakul, S. Compositions and yield of lipids extracted from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei) as affected by prior autolysis. Food Chem. 2012, 134, 829–835. [Google Scholar] [CrossRef]
- Endo Mahat, M. The Effect of Shrimp Waste Hydrolysate on Broiler’s Tibia Weight, Calcium and Phosphorous Content. Pak. J. Nutr. 2012, 11, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Mathew, G.M.; Mathew, D.C.; Sukumaran, R.K.; Sindhu, R.; Huang, C.C.; Binod, P.; Sirohi, R.; Kim, S.H.; Pandey, A. Sustainable and eco-friendly strategies for shrimp shell valorization. Environ. Pollut. 2020, 267, 115656. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Balasubramanian, R. Hydrothermal Carbonization of Waste Biomass for Energy Generation. Procedia Environ. Sci. 2012, 16, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Cordero, T.; Marquez, F.; Rodríguez-Mirasol, J.; Rodriguez, J.J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Elaigwu, S.E.; Greenway, G.M. Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars. J. Anal. Appl. Pyrolysis 2016, 118, 1–8. [Google Scholar] [CrossRef]
- Sultana, A.I.; Chambers, C.; Ahmed, M.M.N.; Pathirathna, P.; Reza, T. Multifunctional Loblolly Pine-Derived Superactivated Hydrochar: Effect of Hydrothermal Carbonization on Hydrogen and Electron Storage with Carbon Dioxide and Dye Removal. Nanomaterials 2022, 12, 3575. [Google Scholar] [CrossRef]
- Tahmid Islam, M.; Klinger, J.L.; Toufiq Reza, M. Evaluating combustion characteristics and combustion kinetics of corn stover-derived hydrochars by cone calorimeter. Chem. Eng. J. 2023, 452, 139419. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl. Energy 2014, 135, 182–191. [Google Scholar] [CrossRef]
- Lynam, J.G.; Reza, M.T.; Yan, W.; Vásquez, V.R.; Coronella, C.J. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Convers. Biorefinery 2015, 5, 173–181. [Google Scholar] [CrossRef]
- Danso-Boateng, E.; Shama, G.; Wheatley, A.D.; Martin, S.J.; Holdich, R.G. Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresour. Technol. 2015, 177, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, A.I.; Reza, M.T. Techno-economic assessment of superactivated hydrochar production by KOH impregnation compared to direct chemical activation. Biomass Convers. Biorefinery 2022, 1–13. [Google Scholar] [CrossRef]
- He, C.; Giannis, A.; Wang, J.-Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Appl. Energy 2013, 111, 257–266. [Google Scholar] [CrossRef]
- Basso, D.; Weiss-Hortala, E.; Patuzzi, F.; Castello, D.; Baratieri, M.; Fiori, L. Hydrothermal carbonization of off-specification compost: A byproduct of the organic municipal solid waste treatment. Bioresour. Technol. 2015, 182, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.T.; Coronella, C.; Holtman, K.M.; Franqui-Villanueva, D.; Poulson, S.R. Hydrothermal Carbonization of Autoclaved Municipal Solid Waste Pulp and Anaerobically Treated Pulp Digestate. ACS Sustain. Chem. Eng. 2016, 4, 3649–3658. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Lin, Q.-M.; Zhao, X.-R. The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations. J. Integr. Agric. 2014, 13, 471–482. [Google Scholar] [CrossRef]
- Mandeville, S.; Yaylayan, V.; Simpson, B.; Ramaswamy, H. Isolation and identification of carotenoid pigments, lipids and flavor active components from raw commercial shrimp waste. Food Biotechnol. 1991, 5, 185–195. [Google Scholar] [CrossRef]
- Mao, X.; Guo, N.; Sun, J.; Xue, C. Comprehensive utilization of shrimp waste based on biotechnological methods: A review. J. Clean. Prod. 2017, 143, 814–823. [Google Scholar] [CrossRef]
- Mondal, A.K.; Kretschmer, K.; Zhao, Y.; Liu, H.; Fan, H.; Wang, G. Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater. 2017, 246, 72–80. [Google Scholar] [CrossRef]
- He, C.; Lin, H.; Dai, L.; Qiu, R.; Tang, Y.; Wang, Y.; Duan, P.G.; Ok, Y.S. Waste shrimp shell-derived hydrochar as an emergent material for methyl orange removal in aqueous solutions. Environ. Int. 2020, 134, 105340. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Gariepy, Y.; Raghavan, G.S.V. Conventional Hydrothermal Carbonization of Shrimp Waste. Energy Fuels 2018, 32, 3532–3542. [Google Scholar] [CrossRef]
- Kannan, S.; Gariepy, Y.; Raghavan, G.S.V. Optimization and Characterization of Hydrochar Derived from Shrimp Waste. Energy Fuels 2017, 31, 4068–4077. [Google Scholar] [CrossRef]
- Wu, R.; Li, Y.; Pang, X.; Hu, Z.; Jian, X. Insight into evolution of chemical structure and mineralogy to reveal the mechanism of temperature-dependent phosphorus release from hydrochars. Ind. Crops Prod. 2022, 185, 115101. [Google Scholar] [CrossRef]
- Zheng, F.-Y.; Li, R.; Ge, S.; Xu, W.-R.; Zhang, Y. Nitrogen and phosphorus co-doped carbon networks derived from shrimp shells as an efficient oxygen reduction catalyst for microbial fuel cells. J. Power Sources 2020, 446, 227356. [Google Scholar] [CrossRef]
- Islam, M.T.; Chambers, C.; Klinger, J.L.; Reza, M.T. Blending hydrochar improves hydrophobic properties of corn stover pellets. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Liliana Krotz, D.F.L.; Giazzi, A.D.G.; Thermo Scientific FlashSmart. Elemental Analyzer: Fully Automated Double Channel Analysis for Petrochemical Applications. 2016. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/AN-42263-OEA-Petrochemical-FlashSmart-AN42263-EN.pdf (accessed on 12 July 2023).
- Thermo Scientific Furnaces Datasheet. 2017. Available online: https://assets.thermofisher.com/TFS-Assets/LED/brochures/LED-FurnacesBrochure-BRFURNACE0316-EN.pdf (accessed on 12 July 2023).
- PerkinElmer, I. Technical Specifications for the TGA 4000 Thermogravimetric Analyzer. 2009. Available online: https://resources.perkinelmer.com/corporate/cmsresources/images/46-74807spc_tga4000.pdf (accessed on 12 July 2023).
- Data Sheet of IKA C 200 Bomb Calorimeter. Available online: https://www.ika.com/en/Products-LabEq/Calorimeters-pg330/C-200-8802500/Downloads-cpdl.html (accessed on 12 July 2023).
- Lin, Y.; Ma, X.; Peng, X.; Hu, S.; Yu, Z.; Fang, S. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Appl. Therm. Eng. 2015, 91, 574–582. [Google Scholar] [CrossRef]
- Mohammed, I.S.; Na, R.; Kushima, K.; Shimizu, N. Investigating the Effect of Processing Parameters on the Products of Hydrothermal Carbonization of Corn Stover. Sustainability 2020, 12, 5100. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Li, A. Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors. Bioresour. Technol. 2019, 294, 122113. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, T.; Li, W.; Dong, Q.; Xiong, Y. Physicochemical properties and combustion behavior of duckweed during wet torrefaction. Bioresour. Technol. 2016, 218, 1157–1162. [Google Scholar] [CrossRef]
- Jiang, L.-B.; Yuan, X.-Z.; Li, H.; Chen, X.-H.; Xiao, Z.-H.; Liang, J.; Leng, L.-J.; Guo, Z.; Zeng, G.-M. Co-pelletization of sewage sludge and biomass: Thermogravimetric analysis and ash deposits. Fuel Process. Technol. 2016, 145, 109–115. [Google Scholar] [CrossRef]
- Pronobis, M. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass Bioenergy 2005, 28, 375–383. [Google Scholar] [CrossRef]
- Tortosa Masiá, A.A.; Buhre, B.J.P.; Gupta, R.P.; Wall, T.F. Characterising ash of biomass and waste. Fuel Process. Technol. 2007, 88, 1071–1081. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, J.G.; Uddin, M.H.; Coronella, C.J. Hydrothermal carbonization: Fate of inorganics. Biomass Bioenergy 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Website for Specification Sheet of Thermo Scientific Dionex Aquion Ion Chromatography System. 2022. Available online: https://www.thermofisher.cn/cn/zh/home/industrial/chromatography/ion-chromatography-ic/ion-chromatography-systems/instrument-selection/aquion.html (accessed on 12 July 2023).
- Shrestha, A.; Acharya, B.; Farooque, A.A. Study of hydrochar and process water from hydrothermal carbonization of sea lettuce. Renew. Energy 2021, 163, 589–598. [Google Scholar] [CrossRef]
- Zhu, G.; Yang, L.; Gao, Y.; Xu, J.; Chen, H.; Zhu, Y.; Wang, Y.; Liao, C.; Lu, C.; Zhu, C. Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA. Fuel 2019, 244, 479–491. [Google Scholar] [CrossRef]
- Yan, W.; Hastings, J.T.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Mass and Energy Balances of Wet Torrefaction of Lignocellulosic Biomass. Energy Fuels 2010, 24, 4738–4742. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Zielinska, B.; Felix, L. Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers. Biorefinery 2013, 3, 113–126. [Google Scholar] [CrossRef]
- Sermyagina, E.; Saari, J.; Kaikko, J.; Vakkilainen, E. Hydrothermal carbonization of coniferous biomass: Effect of process parameters on mass and energy yields. J. Anal. Appl. Pyrolysis 2015, 113, 551–556. [Google Scholar] [CrossRef]
- Uzun, B.B.; Apaydin-Varol, E.; Ateş, F.; Özbay, N.; Pütün, A.E. Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel 2010, 89, 176–184. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Mubarak, N.M.; Tiripathi, M.; Jayakumar, N.S.; Sahu, J.N.; Ganesan, P. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 2016, 163, 88–97. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, A.; Zheng, X. Shrimp Shell Catalyst for Biodiesel Production. Energy Fuels 2009, 23, 3859–3865. [Google Scholar] [CrossRef]
- Burnham, A.K. Van Krevelen Diagrams. In Encyclopedia of Petroleum Geoscience; Sorkhabi, R., Ed.; Springer International Publishing: Cham, Switzerlands, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zulkornain, M.F.; Shamsuddin, A.H.; Normanbhay, S.; Md Saad, J.; Ahmad Zamri, M.F.M. Optimization of rice husk hydrochar via microwave-assisted hydrothermal carbonization: Fuel properties and combustion kinetics. Bioresour. Technol. Rep. 2022, 17, 100888. [Google Scholar] [CrossRef]
- Quitain, A.T.; Sato, N.; Daimon, H.; Fujie, K. Production of Valuable Materials by Hydrothermal Treatment of Shrimp Shells. Ind. Eng. Chem. Res. 2001, 40, 5885–5888. [Google Scholar] [CrossRef]
- Liu, Z.; Matouri, M.; Zahid, U.; Saldaña, M.D.A. Value-added compounds obtained from shrimp shells using subcritical water with carboxylic acids. J. Supercrit. Fluids 2023, 197, 105902. [Google Scholar] [CrossRef]
- Percot, A.; Viton, C.; Domard, A. Optimization of Chitin Extraction from Shrimp Shells. Biomacromolecules 2003, 4, 12–18. [Google Scholar] [CrossRef]
- Rødde, R.H.; Einbu, A.; Vårum, K.M. A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr. Polym. 2008, 71, 388–393. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Peng, X.; Yu, Z.; Fang, S.; Lin, Y.; Fan, Y. Combustion, pyrolysis and char CO2-gasification characteristics of hydrothermal carbonization solid fuel from municipal solid wastes. Fuel 2016, 181, 905–915. [Google Scholar] [CrossRef]
- Pahla, G.; Mamvura, T.A.; Ntuli, F.; Muzenda, E. Energy densification of animal waste lignocellulose biomass and raw biomass. S. Afr. J. Chem. Eng. 2017, 24, 168–175. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.; Peng, X.; Lin, Y.; Yao, Z. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization. Bioresour. Technol. 2018, 249, 900–907. [Google Scholar] [CrossRef]
- Petrovic, J.; Simic, M.; Mihajlovic, M.; Koprivica, M.; Kojic, M.; Nuic, I. Upgrading fuel potentials of waste biomass via hydrothermal carbonization. Hem. Ind. 2021, 75, 297–305. [Google Scholar] [CrossRef]
- Koprivica, M.; Petrović, J.; Ercegović, M.; Simić, M.; Milojković, J.; Šoštarić, T.; Dimitrijević, J. Improvement of combustible characteristics of Paulownia leaves via hydrothermal carbonization. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Afolabi, O.O.D.; Sohail, M.; Thomas, C.P.L. Microwave Hydrothermal Carbonization of Human Biowastes. Waste Biomass Valoriz. 2015, 6, 147–157. [Google Scholar] [CrossRef]
- Kaushik, R.; Parshetti, G.K.; Liu, Z.; Balasubramanian, R. Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil. Bioresour. Technol. 2014, 168, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Kaewtatip, K.; Chiarathanakrit, C.; Riyajan, S.-A. The effects of egg shell and shrimp shell on the properties of baked starch foam. Powder Technol. 2018, 335, 354–359. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Karaarslan, M. A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res 2015, 29, 1477–1480. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.-Z.; Li, S.-D.; Ou, C.-Y.; Li, C.-P.; Yang, L.; Zhang, C.-H. Thermogravimetric analysis of chitosan. J. Appl. Polym. Sci. 2007, 105, 547–551. [Google Scholar] [CrossRef]
- Jang, M.-K.; Kong, B.-G.; Jeong, Y.-I.; Lee, C.H.; Nah, J.-W. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3423–3432. [Google Scholar] [CrossRef]
- Poompradub, S.; Ikeda, Y.; Kokubo, Y.; Shiono, T. Cuttlebone as reinforcing filler for natural rubber. Eur. Polym. J. 2008, 44, 4157–4164. [Google Scholar] [CrossRef]
- Poomsawat, S.; Poomsawat, W. Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process. Case Stud. Therm. Eng. 2021, 27, 101255. [Google Scholar] [CrossRef]
- Xu, C.D.; Cheng, K.W.E. Examination of bifurcation of the non-linear dynamics in buck-boost converters with input capacitor rectifier. In IET Power Electronics; Institution of Engineering and Technology: London, UK, 2011; Volume 4, pp. 209–217. [Google Scholar]
- Healy, M.; Green, A.; Healy, A. Bioprocessing of Marine Crustacean Shell Waste. Acta Biotechnol. 2003, 23, 151–160. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Zhang, Y.; Chen, B.; Zhang, L.; Huang, J.; Chen, F.; Yang, Z.; Yao, J.; Zhang, Z. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide. Nanoscale 2011, 3, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Allison, G.G.; Morris, C.; Hodgson, E.; Jones, J.; Kubacki, M.; Barraclough, T.; Yates, N.; Shield, I.; Bridgwater, A.V.; Donnison, I.S. Measurement of key compositional parameters in two species of energy grass by Fourier transform infrared spectroscopy. Bioresour. Technol. 2009, 100, 6428–6433. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- El Ichi, S.; Zebda, A.; Laaroussi, A.; Reverdy-Bruas, N.; Chaussy, D.; Naceur Belgacem, M.; Cinquin, P.; Martin, D.K. Chitosan improves stability of carbon nanotube biocathodes for glucose biofuel cells. Chem. Commun. 2014, 50, 14535–14538. [Google Scholar] [CrossRef] [PubMed]
- Wysokowski, M.; Klapiszewski, Ł.; Moszyński, D.; Bartczak, P.; Szatkowski, T.; Majchrzak, I.; Siwińska-Stefańska, K.; Bazhenov, V.V.; Jesionowski, T. Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions. Mar. Drugs 2014, 12, 2245–2268. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhou, D.; Zhu, L. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Mass Yield (%) | Elemental Analysis | Bomb Calorimetry Analysis | PL Characterization | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C (%) | H (%) | N (%) | S (%) | O (%) | Ash (%) | Fuel Ratio | HHVdaf (MJ/kg) | EY | ED (GJ/m3) | EDR | pH | NH4+ (mg/L) | ||
Raw-SS | 100 | 38.60 ± 0.37 | 6.17 ± 0.08 | 8.44 ± 0.31 | 0.71 ± 0.03 | 29.07 ± 0.0 | 16.99 ± 0.39 | 0.082 | 24.6 ± 0.2 | 100 ± 0.0 | 22.1 ± 0.5 | 1.0 ± 0.0 | - | - |
SS-110 | 54.3 ± 9.4 | 42.60 ± 0.32 | 6.15 ± 0.10 | 6.61 ± 0.31 | 0.61 ± 0.01 | 22.24 ± 0.0 | 21.79 ± 0.32 | 0.067 | 24.5 ± 0.1 | 54.19 ± 0.03 | 25.1 ± 0.2 | 0.998 ± 0.00 | 7.5 | 4.6 |
SS-140 | 53.4 ± 9.6 | 43.70 ± 0.29 | 6.34 ± 0.08 | 6.15 ± 0.23 | 0.55 ± 0.01 | 19.47 ± 0.0 | 23.79 ± 0.44 | 0.066 | 25.1 ± 0.1 | 54.46 ± 0.02 | 24.0 ± 0.2 | 1.02 ± 0.00 | 8.4 | 6.2 |
SS-170 | 32.0 ± 0.3 | 41.86 ± 1.39 | 5.98 ± 0.19 | 4.65 ± 0.01 | 0.60 ± 0.02 | 19.94 ± 0.0 | 26.97 ± 0.26 | 0.042 | 26.9 ± 0.4 | 34.88 ± 0.5 | 21.4 ± 0.4 | 1.09 ± 0.02 | 7.8 | 13.4 |
SS-200 | 31.3 ± 4.4 | 41.32 ± 0.40 | 5.81 ± 0.11 | 4.17 ± 0.05 | 0.59 ± 0.03 | 19.74 ± 0.0 | 28.37 ± 0.43 | 0.05 | 26.0 ± 0.7 | 33.17 ± 0.04 | 21.4 ± 0.4 | 1.06 ± 0.03 | 7.8 | 12.3 |
SS-230 | 31.3 ± 4.4 | 40.35 ± 0.97 | 5.65 ± 0.11 | 3.47 ± 0.08 | 0.74 ± 0.02 | 17.22 ± 0.0 | 32.57 ± 0.37 | 0.044 | 26.2 ± 0.4 | 33.18 ± 0.02 | 20.2 ± 0.3 | 1.06 ± 0.20 | 8.9 | 12.3 |
SS-260 | 25.7 ± 5.6 | 41.26 ± 0.44 | 5.56 ± 0.10 | 3.56 ± 0.01 | 0.73 ± 0.07 | 14.61 ± 0.0 | 34.28 ± 0.90 | 0.028 | 27.2 ± 0.4 | 28.27 ± 0.05 | 19.4 ± 0.1 | 1.10 ± 0.20 | 9.2 | 17.1 |
SS-290 | 36.0 ± 4.2 | 42.19 ± 1.36 | 5.48 ± 0.22 | 3.87 ± 0.14 | 0.61 ± 0.05 | 11.28 ± 0.0 | 36.57 ± 0.56 | 0.017 | 27.9 ± 0.4 | 40.68 ± 0.07 | 19.7 ± 0.1 | 1.13 ± 0.02 | 9.1 | 19.1 |
Sample ID | Ti (°C) | Tm (°C) | Tb (°C) | ti (min) | tmax (min) | tb (min) | Δt1/2 (min) | Di (%/min3) | Db × 10−3 (%/min3) | Si × 10−7 (%2/°C3.min2) |
---|---|---|---|---|---|---|---|---|---|---|
Raw SS | 225 | 367 | 762 | 9.5 | 16.6 | 36.4 | 26.7 | 0.04 | 0.18 | 2.67 |
SS-110 | 230 | 370 | 745 | 9.8 | 16.8 | 35.5 | 14.2 | 0.06 | 0.58 | 4.2 |
SS-140 | 250 | 375 | 748 | 10.8 | 17.0 | 35.7 | 18.5 | 0.06 | 0.49 | 3.9 |
SS-170 | 280 | 375 | 752 | 12.3 | 17.0 | 35.9 | 18.4 | 0.06 | 0.54 | 3.26 |
SS-200 | 290 | 375 | 760 | 12.8 | 17.0 | 36.3 | 18.1 | 0.06 | 0.57 | 3.02 |
SS-230 | 275 | 374 | 755 | 12.0 | 17.0 | 36.0 | 15.6 | 0.07 | 0.70 | 3.48 |
SS-260 | 275 | 377 | 775 | 12.0 | 17.1 | 37.0 | 18.1 | 0.06 | 0.56 | 3.22 |
SS-290 | 260 | 381 | 775 | 11.3 | 17.3 | 37.0 | 18.5 | 0.05 | 0.43 | 2.73 |
Sample ID | SI | FI | SV | Al | Cl |
---|---|---|---|---|---|
Raw SS | extremely high | extremely high | high | s and f occur | extremely high |
SS-110 | extremely high | extremely high | high | s and f occur | extremely high |
SS-140 | low | low | high | low | low |
SS-170 | extremely high | low | high | s or f probable | low |
SS-200 | extremely high | low | high | s or f probable | low |
SS-230 | low | low | high | low | low |
SS-260 | low | low | high | low | low |
SS-290 | extremely high | low | high | s or f probable | low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Islam, M.T.; Calhoun, J.; Reza, T. Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste. Energies 2023, 16, 5534. https://doi.org/10.3390/en16145534
Saha S, Islam MT, Calhoun J, Reza T. Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste. Energies. 2023; 16(14):5534. https://doi.org/10.3390/en16145534
Chicago/Turabian StyleSaha, Swarna, Md Tahmid Islam, Joshua Calhoun, and Toufiq Reza. 2023. "Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste" Energies 16, no. 14: 5534. https://doi.org/10.3390/en16145534
APA StyleSaha, S., Islam, M. T., Calhoun, J., & Reza, T. (2023). Effect of Hydrothermal Carbonization on Fuel and Combustion Properties of Shrimp Shell Waste. Energies, 16(14), 5534. https://doi.org/10.3390/en16145534