Dehydration of Isopropanol: A Comparative Review of Distillation Processes, Heat Integration, and Intensification Techniques
Abstract
:1. Introduction
2. Separation Method for IPA Production
2.1. Heterogeneous Azeotropic Distillation (HAD)
2.1.1. Cyclohexane Entrainer
2.1.2. Benzene Entrainer
2.1.3. Isooctane Entrainer
2.2. Extractive Distillation (ED)
2.2.1. Alcohol Solvents
2.2.2. Ionic Liquids
- 1-ethyl-3-methylimidazolium Tetrafluoroborate ([EMIM][BF4])
- 1-ethyl-3-methylimidazolium Dicyanamide ([EMIM][N(CN)2])
- 1-ethyl-3-methylimidazolium Acetate ([EMIM][OAC])
2.2.3. Deep Eutectic Solvents (DES)
2.2.4. Other Extractive Solvents
2.3. Pressure Swing Distillation (PSD)
3. Heat Integration and Intensification Techniques for Improving IPA Dehydration
3.1. HI and PI Techniques on HAD
3.1.1. HAD Incorporated with Stripping Columns
3.1.2. HAD Incorporated with Combined Pre-Concentrator and Recovery Columns
3.1.3. HAD Incorporated with DWC
3.1.4. Heterogeneous Azeotropic Dividing Wall Column (HADWC) Incorporated with Vapor Recompression
3.2. HI and PI Techniques on ED
3.2.1. Combining Pre-Concentrator and Recovery Columns in ED
3.2.2. Side-Stream Extractive Distillation (SED)
3.2.3. Heat-Integrated ED (HI-ED)
3.2.4. ED Incorporated with Heat Pump (HP)
3.2.5. Extractive Dividing Wall Column (EDWC)
3.2.6. Thermally Coupled ED
3.2.7. HP-Assisted EDWC (HP-EDWC)
3.3. HI and PI Techniques on PSD
3.3.1. PSD with HI and HP Techniques
3.3.2. Heat Integration of Extractive Pressure Swing Distillation
4. Challenges and Suggestions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalla, S.; Upadhyaya, S.; Singh, K.; Dohare, R.K.; Agarwal, M. A Case Study on Separation of IPA-Water Mixture by Extractive Distillation Using Aspen Plus. Int. J. Adv. Technol. Eng. Explor. 2016, 3, 187–193. [Google Scholar] [CrossRef]
- Kittur, A.A.; Kulkarni, S.S.; Aralaguppi, M.I.; Kariduraganavar, M.Y. Preparation and Characterization of Novel Pervaporation Membranes for the Separation of Water-Isopropanol Mixtures Using Chitosan and NaY Zeolite. J. Membr. Sci. 2005, 247, 75–86. [Google Scholar] [CrossRef]
- AgileIntel Research (ChemIntel360). Market Volume of Isopropyl Alcohol Worldwide from 2015 to 2021, with a Forecast for 2022 to 2029. 2022. Available online: https://www.statista.com/statistics/1245200/isopropyl-alcohol-market-volume-worldwide (accessed on 20 June 2023).
- Denes, F.; Lang, P.; Modla, G.; Joulia, X. New Double Column System for Heteroazeotropic Batch Distillation. Comput. Chem. Eng. 2009, 33, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.C.; Hsu, P.H.-C.; Chien, I.L. Critical Assessment of the Energy-Saving Potential of an Extractive Dividing-Wall Column. Ind. Eng. Chem. Res. 2013, 52, 5384–5399. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Lei, Y.; Wu, X.; Man, Y.; Luo, H.; Xiong, Q. Data-Driven Surrogate Optimized and Intensified Extractive Distillation Process for Clean Separation of Isopropanol from Water: A Sustainable Alternative. J. Clean. Prod. 2023, 383, 135475. [Google Scholar] [CrossRef]
- Shi, L.; Huang, K.; Wang, S.J.; Yu, J.; Yuan, Y.; Chen, H.; Wong, D.S.H. Application of Vapor Recompression to Heterogeneous Azeotropic Dividing-Wall Distillation Columns. Ind. Eng. Chem. Res. 2015, 54, 11592–11609. [Google Scholar] [CrossRef]
- Wang, S.J.; Chen, W.Y.; Chang, W.T.; Hu, C.C.; Cheng, S.H. Optimal Design of Mixed Acid Esterification and Isopropanol Dehydration Systems via Incorporation of Dividing-Wall Columns. Chem. Eng. Process. Process Intensif. 2014, 85, e108–e124. [Google Scholar] [CrossRef]
- Cui, C.; Sun, J. Rigorous Design and Simultaneous Optimization of Extractive Distillation Systems Considering the Effect of Column Pressures. Chem. Eng. Process.-Process Intensif. 2019, 139, 68–77. [Google Scholar] [CrossRef]
- Qin, Y.; Zhuang, Y.; Wang, C.; Zhang, L.; Liu, L.; Du, J. Multi-Objective Optimization and Comparison of the Entrainer-Assisted Pressure-Swing Distillation and Extractive Distillation Separation Sequences for Separating a Pressure-Insensitive Binary Azeotrope. Comput. Chem. Eng. 2022, 165, 107959. [Google Scholar] [CrossRef]
- Ma, S.; Shang, X.; Zhu, M.; Li, J.; Sun, L. Design, Optimization and Control of Extractive Distillation for the Separation of Isopropanol-Water Using Ionic Liquids. Sep. Purif. Technol. 2019, 209, 833–850. [Google Scholar] [CrossRef]
- Chua, W.J.; Rangaiah, G.P.; Hidajat, K. Design and Optimization of Isopropanol Process Based on Two Alternatives for Reactive Distillation. Chem. Eng. Process. Process Intensif. 2017, 118, 108–116. [Google Scholar] [CrossRef]
- Ilyushin, Y.; Afanaseva, O. Spatial Distributed Control System of Temperature Field: Synthesis and Modeling. ARPN J. Eng. Appl. Sci. 2021, 16, 1491–1506. [Google Scholar]
- De Guido, G.; Monticelli, C.; Spatolisano, E.; Pellegrini, L.A. Separation of the Mixture 2-Propanol + Water by Heterogeneous Azeotropic Distillation with Isooctane as an Entrainer. Energies 2021, 14, 5471. [Google Scholar] [CrossRef]
- Nhien, L.C.; Lee, M.; Haider, J.; Long, N.V.D.; Lee, M. Intensified and Hybrid Distillation Technologies for Production of High Value-Added Products from Lignocellulosic Biomass. In Biofuels and Biorefining: Volume 2: Intensification Processes and Biorefineries; Elsevier: Amsterdam, The Netherlands, 2022; pp. 197–229. ISBN 9780128241172. [Google Scholar]
- Widagdo, S.; Seider, W.D. Journal Review. Azeotropic Distillation. AIChE J. 1996, 42, 96–130. [Google Scholar] [CrossRef]
- Chien, I.L.; Zeng, K.-L.; Chao, H.-Y. Design and Control of a Complete Heterogeneous Azeotropic Distillation Column System. Ind. Eng. Chem. Res. 2004, 43, 2160–2174. [Google Scholar] [CrossRef]
- Cho, J.; Jeon, J. Optimization Study on the Azeotropic Distillation Process for Isopropyl Alcohol Dehydration. Korean J. Chem. Eng. 2006, 23, 1–7. [Google Scholar] [CrossRef]
- Verhoeye, L.A.J. System Cyclohexane-2-Propanol-Water. J. Chem. Eng. Data 1968, 13, 462–467. [Google Scholar] [CrossRef]
- Wang, C.J.; Wong, D.S.H.; Chien, I.L.; Shih, R.F.; Liu, W.T.; Tsai, C.S. Critical Reflux, Parametric Sensitivity, and Hysteresis in Azeotropic Distillation of Isopropyl Alcohol + Water + Cyclohexane. Ind. Eng. Chem. Res. 1998, 37, 2835–2843. [Google Scholar] [CrossRef]
- Chien, I.-L.; Chen, W.-H.; Chang, T.-S. Operation and Decoupling Control of a Heterogeneous Azeotropic Distillatin Column. Comput. Chem. Eng. 2000, 24, 893–899. [Google Scholar] [CrossRef]
- Arifin, S.; Chien, I.L. Combined Preconcentrator/Recovery Column Design for Isopropyl Alcohol Dehydration Process. Ind. Eng. Chem. Res. 2007, 46, 2535–2543. [Google Scholar] [CrossRef]
- Font, A.; Asensi, J.C.; Ruiz, F.; Gomis, V. Isobaric Vapor − Liquid and Vapor − Liquid − Liquid Equilibria Data for the System Water + Isopropanol + Isooctane. J. Chem. Eng. Data 2004, 49, 765–767. [Google Scholar] [CrossRef]
- Rastegar, R.; Jessen, K. Measurement and Modeling of Liquid − Liquid Equilibrium for Ternary and Quaternary Mixtures of Water, Methanol, 2-Propanol, and 2,2,4-Trimethylpentane at 293.2 K. J. Chem. Eng. Data 2011, 56, 278–281. [Google Scholar] [CrossRef]
- Hwang, I.-C.; Park, S.-J.; Choi, J.-S. Liquid–Liquid Equilibria for the Binary System of Di-Isopropyl Ether (DIPE) + water in between 288.15 and 323.15 K and the Ternary Systems of DIPE + water + C1–C4 Alcohols at 298.15K. Fluid Phase Equilibria 2008, 269, 1–5. [Google Scholar] [CrossRef]
- Lladosa, E.; Montón, J.B.; Burguet, M.; de la Torre, J. Isobaric (Vapour + liquid + liquid) Equilibrium Data for (Di-n-Propyl Ether + n-Propyl Alcohol + water) and (Diisopropyl Ether+isopropyl Alcohol + water) Systems at 100 kPa. J. Chem. Thermodyn. 2008, 40, 867–873. [Google Scholar] [CrossRef]
- Sayar, A.A. Liquid-Liquid Equilibria of Some Water + 2-Propanol + Solvent Ternaries. J. Chem. Eng. Data 1991, 36, 61–65. [Google Scholar] [CrossRef]
- Aicher, T.; Bamberger, T.; Schluender, E.-U. Liquid-Liquid and Vapor-Liquid Phase Equilibria for 1-Butanol + Water + 2-Propanol at Ambient Pressure. J. Chem. Eng. Data 1995, 40, 696–698. [Google Scholar] [CrossRef]
- Wu, X.; Nho, J.; Kim, D.S.; Cho, J. Comparison of Energy Consumption of Two-Column Configuration and Three-Column Configuration in the Extractive Distillation Process for High Purity Refinement of Isopropyl Alcohol. Asian J. Chem. 2014, 26, 5223–5229. [Google Scholar] [CrossRef]
- Nhien, L.C.; Long, N.V.D.; Kim, S.; Lee, M. Design and Assessment of Hybrid Purification Processes through a Systematic Solvent Screening for the Production of Levulinic Acid from Lignocellulosic Biomass. Ind. Eng. Chem. Res. 2016, 55, 5180–5189. [Google Scholar] [CrossRef]
- Nhien, L.C.; Long, N.V.D.; Lee, M. Novel Hybrid Reactive Distillation with Extraction and Distillation Processes for Furfural Production from an Actual Xylose Solution. Energies 2021, 14, 1152. [Google Scholar] [CrossRef]
- Nhien, L.C.; Long, N.V.D.; Lee, M. Novel Heat–Integrated and Intensified Biorefinery Process for Cellulosic Ethanol Production from Lignocellulosic Biomass. Energy Convers. Manag. 2017, 141, 367–377. [Google Scholar] [CrossRef]
- Seider, W.D.; Lewin, D.R.; Seader, J.D.; Widagdo, S.; Gani, R.; Ng, K.M. Product And Process Design Principles Synthesis, Analysis, and Evaluation, 4th ed.; Wiley: New York, NY, USA, 2016; Volume 13, ISBN 978-1-119-28263-1. [Google Scholar]
- Cui, P.; Zhao, F.; Liu, X.; Shen, Y.; Li, S.; Meng, D.; Zhu, Z.; Ma, Y.; Wang, Y. Sustainable Wastewater Treatment via PV-Distillation Hybrid Process for the Separation of Ethyl Acetate/Isopropanol/Water. Sep. Purif. Technol. 2021, 257, 117919. [Google Scholar] [CrossRef]
- Hartanto, D.; Handayani, P.A.; Sutrisno, A.; Anugrahani, V.W.; Mustain, A.; Khoiroh, I. Isopropyl Alcohol Purification through Extractive Distillation Using Glycerol as an Entrainer: Technical Performances Simulation and Design. J. Bahan Alam Terbarukan 2019, 8, 133–143. [Google Scholar] [CrossRef]
- Cui, P.; Liu, X.; Zhao, F.; Zhu, Z.; Wang, L.; Wang, Y. Molecular Mechanism, Thermoeconomic, and Environmental Impact for Separation of Isopropanol and Water Using the Choline-Based DESs as Extractants. Ind. Eng. Chem. Res. 2020, 59, 16077–16087. [Google Scholar] [CrossRef]
- Gomey, A.; Tripathi, M.M.; Haider, M.B.; Kumar, R. Comparative Analysis of Iso-Propyl Alcohol Dehydration Using Ionic Liquids and Deep Eutectic Solvent. 2023, 44. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4327438 (accessed on 20 June 2023).
- Chen, H.H.; Chen, M.K.; Chen, B.C.; Chien, I.L. Critical Assessment of Using an Ionic Liquid as Entrainer via Extractive Distillation. Ind. Eng. Chem. Res. 2017, 56, 7768–7782. [Google Scholar] [CrossRef]
- Cao, Y.; Mu, T. Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis. Ind. Eng. Chem. Res. 2014, 53, 8651–8664. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, D.; Zhang, L.; Ma, Y.; Gao, J.; Wang, Y. Vapor-Liquid Phase Equilibrium for Separation of Isopropanol from Its Aqueous Solution by Choline Chloride-Based Deep Eutectic Solvent Selected by COSMO-SAC Model. J. Chem. Eng. Data 2019, 64, 1338–1348. [Google Scholar] [CrossRef]
- Neubauer, M.; Wallek, T.; Lux, S. Deep Eutectic Solvents as Entrainers in Extractive Distillation—A Review. Chem. Eng. Res. Des. 2022, 184, 402–418. [Google Scholar] [CrossRef]
- Rodriguez, N.R.; Kroon, M.C. Isopropanol Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers. J. Chem. Thermodyn. 2015, 85, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Arifin, S.; Chien, I.L. Design and Control of Isopropyl Alcohol Dehydration via Homogeneous Azeotropic Distillation Using Dimethyl Sulfoxide as Extractive Agent. Ind. Eng. Chem. Res. 2008, 47, 790–803. [Google Scholar] [CrossRef]
- Gmehling, J.; Möllmann, C. Synthesis of Distillation Processes Using Thermodynamic Models and the Dortmund Data Bank. Ind. Eng. Chem. Res. 1998, 37, 3112–3123. [Google Scholar] [CrossRef]
- Duan, C.; Li, C. Energy-Saving Improvement of Heat Integration for Separating Dilute Azeotropic Components in Extractive Distillation. Energy 2023, 263, 125821. [Google Scholar] [CrossRef]
- Ghuge, P.D.; Mali, N.A.; Sirsam, R.S. Study of the Effect of Operating Parameters on the Extractive Distillation of Isopropyl Alcohol–Water Mixture Using Dimethyl Sulphoxide as an Entrainer. Indian Chem. Eng. 2018, 60, 141–161. [Google Scholar] [CrossRef]
- Spatolisano, E.; Pellegrini, L.A. Dehydration of IPA-H 2 O Mixture: Review of Fundamentals and Proposal of Novel Energy-Efficient Separation Schemes. Chem. Eng. Sci. 2023, 273, 118672. [Google Scholar] [CrossRef]
- Kataria, R.; Jain, T.; Singh, N.; Kushwaha, J.P.; Sharma, B. Using Diaminomethanal as an Entrainer for the Separation of Isopropanol + Water Mixture. J. Solut. Chem. 2020, 49, 133–144. [Google Scholar] [CrossRef]
- Kong, Z.Y.; Tsai, Y.-T.; Sunarso, J.; Adi, V.S.K. Inherent Flexibility Design Strategy of Extractive Distillation for Binary Azeotropic Separation. Sep. Purif. Technol. 2023, 312, 123344. [Google Scholar] [CrossRef]
- Zhai, J.; Chen, X.; Sun, X.; Xie, H. Economically and Thermodynamically Efficient Pressure-Swing Distillation with Heat Integration and Heat Pump Techniques. Appl. Therm. Eng. 2023, 218, 119389. [Google Scholar] [CrossRef]
- Chang, W.T.; Huang, C.T.; Cheng, S.H. Design and Control of a Complete Azeotropic Distillation System Incorporating Stripping Columns for Isopropyl Alcohol Dehydration. Ind. Eng. Chem. Res. 2012, 51, 2997–3006. [Google Scholar] [CrossRef]
- Liang, K.; Li, W.; Luo, H.; Xia, M.; Xu, C. Energy-Efficient Extractive Distillation Process by Combining Preconcentration Column and Entrainer Recovery Column. Ind. Eng. Chem. Res. 2014, 53, 7121–7131. [Google Scholar] [CrossRef]
- Liu, Y.; Zhai, J.; Li, L.; Sun, L.; Zhai, C. Heat Pump Assisted Reactive and Azeotropic Distillations in Dividing Wall Columns. Chem. Eng. Process. Process Intensif. 2015, 95, 289–301. [Google Scholar] [CrossRef]
- Nhien, L.C.; Van Duc Long, N.; Lee, M. Novel Heat-Integrated Hybrid Distillation and Adsorption Process for Coproduction of Cellulosic Ethanol, Heat, and Electricity from Actual Lignocellulosic Fermentation Broth. Energies 2021, 14, 3377. [Google Scholar] [CrossRef]
- Han, D.; Chen, Y.; Shi, D. Different Extractive Distillation Processes for Isopropanol Dehydration Using Low Transition Temperature Mixtures as Entrainers. Chem. Eng. Process.-Process Intensif. 2022, 178, 109049. [Google Scholar] [CrossRef]
Method | Entrainer | Referenes | Property Model | HI & PI |
---|---|---|---|---|
HAD | Isooctane | [14] | NRTL | |
1-Methyl-N-butyl ether | [47] | UNIFAC | ||
Benzene | [18] | NRTL | ||
Cyclohexane | [17] | NRTL | ||
[22] | NRTL | |||
[8] | NRTL | ADWC | ||
[7] | NRTL | HI, ADWC, VRHP | ||
[53] | NRTL | ADWC, HP | ||
ED | 1-Methyl-N-butyl ether | [47] | UNIFAC | |
[EMIM][BF4], ChCl/glycerol and ChCl/EG, DMSO | [37] | NRTL | HI | |
Glycerol | [35] | NRTL | ||
ChCl/glycerol (1:2), ChCl/EG (1:2) | [36] | NRTL | HP | |
ChCl/EG1:2 | [55] | NRTL | SED, EDWC | |
[EMIM][N(CN)2]) | [11] | NRTL | HI | |
EMIMOAC | [38] | NRTL | ||
ChCl/triethylene glycol 1:3 | [40] | NRTL | ||
Lactic acid/ChCl (2:1), glycolic acid/ChCl (3:1) | [42] | NRTL | ||
DMSO | [9] | NRTL | ||
[45] | NRTL | |||
[46,49] | NRTL | |||
[52] | NRTL | HI | ||
[5] | HI, EDWC | |||
EG | [49] | NRTL | ||
[6] | NRTL-RK | EDWC, HP | ||
[1] | NRTL | |||
Diaminomethanal | [48] | NRTL | ||
Cyclohexane | [51] | NRTL | ||
PSD | Tetrahydrofuran | [10] | UNIQUAC | HI |
[50] | NRTL | HI, HP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nhien, L.C.; Agarwal, N.; Lee, M. Dehydration of Isopropanol: A Comparative Review of Distillation Processes, Heat Integration, and Intensification Techniques. Energies 2023, 16, 5934. https://doi.org/10.3390/en16165934
Nhien LC, Agarwal N, Lee M. Dehydration of Isopropanol: A Comparative Review of Distillation Processes, Heat Integration, and Intensification Techniques. Energies. 2023; 16(16):5934. https://doi.org/10.3390/en16165934
Chicago/Turabian StyleNhien, Le Cao, Neha Agarwal, and Moonyong Lee. 2023. "Dehydration of Isopropanol: A Comparative Review of Distillation Processes, Heat Integration, and Intensification Techniques" Energies 16, no. 16: 5934. https://doi.org/10.3390/en16165934
APA StyleNhien, L. C., Agarwal, N., & Lee, M. (2023). Dehydration of Isopropanol: A Comparative Review of Distillation Processes, Heat Integration, and Intensification Techniques. Energies, 16(16), 5934. https://doi.org/10.3390/en16165934