Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Bench
2.2. Fuels Characterisation
2.3. Experimental Tests Description
2.4. Economic and Environmental Assessment
3. Results
3.1. Engine Performance
3.1.1. Break Specific Fuel Consumption
3.1.2. Break Thermal Efficiency
3.1.3. Volumetric Efficiency
3.2. Emissions
3.2.1. Exhaust Gas Temperature
3.2.2. Specific Emission of Carbon Dioxide (BSCO2)
3.2.3. Specific Emission of Carbon Monoxide (BSCO)
3.2.4. Specific Emissions of Carbon Monoxide (BSNOx)
3.2.5. Specific Emission of Total Unburned Hydrocarbons (BSHC)
3.2.6. Specific Emission of Particulate Matter (BSPM)
3.3. Economic and Environment Assessment
4. Discussion
5. Conclusions
- JB blends in proportions of up to 10% are suitable for power generation in CI-ICE in non-interconnected areas localised above 2000 masl because the performance and emissions of the CI-ICE do not differ significantly from diesel operations;
- The CI-ICE does not require modifications to operate, even with a blend of 20% of JB with diesel. The CI-ICE only requires a catalyser to tackle the increase in NOx emissions. This means that a power generation plant’s operational and maintenance costs are hardly affected, which is beneficial for locations with a diesel engine as a generation plant;
- In the case of implementing JB blends as a fuel for power generation, this could represent some important improvements in economic, ecological, and health aspects. In the economic parameter, the use of JB blends could represent a reduction in fuel costs. Additionally, JCL crops require fewer agrochemical products. Therefore, an indirect reduction in agrochemical costs is also obtained;
- The replacement of PB by JB in the blend with diesel offers a favourable solution from economic and environmental perspectives. From an economic standpoint, JB has the potential to reduce overall fuel consumption (approx. 12%), leading to cost savings, in addition to being a good prospect for production in areas near consumption. Environmentally, the use of JB can help to mitigate direct CO2 emissions by reducing fuel consumption, but an additional decrease in indirect emissions associated with the production cycle is better for JB than PB and fossil fuels.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMEP | Break Specific Mean Pressure |
BSFC | Brake Specific Fuel Consumption |
BSNOx | Brake Specific Nitrogen Oxides |
BSCO2 | Brake Specific Carbon Dioxide |
BSCO | Brake Specific Carbon Monoxide |
BSHC | Brake Specific Carbo unburned hydrocarbon. |
BSPM | Brake Specific Particulate Matter |
CI | Compression Ignition |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
ICE | Internal Combustion Engine |
LHV | Lower Heating Value |
NOx | Nitrogen Oxides |
GHG | Greenhouse Gases |
GWP | Global Warming Potencia |
HC | Unburned Hydrocarbon |
JCL | Jatropha curcas L. |
JB | Jatropha curcas L. Biodiesel |
JB3, JB5, JB7, JB10, JB20 | Blends of diesel /biodiesel |
PO | Palm Oil |
PB | Palm biodiesel |
References
- IPSE—Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas Caracterización Energética de Las ZNI—IPSE-CNM. Available online: https://ipse.gov.co/cnm/caracterizacion-de-las-zni/ (accessed on 10 July 2023).
- Vargas, L.E.P.; Laurance, W.F.; Clements, G.R.; Edwards, W. The Impacts of Oil Palm Agriculture on Colombia’s Biodiversity: What We Know and Still Need to Know. Trop. Conserv. Sci. 2015, 8, 828–845. [Google Scholar] [CrossRef]
- Nurfatriani, F.; Ramawati; Sari, G.K.; Komarudin, H. Optimization of Crude Palm Oil Fund to Support Smallholder Oil Palm Replanting in Reducing Deforestation in Indonesia. Sustainability 2019, 11, 4914. [Google Scholar] [CrossRef] [Green Version]
- Harch, C.A.; Rasul, M.G.; Hassan, N.M.S.; Bhuiya, M.M.K. Modelling of Engine Performance Fuelled with Second Generation Biodiesel. Procedia Eng. 2014, 90, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Giraldi-Diaz, M.; Medina-Salas, L.; Castillo-González, E.; Benavides, M.C. Environmental Impact Associated with the Supply Chain and Production of Biodiesel from Jatropha curcas L. through Life Cycle Analysis. Sustainability 2018, 10, 1451. [Google Scholar] [CrossRef] [Green Version]
- Kondrasheva, N.; Eremeeva, A. Production of Biodiesel Fuel from Vegetable Raw Materials. J. Min. Inst. 2023, 260, 248–256. [Google Scholar] [CrossRef]
- Cortez-Núñez, J.A.; Gutiérrez-Castillo, M.E.; Mena-Cervantes, V.Y.; Terán-Cuevas, Á.R.; Tovar-Gálvez, L.R.; Velasco, J. A GIS Approach Land Suitability and Availability Analysis of Jatropha curcas L. Growth in Mexico as a Potential Source for Biodiesel Production. Energies 2020, 13, 5888. [Google Scholar] [CrossRef]
- García Mariaca, A. Evaluación de Desempeño y Emisiones de Un Motor de Trabajo Pesado Encendido Por Compresión Cuando Es Operado Con Biodiesel y Aceite de Jatropha y Diesel Fósil. Master. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2015. [Google Scholar]
- Achten, W.M.J.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.; Aerts, R.; Muys, B. Jatropha Bio-Diesel Production and Use. Biomass Bioenergy 2008, 32, 1063–1084. [Google Scholar] [CrossRef] [Green Version]
- Sierra, M.; Quiñones, L.; Rodríguez, M. Uso Potencial de Las Mezclas de Biodiesel de Jatropha y de Palma En. Studiositas 2010, 5, 75–87. [Google Scholar]
- Rahman, S.A.; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Rahman, M.M. Assessing Idling Effects on a Compression Ignition Engine Fueled with Jatropha and Palm Biodiesel Blends. Renew. Energy 2014, 68, 644–650. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Kumar, N.; Cho, H.M. A Study on the Performance and Emission of a Diesel Engine Fueled with Jatropha Biodiesel Oil and Its Blends. Energy 2012, 37, 616–622. [Google Scholar] [CrossRef]
- Paul, G.; Datta, A.; Mandal, B.K. An Experimental and Numerical Investigation of the Performance, Combustion and Emission Characteristics of a Diesel Engine Fueled with Jatropha Biodiesel. Energy Procedia 2014, 54, 455–467. [Google Scholar] [CrossRef] [Green Version]
- Öner, C.; Altun, Ş. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine. Appl. Energy 2009, 86, 2114–2120. [Google Scholar] [CrossRef]
- Raheman, H.; Kumari, S. Combustion characteristics and emissions of a compression ignition engine using emulsified jatropha biodiesel blend. Biosyst. Eng. 2014, 123, 29–39. [Google Scholar] [CrossRef]
- Gogoi, T.K.; Talukdar, S.; Baruah, D.C. Comparative analysis of performance and combustion of koroch seed oil and jatropha methyl ester blends in a diesel engine. Sustain. Transp. 2011, 13, 3533. [Google Scholar]
- Jindal, S.; Nandwana, B.P.; Rathore, N.S. Comparative Evaluation of Combustion, Performance, and Emissions of Jatropha Methyl Ester and Karanj Methyl Ester in a Direct Injection Diesel Engine. Energy Fuels 2010, 24, 1565–1572. [Google Scholar] [CrossRef]
- Mamilla, V.R.; Mallikarjun, M.V.; Rao, G.L.N. Effect of Combustion Chamber Design on a DI Diesel Engine Fuelled with Jatropha Methyl Esters Blends with Diesel. Procedia Eng. 2013, 64, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Millo, F.; Ferraro, C.; Vezza, D.; Vlachos, T. Analysis of Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and JME. SAE Int. J. Fuels Lubr. 2011, 4, 9–22. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Norhasyima, R.S. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renew. Sustain. Energy Rev. 2011, 15, 3501–3515. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 2013, 55, 879–887. [Google Scholar] [CrossRef]
- Prasad, L.; Pradhan, S.; Das, L.M.; Naik, S.N. Experimental assessment of toxic phorbol ester in oil, biodiesel and seed cake of Jatropha curcas and use of biodiesel in diesel engine. Appl. Energy 2012, 93, 245–250. [Google Scholar] [CrossRef]
- Jindal, S.; Nandwana, B.P.; Rathore, N.S.; Vashistha, V. Experimental Investigation of the Effect of Compression Ratio and Injection Pressure in a Direct Injection Diesel Engine Running on Jatropha Methyl Ester. Appl. Therm. Eng. 2010, 30, 442–448. [Google Scholar] [CrossRef]
- Mohammed, E.K.; Nemit-Allah, M.A. Experimental investigations of ignition delay period and performance of a diesel engine operated with Jatropha oil biodiesel. Alex. Eng. J. 2013, 52, 141–149. [Google Scholar]
- Sharma, A.; Murugan, S. Investigation on the behaviour of a DI diesel engine fueled with Jatropha Methyl Ester (JME) and Tyre Pyrolysis Oil (TPO) blends. Fuel 2013, 108, 699–708. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hassan, M.H.; Kalam, M.A.; Atabani, A.E.; Memon, L.A.; Rahman, S.M.A. Performance and Emission Analysis of Jatropha curcas and Moringa oleifera Methyl Ester Fuel Blends in a Multi-Cylinder Diesel Engine. J. Clean. Prod. 2014, 65, 304–310. [Google Scholar] [CrossRef]
- Cui, X.; Kim, T.; Fujii, Y.; Kusaka, J.; Daisho, Y.; Tongroon, M.; Chollacoop, N. The Effects of Jatropha-Derived Biodiesel on Diesel Engine Combustion and Emission Characteristics; SAE Technical Paper 2012-01-1637, SAE: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Qin, J.; Roskilly, A.P. Comparative study of performance and emissions of a diesel engine using Chinese pistache and jatropha biodiesel. Fuel Process. Technol. 2010, 91, 1761–1767. [Google Scholar] [CrossRef]
- Banapurmath, N.R.; Tewari, P.G.; Hosmath, R.S. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters. Renew Energy 2008, 33, 1982–1988. [Google Scholar] [CrossRef]
- Mariaca, A.G.; Castaño, R.M. Anhydrous bioethanol gasoline blends at high altitude above sea level in a SI engine: Performance and specific emissions. Biofuels 2021, 12, 381–390. [Google Scholar] [CrossRef]
- Abedin, M.J.; Masjuki, H.H.; Kalam, M.A.; Sanjid, A.; Rahman, S.A.; Fattah, I.R. Performance, emissions, and heat losses of palm and jatropha biodiesel blends in a diesel engine. Ind. Crops Prod. 2014, 59, 96–104. [Google Scholar] [CrossRef]
- Global Petrol Prices Colombia Precios Del Diesel, 3 July 2023|GlobalPetrolPrices.Com. Available online: https://es.globalpetrolprices.com/Colombia/diesel_prices/ (accessed on 10 July 2023).
- Siregar, K.; Tambunan, A.H.; Irwanto, A.K.; Wirawan, S.S.; Araki, T. A Comparison of Life Cycle Assessment on Oil Palm (Elaeis guineensis Jacq.) and Physic Nut (Jatropha curcas Linn.) as Feedstock for Biodiesel Production in Indonesia. Energy Procedia 2015, 65, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, K.; Shukla, G.; Goel, V.L.; Pathre, U.V.; Rahi, T.S.; Tuli, R. The field performance of some accessions of Jatropha curcas L. (Biodiesel Plant) on degraded sodic land in North India. Int. J. Green Energy 2013, 10, 1026–1040. [Google Scholar] [CrossRef]
- Lozano-Castellanos, L.F.; Méndez-Vanegas, J.E.; Tomatis, F.; Correa-Guimaraes, A.; Navas-Gracia, L.M. Zoning of Potential Areas for the Production of Oleaginous Species in Colombia under Agroforestry Systems. Agriculture 2023, 13, 601. [Google Scholar] [CrossRef]
- Abedin, M.J.; Masjuki, H.H.; Kalam, M.A.; Sanjid, A.; Ashraful, A.M. Combustion, performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils. Energy Convers. Manag. 2014, 85, 173–189. [Google Scholar] [CrossRef]
- Prockop, L.D.; Chichkova, R.I. Carbon monoxide intoxication: An updated review. J. Neurol. Sci. 2007, 262, 122–130. [Google Scholar] [CrossRef]
- Rose, J.J.; Wang, L.; Xu, Q.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy. Am. J. Respir. Crit. Care Med. 2017, 195, 596–606. [Google Scholar] [CrossRef] [Green Version]
- Eremeeva, A.M.; Kondrasheva, N.K.; Khasanov, A.F.; Oleynik, I.L. Environmentally Friendly Diesel Fuel Obtained from Vegetable Raw Materials and Hydrocarbon Crude. Energies 2023, 16, 2121. [Google Scholar] [CrossRef]
- IPSE—Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas Informe de La Demanda de Energía Registrada En Las Localidades de Las ZNI. Available online: https://ipse.gov.co/ (accessed on 10 July 2023).
- Castanheira, É.G.; Freire, F. Environmental life cycle assessment of biodiesel produced with palm oil from Colombia. Int. J. Life Cycle Assess. 2017, 22, 587–600. [Google Scholar] [CrossRef]
- Calderón, S.; Alvarez, A.C.; Loboguerrero, A.M.; Arango, S.; Calvin, K.; Kober, T.; Daenzer, K.; Fisher-Vanden, K. Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets. Energy Econ. 2016, 56, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Pulido, A.D.; Jiménez, R.; Turriago, J.D.; Mendoza, J.E. Inventario Nacional de Gases de Efecto Invernadero. Available online: http://www.ideam.gov.co/ (accessed on 10 July 2023).
- Ogunwole, J.O.; Chaudhary, D.R.; Ghosh, A.; Daudu, C.K.; Chikara, J.; Patolia, J.S. Contribution of Jatropha curcas to soil quality improvement in a degraded Indian entisol. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 245–251. [Google Scholar]
- Guillaume, T.; Holtkamp, A.M.; Damris, M.; Brümmer, B.; Kuzyakov, Y. Soil degradation in oil palm and rubber plantations under land resource scarcity. Agric. Ecosyst. Environ. 2016, 232, 110–118. [Google Scholar] [CrossRef]
- Fedepalma La Palma de Aceite En Colombia. Available online: https://fedepalma.org/zonas-palmeras/zona-norte/ (accessed on 10 July 2023).
- Bhikuning, A.; Matsumura, E.; Senda, J. A review: Non-evaporating spray characteristics of biodiesel Jatropha and palm oil and its blends. Int. Rev. Mech. Eng. 2018, 12, 364–370. [Google Scholar] [CrossRef]
- Malykh, I.B.; Kornev, A.V.; Korshunov, G.I.; Seregin, A.S. To the question of ventilation of underground mine workings during operation of diesel-hydraulic locomotives. Min. Informational Anal. Bull. 2022, 140–156. [Google Scholar] [CrossRef]
- Eremeeva, A.M.; Ilyashenko, I.S.; Korshunov, G.I. The Possibility of Application of Bioadditives to Diesel Fuel at Mining Enterprises. Min. Informational Anal. Bull. 2022, 39–49. [Google Scholar] [CrossRef]
- Lutz, E.A.; Reed, R.J.; Lee, V.S.; Burgess, J.L. Comparison of personal diesel and biodiesel exhaust exposures in an underground mine. J. Occup. Environ. Hyg. 2017, 14, D102–D109. [Google Scholar] [CrossRef]
- Demirci, A.; Akar, O.; Ozturk, Z. Technical-Environmental-Economic Evaluation of Biomass-Based Hybrid Power System with Energy Storage for Rural Electrification. Renew. Energy 2022, 195, 1202–1217. [Google Scholar] [CrossRef]
- Yi, Z.; Chen, Z.; Yin, K.; Wang, L.; Wang, K. Sensing as the Key to the Safety and Sustainability of New Energy Storage Devices. Prot. Control. Mod. Power Syst. 2023, 8, 27. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, D.; Du, J.; Sun, H.; Li, L.; Wang, L.; Wang, K. A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms. Energies 2023, 16, 3167. [Google Scholar] [CrossRef]
- Dash, R.L.; Mohanty, B.; Hota, P.K. Energy, Economic and Environmental (3E) Evaluation of a Hybrid Wind/Biodiesel Generator/Tidal Energy System Using Different Energy Storage Devices for Sustainable Power Supply to an Indian Archipelago. Renew. Energy Focus 2023, 44, 357–372. [Google Scholar] [CrossRef]
- García-Mariaca, A.; Llera-Sastresa, E. Energy and economic analysis feasibility of CO2 capture on a natural gas internal combustion engine. Greenh. Gases: Sci. Technol. 2022, 13, 144–159. [Google Scholar] [CrossRef]
- García-Mariaca, A.; Llera-Sastresa, E.; Moreno, F. Application of ORC to Reduce the Energy Penalty of Carbon Capture in Non-Stationary ICE. Energy Convers. Manag. 2022, 268, 116029. [Google Scholar] [CrossRef]
- García Mariaca, A.; Llera, E. Dynamic CO2 Capture in a Natural Gas Engine Used in Road Freight Transport. In Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), Lyon, France, 23–24 October 2022. [Google Scholar] [CrossRef]
- Zhou, L.; Song, Y.; Ji, W.; Wei, H. Machine Learning for Combustion. Energy AI 2022, 7, 100128. [Google Scholar] [CrossRef]
- Kenanoğlu, R.; Baltacıoğlu, M.K.; Demir, M.H.; Özdemir, M.E. Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches. Int. J. Hydrogen Energy 2020, 45, 26357–26369. [Google Scholar] [CrossRef]
- Shrivastava, N.; Khan, Z.M. Application of Soft Computing in the Field of Internal Combustion Engines: A Review. Arch. Comput. Methods Eng. 2018, 25, 707–726. [Google Scholar] [CrossRef]
- Norouzi, A.; Heidarifar, H.; Shahbakhti, M.; Koch, C.R.; Borhan, H. Model Predictive Control of Internal Combustion Engines: A Review and Future Directions. Energies 2021, 14, 6251. [Google Scholar] [CrossRef]
Engine Parameters | Specifications |
---|---|
Manufacturer | Lister Petter |
Engine Type | 4 stroke, variable speed |
Number of cylinders | 3 |
Type Fuel Injection | Direct |
Injection pressure | 200 kPa |
Displacement volume | 1.395 L |
Compression ratio | 18.5:1 |
Cooling type | Water |
Device | Reference | Brand | Accuracy |
---|---|---|---|
Torque | 4520A1000 | Kistler | 1 Nm |
Thermocouple | Type K | - | 1.5 K |
Digital Scale | HN | BBG | 1 gr |
Data acquisition card | 6212 | N-I | 2.71 mV |
Air Flow meter | 50MW20 | Meriam | - |
Differential pressure | DT-8890 | CEM | 7 Pa |
Gas Analyser | AGS-688 | Brain-Bee | 0.01% CO, 0.1% CO2, 1 ppm HC |
Gas Analyser | 350 | Testo | 1 ppm NOx |
Particle counter | Elpi + | Dekati | - |
Property | Unit | Diesel | JB |
---|---|---|---|
Density at 15 °C | kg/m3 | 830 | 880 |
LHV | MJ/kg | 45.34 | 39.03 |
Viscosity at 20 °C | cSt | 1.85 | 4.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Mariaca, A.; Villalba, J.; Carreño, U.; Aldana, D. Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas. Energies 2023, 16, 5964. https://doi.org/10.3390/en16165964
García-Mariaca A, Villalba J, Carreño U, Aldana D. Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas. Energies. 2023; 16(16):5964. https://doi.org/10.3390/en16165964
Chicago/Turabian StyleGarcía-Mariaca, Alexander, Jorge Villalba, Uriel Carreño, and Didier Aldana. 2023. "Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas" Energies 16, no. 16: 5964. https://doi.org/10.3390/en16165964
APA StyleGarcía-Mariaca, A., Villalba, J., Carreño, U., & Aldana, D. (2023). Performance and Emissions of a CI-ICE Fuelled with Jatropha Biodiesel Blends and Economic and Environment Assessment for Power Generation in Non-Interconnected Areas. Energies, 16(16), 5964. https://doi.org/10.3390/en16165964