An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks
Abstract
:1. Introduction
1.1. Literature Review
- ➢
- Short-term load forecasting (STLF), ranging from one hour to one week.
- ➢
- Medium-term load forecasting (MTLF), ranging from one week to one month.
- ➢
- Long-term load forecasting (LTLF), ranging from one month to one year.
1.2. Motivation
- We review different SML strategies that are particularly applicable in the operation and monitoring of distribution grids.
- We concisely review DSSE concepts that cover the topics of generating pseudo-measurements (based on STLF calculations) from limited available measurements, performing DSSE calculations, and detecting FDIAs to ensure distribution grid data integrity.
- We provide a comprehensive summary of SML research performed on distribution grid operation and control technology.
2. Machine Learning Algorithms
2.1. Supervised Machine Learning Methods
2.1.1. Regression
2.1.2. Classification
- Linear Regression (LR)
- b.
- Polynomial Regression
- c.
- Logistic Regression
- d.
- Support Vector Machine
- e.
- Decision Tree
- f.
- Deep Neural Network
2.2. Assessment of Regression and Classification Methods
- Evaluation Metrics in Classification
- Accuracy: This is the most common evaluation metric in classification problems. Accuracy is defined as the ratio of the number of correct predictions over the total number of predictions.
- TP stands for true positive, where both predicted and actual outputs are positive. TN stands for true negative, where both predicted and actual outputs are negative. FP stands for false positive, where predicted outputs are positive, but actual outputs are negative. FN stands for false negative, where predicted outputs are negative, but actual outputs are positive.
- Precision: This is defined as the proportion of correctly predicted positive outputs to the total number of predicted positive outputs.
- Recall: This is defined as the proportion of correctly predicted positive outputs to the total number of actual positive outputs.
- F1 Score: Precision and recall are combined into a single metric in the F1 score, which conveys the balance between the precision and recall. The F1 score is particularly useful when there is an imbalance between classes in the dataset.
- b.
- Evaluation Metrics in Regression
- Mean Square Error (MSE): The MSE is calculated as the mean or average of the squared differences between predicted and estimated output values of a dataset; it is defined as:
- Root Mean Square Error (RMSE): The RMSE is the square root of MSE. One benefit of using RMSE is that its unit is the same as the original unit of the target value.
- Mean Absolute Error (MAE): The MAE is simply the average of the absolute error values. Like RMSE, the unit of the MAE is the same as the original unit of the measurements.
3. Supervised Machine Learning Approaches for Short-Term Load Forecasting
4. Supervised Machine Learning Approaches for Distribution System State Estimation
- Weighted least squares (WLS) is applicable in both transmission and distribution grids; it is a fast and straightforward method, but it is sensitive to bad data.
- Least median of squares (LMS) is robust against bad data. However, it requires high computational complexity and measurement redundancy.
- Least trimmed squares (LTS) is robust against bad data, but both computational complexity and memory utilization are high.
- Least absolute value (LAV) is robust against bad data and line impedance uncertainty, but in contrast, it is sensitive to measurement uncertainty and leverage points.
5. Supervised Machine Learning Approaches for Detecting False Data Injection Attacks in a Distribution Grid
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADN | Active distribution network |
AMI | Advanced metering infrastructure |
ANN | Artificial neural network |
BDD | Bad data detection |
DG | Distributed generation |
DNN | Deep neural network |
DSSE | Distribution system state estimation |
DT | Decision tree |
EV | Electric vehicle |
FDIA | False data injection attack |
HV/MV | High to medium voltage |
LAV | Least absolute value |
LMS | Least median of squares |
LSTM | Long short-term memory |
LTS | Least trimmed squares |
ML | Machine learning |
MAE | Mean absolute error |
MPE | Mean percentage error |
MSE | Mean square error |
PV | Photovoltaic panel |
PMU | Phasor measurement unit |
ReLU | Rectified linear unit |
RF | Random forest |
RMSE | Root mean square error |
SCADA | Supervisory control and data acquisition |
SML | Supervised machine learning |
STLF | Short-term load forecasting |
SVM | Support vector machine |
SVR | Support vector regression |
References
- Glover, J.D.; Sarma, M.S.; Overbye, T. Power System Analysis and Design; Cengage Learning: Boston, MA, USA, 2012. [Google Scholar]
- Li, F.; Qiao, W.; Sun, H.; Wan, H.; Wang, J.; Xia, Y.; Xu, Z.; Zhang, P. Smart transmission grid: Vision and framework. IEEE Trans. Smart Grid 2010, 1, 168–177. [Google Scholar] [CrossRef]
- Deka, D.; Kekatos, V.; Cavraro, G. Learning Distribution Grid Topologies: A Tutorial. IEEE Trans. Smart Grid 2022. early access. [Google Scholar] [CrossRef]
- Gomes, L.; Coelho, A.; Vale, Z. Assessment of Energy Customer Perception, Willingness, and Acceptance to Participate in Smart Grids—A Portuguese Survey. Energies 2023, 16, 270. [Google Scholar] [CrossRef]
- Aghahosseini, A.; Solomon, A.A.; Breyer, C.; Pregger, T.; Simon, S.; Strachan, P.; Jäger-Waldau, A. Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Appl. Energy 2023, 331, 120401. [Google Scholar] [CrossRef]
- Pham, Q.V.; Liyanage, M.; Deepa, N.; VVSS, M.; Reddy, S.; Maddikunta, P.K.R.; Khare, N.; Gadekallu, T.R.; Hwang, W.J. Deep Learning for Intelligent Demand Response and Smart Grids: A Comprehensive Survey. arXiv 2021, arXiv:2101.08013. [Google Scholar]
- Palanisamy, S.; Rahiman, Z.; Chenniappan, S. Introduction to Smart Power Systems. In Artificial Intelligence-Based Smart Power Systems; Wiley: Hoboken, NJ, USA, 2023; pp. 1–13. [Google Scholar]
- Khan, S.N.; Kazmi, S.A.A.; Altamimi, A.; Khan, Z.A.; Alghassab, M.A. Smart Distribution Mechanisms—Part I: From the Perspectives of Planning. Sustainability 2022, 14, 16308. [Google Scholar] [CrossRef]
- Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [Google Scholar] [CrossRef]
- Fan, J.; Borlase, S. The evolution of distribution. IEEE Power Energy Mag. 2009, 7, 63–68. [Google Scholar] [CrossRef]
- Pokhrel, B.R.; Bak-Jensen, B.; Pillai, J.R. Integrated approach for network observability and state estimation in active distribution grid. Energies 2019, 12, 2230. [Google Scholar] [CrossRef] [Green Version]
- Kazmi, S.A.A.; Shahzad, M.K.; Khan, A.Z.; Shin, D.R. Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies 2017, 10, 501. [Google Scholar] [CrossRef]
- Muscas, C.; Pau, M.; Pegoraro, P.; Sulis, S. Smart electric energy measurements in power distribution grids. IEEE Instrum. Meas. Mag. 2015, 18, 17–21. [Google Scholar] [CrossRef]
- Ahmad, F.; Rasool, A.; Ozsoy, E.; Sekar, R.; Sabanovic, A.; Elitaş, M. Distribution system state estimation-A step towards smart grid. Renew. Sustain. Energy Rev. 2018, 81, 2659–2671. [Google Scholar] [CrossRef] [Green Version]
- Stephen, B. Machine Learning Applications in Power System Condition Monitoring. Energies 2022, 15, 1808. [Google Scholar] [CrossRef]
- Zhao, J.; Gómez-Expósito, A.; Netto, M.; Mili, L.; Abur, A.; Terzija, V.; Kamwa, I.; Pal, B.; Singh, A.K.; Qi, J.; et al. Power System Dynamic State Estimation: Motivations, Definitions, Methodologies, and Future Work. IEEE Trans. Power Syst. 2019, 34, 3188–3198. [Google Scholar] [CrossRef]
- Bose, A. Smart transmission grid applications and their supporting infrastructure. IEEE Trans. Smart Grid 2010, 1, 11–19. [Google Scholar] [CrossRef]
- Heydt, G.T. The next generation of power distribution systems. IEEE Trans. Smart Grid 2010, 1, 225–235. [Google Scholar] [CrossRef]
- Yilmaz, M.; Krein, P.T. Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces. IEEE Trans. Power Electron. 2013, 28, 5673–5689. [Google Scholar] [CrossRef]
- Boroyevich, D.; Cvetković, I.; Dong, D.; Burgos, R.; Wang, F.; Lee, F. Future electronic power distribution systems—A contemplative view. In Proceedings of the 2010 12th International Conference on Optimization of Electrical and Electronic Equipment, Brasov, Romania, 20–22 May 2010; pp. 1369–1380. [Google Scholar] [CrossRef]
- Lin, W.M.; Teng, J.H.; Chen, S.J. A highly efficient algorithm in treating current measurements for the branch-current-based distribution state estimation. IEEE Trans. Power Deliv. 2001, 16, 433–439. [Google Scholar] [CrossRef]
- Niknam, T.; Firouzi, B.B. A practical algorithm for distribution state estimation including renewable energy sources. Renew. Energy 2009, 34, 2309–2316. [Google Scholar] [CrossRef]
- Thukaram, D.; Jerome, J.; Surapong, C. Robust three-phase state estimation algorithm for distribution networks. Electr. Power Syst. Res. 2000, 55, 191–200. [Google Scholar] [CrossRef]
- Della Giustina, D.; Pau, M.; Pegoraro, P.A.; Ponci, F.; Sulis, S. Electrical distribution system state estimation: Measurement issues and challenges. IEEE Instrum. Meas. Mag. 2014, 17, 36–42. [Google Scholar] [CrossRef]
- Saldaña-González, A.E.; Sumper, A.; Aragüés-Peñalba, M.; Smolnikar, M. Advanced distribution measurement technologies and data applications for smart grids: A review. Energies 2020, 13, 3730. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Trans. Smart Grid 2019, 10, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Gao, D.W.; Lin, L. Smart meters in smart grid: An overview. In Proceedings of the 2013 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 4–5 April 2013; pp. 57–64. [Google Scholar] [CrossRef]
- Muscas, C.; Pau, M.; Pegoraro, P.A.; Sulis, S. Effects of measurements and pseudomeasurements correlation in distribution system state estimation. IEEE Trans. Instrum. Meas. 2014, 63, 2813–2823. [Google Scholar] [CrossRef]
- Angioni, A.; Schlösser, T.; Ponci, F.; Monti, A. Impact of pseudo-measurements from new power profiles on state estimation in low-voltage grids. IEEE Trans. Instrum. Meas. 2016, 65, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Schulz, N.N. A load modeling algorithm for distribution system state estimation. Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf. 2001, 1, 102–106. [Google Scholar] [CrossRef]
- Massignan, J.A.D.; Fantin, C.A.; London, J.B.A.; Camillo, M.H.M. Real-time load estimation for distribution feeders. In Proceedings of the 2015 IEEE Eindhoven PowerTech, PowerTech 2015, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar] [CrossRef]
- Dewangan, F.; Abdelaziz, A.Y.; Biswal, M. Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review. Energies 2023, 16, 1404. [Google Scholar] [CrossRef]
- Motepe, S.; Hasan, A.N.; Stopforth, R. Improving Load Forecasting Process for a Power Distribution Network Using Hybrid AI and Deep Learning Algorithms. IEEE Access 2019, 7, 82584–82598. [Google Scholar] [CrossRef]
- Falces, A.; Capellan-Villacian, C.; Mendoza-Villena, M.; Zorzano-Santamaria, P.J.; Lara-Santillan, P.M.; Garcia-Garrido, E.; Fernandez-Jimenez, L.A.; Zorzano-Alba, E. Short-term net load forecast in distribution networks with PV penetration behind the meter. Energy Rep. 2023, 9, 115–122. [Google Scholar] [CrossRef]
- Pinheiro, M.G.; Madeira, S.C.; Francisco, A.P. Short-term electricity load forecasting—A systematic approach from system level to secondary substations. Appl. Energy 2023, 332, 120493. [Google Scholar] [CrossRef]
- Tomar, A. Prediction Techniques for Renewable Energy Generation and Load Demand Forecasting; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Habbak, H.; Mahmoud, M.; Metwally, K.; Fouda, M.M.; Ibrahem, M.I. Load Forecasting Techniques and Their Applications in Smart Grids. Energies 2023, 16, 1480. [Google Scholar] [CrossRef]
- Singh, A.K.; Ibraheem; Khatoon, S.; Muazzam, M.; Chaturvedi, D.K. Load forecasting techniques and methodologies: A review. In Proceedings of the ICPCES 2012—2012 2nd International Conference on Power, Control and Embedded Systems, Allahabad, India, 17–19 December 2012; 2012; pp. 1–10. [Google Scholar] [CrossRef]
- Su, P.; Tian, X.; Wang, Y.; Deng, S.; Zhao, J.; An, Q.; Wang, Y. Recent trends in load forecasting technology for the operation optimization of distributed energy system. Energies 2017, 10, 1303. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Mahajan, V. Load forecasting and risk assessment for energy market with renewable based distributed generation. Renew. Energy Focus 2022, 42, 190–205. [Google Scholar] [CrossRef]
- Ahmad, N.; Ghadi, Y.; Adnan, M.; Ali, M. Load Forecasting Techniques for Power System: Research Challenges and Survey. IEEE Access 2022, 10, 71054–71090. [Google Scholar] [CrossRef]
- Feinberg, E.A.; Genethliou, D. Load Forecasting. In Applied Mathematics for Restructured Electric Power Systems. Power Electronics and Power Systems; Springer: New York, NY, USA, 2005. [Google Scholar]
- Nainar, K.; Iov, F. Smart meter measurement-based state estimation for monitoring of low-voltage distribution grids. Energies 2020, 13, 5367. [Google Scholar] [CrossRef]
- Kuhar, U.; Pantos, M.; Kosec, G.; Svigelj, A. The Impact of Model and Measurement Uncertainties on a State Estimation in Three-Phase Distribution Networks. IEEE Trans. Smart Grid 2019, 10, 3301–3310. [Google Scholar] [CrossRef]
- Husnoo, M.A.; Anwar, A.; Hosseinzadeh, N.; Islam, S.N.; Mahmood, A.N.; Doss, R. False data injection threats in active distribution systems: A comprehensive survey. Future Gener. Comput. Syst. 2022, 140, 344–364. [Google Scholar] [CrossRef]
- Kamal, M.; Farajollahi, M.; Nazaripouya, H.; Mohsenian-Rad, H. Cyberattacks against Event-Based Analysis in Micro-PMUs: Attack Models and Counter Measures. IEEE Trans. Smart Grid 2021, 12, 1577–1588. [Google Scholar] [CrossRef]
- Deng, R.; Zhuang, P.; Liang, H. False Data Injection Attacks Against State Estimation in Power Distribution Systems. IEEE Trans. Smart Grid 2019, 10, 2871–2881. [Google Scholar] [CrossRef]
- Zhuang, P.; Deng, R.; Liang, H. False Data Injection Attacks against State Estimation in Multiphase and Unbalanced Smart Distribution Systems. IEEE Trans. Smart Grid 2019, 10, 6000–6013. [Google Scholar] [CrossRef]
- Huang, Y.F.; Werner, S.; Huang, J.; Kashyap, N.; Gupta, V. State estimation in electric power grids: Meeting new challenges presented by the requirements of the future grid. IEEE Signal Process. Mag. 2012, 29, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Angioni, A.; Shang, J.; Ponci, F.; Monti, A. Real-Time Monitoring of Distribution System Based on State Estimation. IEEE Trans. Instrum. Meas. 2016, 65, 2234–2243. [Google Scholar] [CrossRef]
- Pegoraro, P.A.; Sulis, S. Robustness-oriented meter placement for distribution system state estimation in presence of network parameter uncertainty. IEEE Trans. Instrum. Meas. 2013, 62, 954–962. [Google Scholar] [CrossRef]
- Singh, R.; Pal, B.C.; Jabr, R.A. Choice of estimator for distribution system state estimation. IET Gener. Transm. Distrib. 2009, 3, 666–678. [Google Scholar] [CrossRef] [Green Version]
- Neranjan Thilakarathne, N.; Mohan, K.K.; Surekha, L.; Hussain, A. Smart Grid: A Survey of Architectural Elements, Machine Learning and Deep Learning Applications and Future Directions. J. Intell. Syst. Internet Things 2021, 3, 32–42. [Google Scholar] [CrossRef]
- Yan, J.; Tang, B.; He, H. Detection of false data attacks in smart grid with supervised learning. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1395–1402. [Google Scholar] [CrossRef]
- Miraftabzadeh, S.M.; Foiadelli, F.; Longo, M.; Pasetti, M. A Survey of Machine Learning Applications for Power System Analytics. In Proceedings of the 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genova, Italy, 11–14 June 2019. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X.; Zhang, D.; Chen, T.; Li, C.; Huang, W. Machine learning for power system protection and control. Electr. J. 2021, 34, 106881. [Google Scholar] [CrossRef]
- Wang, H.; Ma, C.; Zhou, L. A brief review of machine learning and its application. In Proceedings of the 2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 19–20 December 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Alzubi, J.; Nayyar, A.; Kumar, A. Machine Learning from Theory to Algorithms: An Overview. J. Phys. Conf. Ser. 2018, 1142, 012012. [Google Scholar] [CrossRef]
- Batta, M. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2018, 18, 381–386. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar]
- Vaish, R.; Dwivedi, U.D.; Tewari, S.; Tripathi, S.M. Machine learning applications in power system fault diagnosis: Research advancements and perspectives. Eng. Appl. Artif. Intell. 2021, 106, 104504. [Google Scholar] [CrossRef]
- Xie, J.; Alvarez-Fernandez, I.; Sun, W. A review of machine learning applications in power system resilience. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Jia, Y.; Kwong, S.; Wang, R. Applying Exponential Family Distribution to Generalized Extreme Learning Machine. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1794–1804. [Google Scholar] [CrossRef]
- Teng, F.; Zhang, Y.; Member, S.; Yang, T. Distributed Optimal Energy Management for We-Energy Considering Operation Security. IEEE Trans. Netw. Sci. Eng. 2023. early access. [Google Scholar] [CrossRef]
- Cui, M.; Member, S.; Wang, J.; Member, S.; Chen, B. Flexible Machine Learning-Based Cyberattack Detection Using Spatiotemporal Patterns for Distribution Systems. IEEE Trans. Smart Grid 2020, 11, 1805–1808. [Google Scholar] [CrossRef]
- Barja-Martinez, S.; Aragüés-Peñalba, M.; Munné-Collado, Í.; Lloret-Gallego, P.; Bullich-Massagué, E.; Villafafila-Robles, R. Artificial intelligence techniques for enabling Big Data services in distribution networks: A review. Renew. Sustain. Energy Rev. 2021, 150, 111459. [Google Scholar] [CrossRef]
- Kumbhar, A.; Dhawale, P.G.; Kumbhar, S.; Patil, U.; Magdum, P. A comprehensive review: Machine learning and its application in integrated power system. Energy Rep. 2021, 7, 5467–5474. [Google Scholar] [CrossRef]
- Matijašević, T.; Antić, T.; Capuder, T. A systematic review of machine learning applications in the operation of smart distribution systems. Energy Rep. 2022, 8, 12379–12407. [Google Scholar] [CrossRef]
- Mohammadi, S.; Hesamzadeh, M.R.; Vafamehr, A.; Ferdowsi, F. A Review of Machine Learning Applications in Electricity Market Studies. In Proceedings of the 2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET), Cavtat-Dubrovnik, Croatia, 20–23 October 2020; pp. 15–22. [Google Scholar] [CrossRef]
- Foruzan, E.; Scott, S.D.; Lin, J. A comparative study of different machine learning methods for electricity prices forecasting of an electricity market. In Proceedings of the 2015 North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, L.; Wen, J.; Li, Y.; Chen, J.; Ye, Y.; Fu, Y.; Livingood, W. A review of machine learning in building load prediction. Appl. Energy 2021, 285, 116452. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H.; Guo, Y.; Wang, J. A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: A review. Energy Build. 2018, 165, 301–320. [Google Scholar] [CrossRef]
- Alimi, O.A.; Ouahada, K.; Abu-Mahfouz, A.M. A Review of Machine Learning Approaches to Power System Security and Stability. IEEE Access 2020, 8, 113512–113531. [Google Scholar] [CrossRef]
- Dhinu Lal, M.; Varadarajan, R. A Review of Machine Learning Approaches in Synchrophasor Technology. IEEE Access 2023, 11, 33520–33541. [Google Scholar] [CrossRef]
- Vijaychandra, J.; Prasad, B.R.V.; Darapureddi, V.K.; Rao, B.V.; Knypiński, Ł. A Review of Distribution System State Estimation Methods and Their Applications in Power Systems. Electronics 2023, 12, 603. [Google Scholar] [CrossRef]
- Xu, J.; Jin, Y.; Zheng, T.; Meng, G. On State Estimation Modeling of Smart Distribution Networks: A Technical Review. Energies 2023, 16, 1891. [Google Scholar] [CrossRef]
- Juneja, P.K.; Belwal, N.; Sunori, S.K.; Khan, F.; Sharma, A.; Pundir, G. A review on application of artificial intelligence techniques in control of industrial processes. Artif. Intell. Speech Technol. 2021, 3, 291–296. [Google Scholar] [CrossRef]
- Chung, S.; Zhang, Y. Artificial Intelligence Applications in Electric Distribution Systems: Post-Pandemic Progress and Prospect. Appl. Sci. 2023, 13, 6937. [Google Scholar] [CrossRef]
- Mololoth, V.K.; Saguna, S.; Åhlund, C. Blockchain and Machine Learning for Future Smart Grids: A Review. Energies 2023, 16, 528. [Google Scholar] [CrossRef]
- Pham, D.T.; Pham, P.T.N. Artificial intelligence in engineering. Int. J. Mach. Tools Manuf. 1999, 39, 937–949. [Google Scholar] [CrossRef]
- Tu, C.; He, X.; Shuai, Z.; Jiang, F. Big data issues in smart grid—A review. Renew. Sustain. Energy Rev. 2017, 79, 1099–1107. [Google Scholar] [CrossRef]
- Hossain, E.; Khan, I.; Un-Noor, F.; Sikander, S.S.; Sunny, M.S.H. Application of Big Data and Machine Learning in Smart Grid, and Associated Security Concerns: A Review. IEEE Access 2019, 7, 13960–13988. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Kasinathan, P.; Elavarasan, R.M.; Ramanathan, V.; Anandan, R.K.; Subramaniam, U.; Ghosh, A.; Hossain, E. A comprehensive review on sustainable aspects of big data analytics for the smart grid. Sustainability 2021, 13, 13322. [Google Scholar] [CrossRef]
- Abu-Rub, O.H.; Fard, A.Y.; Umar, M.F.; Hosseinzadehtaher, M.; Shadmands, M.B. Towards intelligent power electronics-dominated grid via machine learning techniques. IEEE Power Electron. Mag. 2021, 8, 28–38. [Google Scholar] [CrossRef]
- Aminifar, F.; Abedini, M.; Amraee, T.; Jafarian, P.; Samimi, M.H.; Shahidehpour, M. A Review of Power System Protection and Asset Management with Machine Learning Techniques; Springer: Berlin/Heidelberg, Germany, 2022; Volume 13. [Google Scholar]
- Ahmed, A.; Khalid, M. A review on the selected applications of forecasting models in renewable power systems. Renew. Sustain. Energy Rev. 2019, 100, 9–21. [Google Scholar] [CrossRef]
- Hwang, J.; Suh, D.; Otto, M.O. Forecasting electricity consumption in commercial buildings using a machine learning approach. Energies 2020, 13, 5885. [Google Scholar] [CrossRef]
- Ray, S. A Quick Review of Machine Learning Algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February, 2019; pp. 35–39. [Google Scholar] [CrossRef]
- Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv 2018, arXiv:1811.12808. [Google Scholar]
- Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Nasteski, V. An overview of the supervised machine learning methods. Horizons B 2017, 4, 51–62. [Google Scholar] [CrossRef]
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement Learning, Fast and Slow. Trends Cogn. Sci. 2019, 23, 408–422. [Google Scholar] [CrossRef] [Green Version]
- Glorennec, P.Y. Reinforcement Learning: An Overview. In Proceedings of the ESIT 2000, Aachen, Germany, 14–15 September 2000; pp. 17–35. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.4135&rep=rep1&type=pdf (accessed on 29 July 2023).
- Salman, R.; Kecman, V. Regression as classification. In Proceedings of the 2012 Proceedings of IEEE Southeastcon, Orlando, FL, USA, 15–18 March 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Su, X.; Yan, X.; Tsai, C.L. Linear regression. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 275–294. [Google Scholar] [CrossRef]
- Bangdiwala, S.I. Regression: Simple linear. Int. J. Inj. Contr. Saf. Promot. 2018, 25, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, E.C. Introduction to Multivariate Regression Analysis. Hippokratia 2005, 14, 23–28. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. J. Neuroeng. Rehabil. 2002, 14, 199–222. [Google Scholar] [CrossRef]
- Specht, D.F. A General Regression Neural Network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Tax, D.M.J.; Duin, R.P.W. Using two-class classifiers for multiclass classification. In Proceedings of the 2002 International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; Volume 16, pp. 124–127. [Google Scholar] [CrossRef]
- Tsoumakas, G.; Katakis, I. Multi-Label Classification: An Overview. Database Technol. 2011, 3, 309–319. [Google Scholar] [CrossRef]
- Maalouf, M. Logistic regression in data analysis: An overview. Int. J. Data Anal. Tech. Strateg. 2011, 3, 281–299. [Google Scholar] [CrossRef]
- Wang, G. A survey on training algorithms for support vector machine classifiers. In Proceedings of the 2008 Fourth international conference on networked computing and advanced information management, Gyeongju, Republic of Korea, 2–4 September 2008; Volume 1, pp. 123–128. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Féraud, R.; Clérot, F. A methodology to explain neural network classication. Neural Netw. 2002, 15, 237–246. Available online: http://ac.els-cdn.com/S0893608001001277/1-s2.0-S0893608001001277-main.pdf?_tid=014dc778-07fe-11e7-bef2-00000aab0f02&acdnat=1489417498_65d78a487ce5847b13d2f7030ab219a4 (accessed on 29 July 2023).
- Sedgwick, P. Simple linear regression. BMJ 2013, 346, f2340. [Google Scholar] [CrossRef] [Green Version]
- Heiberger, R.M.; Neuwirth, E. RExcel: R Through Excel; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Sinha, P. Multivariate Polynomial Regression in Data Mining: Methodology, Problems and Solutions. Int. J. Sci. Eng. Res. 2013, 4, 962–965. Available online: http://www.ijser.org (accessed on 29 July 2023).
- Demaris, A. A Tutorial in Logistic Regression Published by: National Council on Family Relations. J. Marriage Fam. 1995, 57, 956–968. [Google Scholar]
- Scott, A.J.; Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression. Biometrics 1991, 47, 1632. [Google Scholar] [CrossRef]
- Pradhan, A. Support vector machine—A Survey. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 82–85. [Google Scholar]
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress Open: New York, NY, USA, 2015. [Google Scholar]
- Anand, P.; Rastogi, R.; Chandra, S. A class of new Support Vector Regression models. Appl. Soft Comput. J. 2020, 94, 106446. [Google Scholar] [CrossRef]
- Moguerza, J.M.; Muñoz, A. Support vector machines with applications. Stat. Sci. 2006, 21, 322–336. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Dasgupta, A.; Swetapadma, A. A study on support vector machine based linear and non-linear pattern classification. In Proceedings of the 2019 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 21–22 February 2019; pp. 24–28. [Google Scholar] [CrossRef]
- Lin, K.M.; Lin, C.J. A study of reduced support vector machines. IEEE Trans. Neural Netw. 2003, 14, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J.; Ph, D.; Street, W.C. An Introduction to Classification and Regression Tree (CART) Analysis. In Proceedings of the 2000 Annual Meeting of the Society for Academic Emergency Medicine, San Francisco, CA, USA, 22–25 May 2000; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.4103&rep=rep1&type=pdf (accessed on 29 July 2023).
- Singh Kushwah, J.; Kumar, A.; Patel, S.; Soni, R.; Gawande, A.; Gupta, S. Comparative study of regressor and classifier with decision tree using modern tools. Mater. Today Proc. 2022, 56, 3571–3576. [Google Scholar] [CrossRef]
- de Ville, B. Decision trees. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 448–455. [Google Scholar] [CrossRef]
- Anyanwu, M.N.; Shiva, S.G. Comparative Analysis of Serial Decision Tree Classification Algorithms. Int. J. Comput. Sci. Secur. 2009, 3, 230–240. Available online: http://www.cscjournals.org/csc/manuscriptinfo.php?ManuscriptCode=72.73.66.82.82.44.55.49.99 (accessed on 29 July 2023).
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Suzuki, K. Artificial Neural Networks—Methodological Advanced and Biomedical Applications; InTechOpen: London, UK, 2017. [Google Scholar]
- Marius-Constantin, P.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 2009, 8, 579–588. [Google Scholar]
- Canziani, A.; Paszke, A.; Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications. arXiv 2016, arXiv:1605.07678. [Google Scholar]
- Bianco, S.; Cadene, R.; Celona, L.; Napoletano, P. Benchmark analysis of representative deep neural network architectures. IEEE Access 2018, 6, 64270–64277. [Google Scholar] [CrossRef]
- Sonde, V.M.; Shirpurkar, P.P.; Giripunje, M.S.; Ashtankar, P.P. Deep Learning Techniques: An Overview; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1141. [Google Scholar]
- Massaoudi, M.; Abu-Rub, H.; Refaat, S.S.; Chihi, I.; Oueslati, F.S. Deep Learning in Smart Grid Technology: A Review of Recent Advancements and Future Prospects. IEEE Access 2021, 9, 54558–54578. [Google Scholar] [CrossRef]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of image classification algorithms based on convolutional neural networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Khodayar, M.; Liu, G.; Wang, J.; Khodayar, M.E. Deep learning in power systems research: A review. CSEE J. Power Energy Syst. 2021, 7, 209–220. [Google Scholar] [CrossRef]
- Neupane, D.; Kim, Y.; Seok, J.; Hong, J. Cnn-based fault detection for smart manufacturing. Appl. Sci. 2021, 11, 11732. [Google Scholar] [CrossRef]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep learning for time series forecasting: A survey. Big Data 2021, 9, 3–21. [Google Scholar]
- Xue, N.; Triguero, I.; Figueredo, G.P.; Landa-Silva, D. Evolving Deep CNN-LSTMs for Inventory Time Series Prediction. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1517–1524. [Google Scholar] [CrossRef]
- Hoffmann, F.; Bertram, T.; Mikut, R.; Reischl, M.; Nelles, O. Benchmarking in classification and regression. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1318. [Google Scholar] [CrossRef]
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1–11. [Google Scholar]
- Tiwary, S.K.; Pal, J.; Chanda, C.K. Multiple-Classification of Power System States Using Multidimensional Neural Network. J. Inst. Eng. Ser. B 2023, 104, 893–900. [Google Scholar] [CrossRef]
- Plevris, V.; Solorzano, G.; Bakas, N.P.; Ben Seghier, M.E.A. Investigation of Performance Metrics in Regression Analysis and Machine Learning-Based Prediction Models. In Proceedings of the 8th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2022), Oslo, Norway, 5–9 June 2022; p. 25. [Google Scholar] [CrossRef]
- Nti, I.K.; Teimeh, M.; Nyarko-Boateng, O.; Adekoya, A.F. Electricity load forecasting: A systematic review. J. Electr. Syst. Inf. Technol. 2020, 7, 13. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.; Zhang, Y.; Wang, Z.; Li, J. A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis. Energy Built Environ. 2020, 1, 149–164. [Google Scholar] [CrossRef]
- Gasparin, A.; Lukovic, S.; Alippi, C. Deep learning for time series forecasting: The electric load case. CAAI Trans. Intell. Technol. 2022, 7, 1–25. [Google Scholar] [CrossRef]
- Hong, Y.; Zhou, Y.; Li, Q.; Xu, W.; Zheng, X. A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 2020, 8, 55785–55797. [Google Scholar] [CrossRef]
- Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-Term load forecasting in smart grids: An intelligent modular approach. Energies 2019, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Sevlian, R.; Rajagopal, R. Short Term Electricity Load Forecasting on Varying Levels of Aggregation. arXiv 2014, arXiv:1404.0058. [Google Scholar]
- Dunaieva, I.; Barbotkina, E.; Vecherkov, V.; Popovych, V.; Pashtetsky, V.; Terleev, V.; Nikonorov, A.; Akimov, L. Spatial and temporal databases for decision making and forecasting. In Energy Management of Municipal Transportation Facilities and Transport; Springer International Publishing: Cham, Switzerland, 2019; pp. 198–205. [Google Scholar]
- Pirbazari, A.M.; Farmanbar, M.; Chakravorty, A.; Rong, C. Short-term load forecasting using smart meter data: A generalization analysis. Processes 2020, 8, 484. [Google Scholar] [CrossRef]
- Kim, Y.; Son, H.-G.; Kim, S. Short term electricity load forecasting for institutional buildings. Energy Rep. 2019, 5, 1270–1280. [Google Scholar] [CrossRef]
- Ardakanian, O.; Wong, V.W.S.; Dobbe, R.; Low, S.H.; Von Meier, A.; Tomlin, C.J.; Yuan, Y. On identification of distribution grids. IEEE Trans. Control Netw. Syst. 2019, 6, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Farsi, B.; Amayri, M.; Bouguila, N.; Eicker, U. On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach. IEEE Access 2021, 9, 31191–31212. [Google Scholar] [CrossRef]
- Son, H.; Kim, C. A deep learning approach to forecasting monthly demand for residential-sector electricity. Sustainability 2020, 12, 3103. [Google Scholar] [CrossRef] [Green Version]
- Yazici, I.; Beyca, O.F.; Delen, D. Deep-learning-based short-term electricity load forecasting: A real case application. Eng. Appl. Artif. Intell. 2022, 109, 104645. [Google Scholar] [CrossRef]
- Dong, L.I.U.; Yue, L.I.; Jianping, L.I.N.; Houqiang, L.I.; Feng, W.U. Deep learning-based video coding: A review and a case study. ACM Comput. Surv. 2020, 53, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Dey, R.; Salemt, F.M. Gate-variants of Gated Recurrent Unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar] [CrossRef] [Green Version]
- Sekhar, C.; Dahiya, R. Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand. Energy 2023, 268, 126660. [Google Scholar] [CrossRef]
- Vasenin, D.N.; Makarova, T.V.; Bogatova, T.V.; Semenova, E.E. Methods of day ahead load forecasting on the example of a residential area. J. Phys. Conf. Ser. 2021, 1926, 012007. [Google Scholar] [CrossRef]
- Rezaei, H.; Bozorg-Haddad, O.; Chu, X. Grey wolf optimization (GWO) algorithm. In Advanced Optimization by Nature-Inspired Algorithms; Springer: Berlin/Heidelberg, Germany, 2018; pp. 81–91. [Google Scholar]
- Ozer, I.; Efe, S.B.; Ozbay, H. A combined deep learning application for short term load forecasting. Alex. Eng. J. 2021, 60, 3807–3818. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Larsen, E.M.; Pinson, P.; Leimgruber, F.; Judex, F. Demand response evaluation and forecasting—Methods and results from the EcoGrid EU experiment. Sustain. Energy Grids Netw. 2017, 10, 75–83. [Google Scholar]
- Beretta, D.; Grillo, S.; Pigoli, D.; Bionda, E.; Bossi, C.; Tornelli, C. Functional principal component analysis as a versatile technique to understand and predict the electric consumption patterns. Sustain. Energy Grids Netw. 2020, 21, 100308. [Google Scholar]
- Tarmanini, C.; Sarma, N.; Gezegin, C.; Ozgonenel, O. Short term load forecasting based on ARIMA and ANN approaches. Energy Rep. 2023, 9, 550–557. [Google Scholar] [CrossRef]
- Mathematics, A. Time series analysis using autoregressive integrated moving average (ARIMA) models. Acad. Emerg. Med. 1998, 5, 39–744. [Google Scholar]
- Guo, W.; Che, L.; Shahidehpour, M.; Wan, X. Machine-Learning based methods in short-term load forecasting. Electr. J. 2021, 34, 106884. [Google Scholar] [CrossRef]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Center for Bioinformatics and Molecular Biostatistics: San Francisco, CA, USA, 2004. [Google Scholar]
- Shabbir, N.; Ahmadiahangar, R.; Kutt, L.; Rosin, A. Comparison of machine learning based methods for residential load forecasting. In Proceedings of the 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM), Kärdla, Estonia, 12–15 June 2019; pp. 2–5. [Google Scholar] [CrossRef]
- Khan, S.U.R.; Hayder, I.A.; Habib, M.A.; Ahmad, M.; Mohsin, S.M.; Khan, F.A.; Mustafa, K. Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids. Energies 2023, 16, 276. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Shahare, K.; Mitra, A.; Naware, D.; Keshri, R.; Suryawanshi, H.M. Performance analysis and comparison of various techniques for short-term load forecasting. Energy Rep. 2023, 9, 799–808. [Google Scholar] [CrossRef]
- Ostertagová, E.; Ostertag, O. Forecasting using simple exponential smoothing method. Acta Electrotech. Inform. 2013, 12, 62–66. [Google Scholar] [CrossRef]
- Cameron, A.C.; Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econ. 1997, 77, 329–342. [Google Scholar] [CrossRef]
- Kiprijanovska, I.; Stankoski, S.; Ilievski, I.; Jovanovski, S.; Gams, M.; Gjoreski, H. Houseec: Day-ahead household electrical energy consumption forecasting using deep learning. Energies 2020, 13, 2672. [Google Scholar] [CrossRef]
- Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-Term Load Forecasting with Deep Residual Networks. IEEE Trans. Smart Grid 2019, 10, 3943–3952. [Google Scholar] [CrossRef] [Green Version]
- Estebsari, A.; Rajabi, R. Single residential load forecasting using deep learning and image encoding techniques. Electronics 2020, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- De Santo, A.; Ferraro, A.; Galli, A.; Moscato, V.; Sperlì, G. Evaluating time series encoding techniques for Predictive Maintenance. Expert Systems with Applications. Expert Syst. Appl. 2022, 210, 118435. [Google Scholar]
- Ryu, S.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting. Energies 2017, 10, 3. [Google Scholar] [CrossRef]
- Hinton, G.E. A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 599–619. [Google Scholar]
- Hara, K.; Saito, D.; Shouno, H. Analysis of function of rectified linear unit used in deep learning. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Dang-Ha, T.H.; Bianchi, F.M.; Olsson, R. Local short term electricity load forecasting: Automatic approaches. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 4267–4274. [Google Scholar] [CrossRef] [Green Version]
- Kuo, P.H.; Huang, C.J. A high precision artificial neural networks model for short-Term energy load forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Zolfaghari, A.A.; Mirzaee, S.; Gorji, M. Comparison of different models for estimating cumulative infiltration. Int. J. Soil Sci. 2012, 7, 108. [Google Scholar]
- Jiang, H.; Zhang, Y.; Muljadi, E.; Zhang, J.J.; Gao, D.W. A Short-Term and High-Resolution Distribution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization. IEEE Trans. Smart Grid 2018, 9, 3331–3350. [Google Scholar] [CrossRef]
- Gribble, C.P.; Lze, T.; Kensler, A.; Wald, I.; Parker, S.G. A coherent grid traversal approach to visualizing particle-based simulation data. IEEE Trans. Vis. Comput. Graph. 2007, 13, 758–768. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Kumari, R.; Jain, S.K. Effect of Different Activation Function on Short Term Load Forecasting Using Neural Network- A Comparative Study. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 1069–1074. [Google Scholar] [CrossRef]
- Saber, A.Y.; Alam, A.K.M.R. Short term load forecasting using multiple linear regression for big data. In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Venu, B. Multi-core processors—An overview. arXiv 2011, arXiv:1110.3535. [Google Scholar]
- Farrokhabadi, M. Day-ahead electricity demand forecasting: Post-COVID paradigm. IEEE Open Access J. Power Energy 2022, 9, 185–191. [Google Scholar]
- Pecan Street Dataset. Available online: https://www.pecanstreet.org/dataport/ (accessed on 29 July 2023).
- Farajollahi, M.; Shahsavari, A.; Mohsenian-Rad, H. Tracking State Estimation in Distribution Networks Using Distribution-level Synchrophasor Data. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Watitwa, J.; Awodele, K. A Review on Active Distribution System State Estimation. In Proceedings of the 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), Bloemfontein, South Africa, 28–30 January 2019; pp. 726–731. [Google Scholar] [CrossRef]
- Sarada Devi, M.S.N.G.; Yesuratnam, G. Comparison of State Estimation Process on Transmission and Distribution Systems; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Sanchez Cifuentes, A.F. Enhancing the Observability of Distribution Systems State Estimation. 2019, p. 51. Available online: https://fsu.digital.flvc.org/islandora/object/fsu%3A722569#tabs-1 (accessed on 29 July 2023).
- Hayes, B.; Prodanović, M. State estimation techniques for electric power distribution systems. In Proceedings of the 2014 European Modelling Symposium, Pisa, Italy, 21–23 October 2014; pp. 303–308. [Google Scholar] [CrossRef]
- Majdoub, M.; Belfqih, A.; Boukherouaa, J.; Sabri, O.; Cheddadi, B.; Haidi, T. A review on distribution system state estimation techniques. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, G.; Giannakis, G.B.; Chen, J.; Sun, J. Distribution system state estimation: An overview. Front. Inf. Technol. Electron. 2019, 20, 4–17. [Google Scholar] [CrossRef]
- Radhoush, S.; Vannoy, T.; Whitaker, B.M.; Nehrir, H. Random Forest Meta Learner for Generating Pseudo-Measurements in Active Distribution Power Networks. In Proceedings of the 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16–19 January 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Radhoush, S.; Bahramipanah, M.; Nehrir, H.; Shahooei, Z. A Review on State Estimation Techniques in Active Distribution Networks: Existing Practices and Their Challenges. Sustainability 2022, 14, 2520. [Google Scholar] [CrossRef]
- Alimardani, A.; Therrien, F.; Atanackovic, D.; Jatskevich, J.; Vaahedi, E. Distribution System State Estimation Based on Nonsynchronized Smart Meters. IEEE Trans. Smart Grid 2015, 6, 2919–2928. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, N. State estimation for unbalanced electric power distribution systems using AMI data. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 23–26 April 2017; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Chen, Y.; Xu, T.; Wang, C.; Yong, C.; Li, P.; Yu, L. A hybrid state estimator based on SCADA and PMU measurements for medium voltage distribution system. Appl. Sci. 2018, 8, 1527. [Google Scholar] [CrossRef] [Green Version]
- Pau, M.; Pegoraro, P.A.; Sulis, S. WLS distribution system state estimator based on voltages or branch-currents: Accuracy and performance comparison. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 493–498. [Google Scholar] [CrossRef]
- Baran, M.E.; Jung, J.; McDermott, T.E. Including voltage measurements in branch current state estimation for distribution systems. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Fotopoulou, M.; Petridis, S.; Karachalios, I.; Rakopoulos, D. A Review on Distribution System State Estimation Algorithms. Appl. Sci. 2022, 12, 11073. [Google Scholar] [CrossRef]
- Commerell, W. The Grid of the Future. In Sustainable Energy Solutions for Remote Areas in the Tropics; Springer International Publishing: Cham, Switzerland, 2020; pp. 239–269. [Google Scholar] [CrossRef]
- Ehsan, A.; Yang, Q. State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review. Appl. Energy 2019, 239, 1509–1523. [Google Scholar] [CrossRef]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Rajora, G.L.; Sanz-Bobi, M.A.; Domingo, C.M. Application of Machine Learning Methods for Asset Management on Power Distribution Networks. Emerg. Sci. J. 2022, 6, 905–920. [Google Scholar] [CrossRef]
- Azimian, B.; Biswas, R.S.; Moshtagh, S.; Pal, A.; Tong, L.; Dasarathy, G. State and Topology Estimation for Unobservable Distribution Systems Using Deep Neural Networks. IEEE Trans. Instrum. Meas. 2022, 71, 9003514. [Google Scholar] [CrossRef]
- Menke, J.H.; Bornhorst, N.; Braun, M. Distribution system monitoring for smart power grids with distributed generation using artificial neural networks. Int. J. Electr. Power Energy Syst. 2019, 113, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.Q.; Zamzam, A.S.; Nguyen, P.H. Enhancement of Distribution System State Estimation Using Pruned Physics-Aware Neural Networks. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021. [Google Scholar] [CrossRef]
- Zargar, B.; Ponci, F.; Monti, A. Evaluation of Computational Complexity for Distribution Systems State Estimation. IEEE Trans. Instrum. Meas. 2023, 72, 9001512. [Google Scholar] [CrossRef]
- Andrysco, M.; Nötzli, A.; Brown, F.; Jhala, R.; Stefan, D. Towards verified, constant-time floating point operations. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1369–1382. [Google Scholar] [CrossRef] [Green Version]
- Dinda, P.A. Online prediction of the running time of tasks. In Proceedings of the 2001 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Cambridge, MA, USA, 16–20 June 2001; pp. 383–394. [Google Scholar] [CrossRef] [Green Version]
- Zargar, B.; Angioni, A.; Ponci, F.; Monti, A. Multiarea Parallel Data-Driven Three-Phase Distribution System State Estimation Using Synchrophasor Measurements. IEEE Trans. Instrum. Meas. 2020, 69, 6186–6202. [Google Scholar] [CrossRef]
- Chen, S.; Wei, Z.; Sun, G.; Lu, N.; Sun, Y.; Zhu, Y. Multi-area distributed three-phase state estimation for unbalanced active distribution networks. J. Mod. Power Syst. Clean Energy 2017, 5, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Muscas, C.; Pau, M.; Pegoraro, P.A.; Sulis, S.; Ponci, F.; Monti, A. Multiarea distribution system state estimation. IEEE Trans. Instrum. Meas. 2015, 64, 1140–1148. [Google Scholar] [CrossRef]
- Ferdowsi, M.; Benigni, A.; Lowen, A.; Zargar, B.; Monti, A.; Ponci, F. A scalable data-driven monitoring approach for distribution systems. IEEE Trans. Instrum. Meas. 2015, 64, 1292–1305. [Google Scholar] [CrossRef]
- Jin, X.B.; Jeremiah, R.J.R.; Su, T.L.; Bai, Y.T.; Kong, J.L. The new trend of state estimation: From model-driven to hybrid-driven methods. Sensors 2021, 21, 2085. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wei, Z.; Sun, G.; Zang, H. Hybrid State Estimation for Distribution Systems With AMI and SCADA Measurements. IEEE Access 2019, 7, 120350–120359. [Google Scholar] [CrossRef]
- Mestav, K.R.; Luengo-Rozas, J.; Tong, L. Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning. IEEE Trans. Power Syst. 2019, 34, 4910–4920. [Google Scholar] [CrossRef] [Green Version]
- Zamzam, A.S.; Fu, X.; Sidiropoulos, N.D. Data-Driven Learning-Based Optimization for Distribution System State Estimation. IEEE Trans. Power Syst. 2019, 34, 4796–4805. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Scaglione, A.; Chang, T.H. A framework for phasor measurement placement in hybrid state estimation via Gauss-Newton. IEEE Trans. Power Syst. 2014, 29, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, N.; Rahmatian, F.; Pandey, S. Where to Install Distribution Phasor Measurement Units to Obtain Accurate State Estimation Results? In Proceedings of the 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Ahmad, F.; Tariq, M.; Farooq, A. A novel ANN-based distribution network state estimator. Int. J. Electr. Power Energy Syst. 2019, 107, 200–212. [Google Scholar] [CrossRef]
- CIGRE Technical. Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources; CIGRE Technical: Paris, France, 2014; Volume 6. [Google Scholar]
- Ma, Y.; Liu, F.; Zhou, X.; Gao, Z. Key technologies of smart distribution grid. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; pp. 2639–2643. [Google Scholar] [CrossRef]
- Kelley, A.W. State estimation for real-time monitoring of distribution systems. IEEE Trans. Power Syst. 1994, 9, 1601–1609. [Google Scholar]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Salkuti, S.R. Challenges, issues and opportunities for the development of smart grid. Int. J. Electr. Comput. Eng. 2020, 10, 1179–1186. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z. False data attack models, impact analyses and defense strategies in the electricity grid. Electr. J. 2017, 30, 35–42. [Google Scholar] [CrossRef]
- Sayghe, A.; Hu, Y.; Zografopoulos, I.; Liu, X.R.; Dutta, R.G.; Jin, Y.; Konstantinou, C. Survey of machine learning methods for detecting false data injection attacks in power systems. IET Smart Grid 2020, 3, 581–595. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, P.; Reiter, M.K. False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. 2011, 14, 1–13. [Google Scholar] [CrossRef]
- Reda, H.T.; Anwar, A.; Mahmood, A. Comprehensive survey and taxonomies of false data injection attacks in smart grids: Attack models, targets, and impacts. Renew. Sustain. Energy Rev. 2022, 163, 112423. [Google Scholar] [CrossRef]
- Deng, R.; Xiao, G.; Lu, R.; Liang, H.; Vasilakos, A.V. False data injection on state estimation in power systems-attacks, impacts, and defense: A survey. IEEE Trans. Ind. Inform. 2017, 13, 411–423. [Google Scholar] [CrossRef]
- Huang, Y.; Esmalifalak, M.; Nguyen, H.; Zheng, R.; Han, Z.; Li, H.; Song, L. Bad data injection in smart grid: Attack and defense mechanisms. IEEE Commun. Mag. 2013, 51, 27–33. [Google Scholar] [CrossRef]
- Musleh, A.S.; Chen, G.; Dong, Z.Y. A Survey on the Detection Algorithms for False Data Injection Attacks in Smart Grids. IEEE Trans. Smart Grid 2020, 11, 2218–2234. [Google Scholar] [CrossRef]
- Bhusal, N.; Gautam, M.; Benidris, M. Detection of Cyber Attacks on Voltage Regulation in Distribution Systems Using Machine Learning. IEEE Access 2021, 9, 40402–40416. [Google Scholar] [CrossRef]
- Radhoush, S.; Vannoy, T.; Liyanage, K.; Whitaker, B.M.; Nehrir, H. Distribution System State Estimation and False Data Injection Attack Detection with a Multi-Output Deep Neural Network. Energies 2023, 16, 2288. [Google Scholar] [CrossRef]
- Ganjkhani, M.; Gilanifar, M.; Giraldo, J.; Parvania, M. Integrated Cyber and Physical Anomaly Location and Classification in Power Distribution Systems. IEEE Trans. Ind. Inform. 2021, 17, 7040–7049. [Google Scholar] [CrossRef]
- Naderi, E.; Aydeger, A.; Asrari, A. Detection of False Data Injection Cyberattacks Targeting Smart Transmission/Distribution Networks. In Proceedings of the 2022 IEEE Conference on Technologies for Sustainability (SusTech), Corona, CA, USA, 21–23 April 2022; pp. 224–229. [Google Scholar] [CrossRef]
- Sapna, S. Backpropagation Learning Algorithm Based on Levenberg Marquardt Algorithm. Comput. Sci. Inf. Technol. 2012, 2, 393–398. [Google Scholar] [CrossRef]
- Kamal, M.; Shahsavari, A.; Mohsenian-Rad, H. Poisoning Attack against Event Classification in Distribution Synchrophasor Measurements. In Proceedings of the 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aachen, Germany, 25 October 2021; pp. 327–332. [Google Scholar] [CrossRef]
- Grando, F.L.; Lazzaretti, A.E.; Moreto, M. The Impact of PMU Data Precision and Accuracy on Event Classification in Distribution Systems. IEEE Trans. Smart Grid 2022, 13, 1372–1382. [Google Scholar] [CrossRef]
- Seidl, T. Nearest Neighbor Classification. Encycl. Database Syst. 2009, 1, 1885–1890. [Google Scholar] [CrossRef]
- Karaca, Y.; Cattani, C. Naive Bayesian classifier. Comput. Methods Data Anal. 2018, 229–250. [Google Scholar] [CrossRef]
- Dietterich, T.G. Oregon Ensemble methods in machine learning. In Multiple Classifier Systems. MCS 2000. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1857, pp. 1–15. [Google Scholar]
References | Method | Used Dataset (s) |
---|---|---|
[151] | 1-D CNN | Hourly load consumption as well as corresponding temperature data for Istanbul, Turkey, between 2015 and 2017. |
[154] | Hybrid Method (GWO-CNN-BiLSTM) | College, Hospital, Residential, and Industrial buildings from Kaggle and Mendeley datasets with different time scales. |
[157] | LSTM-DNN | Townhome, single family, home, and apartment buildings which are collected from ENTES MPR47S (Istanbul) with 15 min resolution. |
[161] | ANN | 709 individual residential buildings which are obtained from Irish Social Science Data Archive (ISSDA) |
[163] | Fusion algorithm (SVR + RF + LSTM) | 5760 samples with 15 min resolution |
[165] | SVR-DTR-LR | Estonian household data |
[166] | ESVM and ECNN | Electricity data from the ISO/NE electricity market data |
[168] | SVR, CNN, ANN, LSTM, and hybrid CNN-LSTM | Ref. [187] and datasets from Bornholm Island, Denmark |
[171] | DRNN | Pecan Street dataset (four years of data) [188] |
[173] | Time series image encoding technique + CNN | A single residential customer dataset from December 2006 to November 2010 (2,075,259 samples) in Paris, France |
[175] | DNN | Different industrial load profiles including industrial section (retail business, R&D service, health care center, manufacturing industries) |
[179] | Deep Energy Structure | USA district public consumption dataset |
[181] | SVR | Load dataset for 80 days (20 samples for each season) with 1 s sample rate. |
[184] | ANN | RTE France Electricity Consumption |
[185] | MLR | Three years load data with 1 h sample rate |
Reference | Method | Case Study |
---|---|---|
[208] | DNN | A radial 34-bus system with 3 PVs and A meshed 240-node distribution network. |
[209] | ANN | CIGRE MV distribution grid [225] and A real distribution grid in Germany (135-node) |
[210] | ANN | 123-bus distribution test system |
[211] | ANN | 15-bus, 30-bus, 60-bus, and 123-bus distribution system |
[214] | ANN | Unbalanced 123-bus distribution system |
[217] | ANN | European distribution system (a LV and a MV distribution grid) |
[219] | Hybrid method (DNN + WLAV) | 33-bus distribution network |
[220] | Distribution learning + regression + DNN | 85-bus radial network and 3120-bus meshed network (Polish network) |
[221] | ANN | IEEE-37 distribution feeder with 6 DGs |
[223] | ANN | A modified IEEE 37-bus distribution system |
[224] | ANN | 33-bus, 69-bus distribution network and a real 48-bus Danish network |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radhoush, S.; Whitaker, B.M.; Nehrir, H. An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks. Energies 2023, 16, 5972. https://doi.org/10.3390/en16165972
Radhoush S, Whitaker BM, Nehrir H. An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks. Energies. 2023; 16(16):5972. https://doi.org/10.3390/en16165972
Chicago/Turabian StyleRadhoush, Sepideh, Bradley M. Whitaker, and Hashem Nehrir. 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks" Energies 16, no. 16: 5972. https://doi.org/10.3390/en16165972
APA StyleRadhoush, S., Whitaker, B. M., & Nehrir, H. (2023). An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks. Energies, 16(16), 5972. https://doi.org/10.3390/en16165972