Electricity Demand Side Management
Conflicts of Interest
References
- Berbesi, L.; Pritchard, G. Modelling Energy Data in a Generalized Additive Model—A Case Study of Colombia. Energies 2023, 16, 1929. [Google Scholar] [CrossRef]
- Kanté, M.; Li, Y.; Deng, S. Scenarios Analysis on Electric Power Planning Based on Multi-Scale Forecast: A Case Study of Taoussa, Mali from 2020 to 2035. Energies 2021, 14, 8515. [Google Scholar] [CrossRef]
- Esclapez, A.C.; García, M.L.; Verdú, S.V.; Blanes, C.S. Reduction of Computational Burden and Accuracy Maximization in Short-Term Load Forecasting. Energies 2022, 15, 3670. [Google Scholar] [CrossRef]
- Dejamkhooy, A.; Ahmadpour, A. Prediction and Evaluation of Electricity Price in Restructured Power Systems Using Gaussian Process Time Series Modeling. Smart Cities 2022, 5, 45. [Google Scholar] [CrossRef]
- Shaqiri, F.; Korn, R.; Truong, H.-P. Dynamic Regression Prediction Models for Customer Specific Electricity Consumption. Electricity 2023, 4, 12. [Google Scholar] [CrossRef]
- Turdaliev, S. Increasing Block Rate Electricity Pricing and Propensity to Purchase Electrical Appliances: Evidence from a Natural Experiment in Russia. Energies 2021, 14, 6954. [Google Scholar] [CrossRef]
- Huang, Q.; Jiang, A.; Zeng, Y.; Xu, J. Community Flexible Load Dispatching Model Based on Herd Mentality. Energies 2022, 15, 4546. [Google Scholar] [CrossRef]
- Manandhar, P.; Rafiq, H.; Rodriguez-Ubinas, E.; Barbosa, J.D.; Qureshi, O.A.; Tarek, M.; Sgouridis, S. Understanding Energy Behavioral Changes Due to COVID-19 in the Residents of Dubai Using Electricity Consumption Data and Their Impacts. Energies 2023, 16, 285. [Google Scholar] [CrossRef]
- Senchilo, N.D.; Ustinov, D.A. Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption. Energies 2021, 14, 7098. [Google Scholar] [CrossRef]
- Obi, M.; Metzger, C.; Mayhorn, E.; Ashley, T.; Hunt, W. Nontargeted vs. Targeted vs. Smart Load Shifting Using Heat Pump Water Heaters. Energies 2021, 14, 7574. [Google Scholar] [CrossRef]
- Goh, H.H.; Zong, L.; Zhang, D.; Dai, W.; Lim, C.S.; Kurniawan, T.A.; Goh, K.C. Orderly Charging Strategy Based on Optimal Time of Use Price Demand Response of Electric Vehicles in Distribution Network. Energies 2022, 15, 1869. [Google Scholar] [CrossRef]
- Hua, Y.; Xie, Q.; Zheng, L.; Cui, J.; Shao, L.; Hu, W. Coordinated Voltage Control Strategy by Optimizing the Limited Regulation Capacity of Air Conditioners. Energies 2022, 15, 3225. [Google Scholar] [CrossRef]
- Rodrigues, L.S.; Marques, D.L.; Ferreira, J.A.; Costa, V.A.F.; Martins, N.D.; Da Silva, F.J.N. The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review. Energies 2022, 15, 7666. [Google Scholar] [CrossRef]
- Talei, H.; Benhaddou, D.; Gamarra, C.; Benbrahim, H.; Essaaidi, M. Smart Building Energy Inefficiencies Detection through Time Series Analysis and Unsupervised Machine Learning. Energies 2021, 14, 6042. [Google Scholar] [CrossRef]
- Sanchez-Escobar, M.O.; Noguez, J.; Molina-Espinosa, J.M.; Lozano-Espinosa, R.; Vargas-Solar, G. The Contribution of Bottom-Up Energy Models to Support Policy Design of Electricity End-Use Efficiency for Residential Buildings and the Residential Sector: A Systematic Review. Energies 2021, 14, 6466. [Google Scholar] [CrossRef]
- Hummel, U.; Radgen, P.; Ülker, S.; Schelle, R. Findings from Measurements of the Electric Power Demand of Air Compressors. Energies 2021, 14, 8395. [Google Scholar] [CrossRef]
- Zhang, B.; Shu, H.; Si, D.; Li, W.; He, J.; Yan, W. Research and Application of Power Grid Maintenance Scheduling Strategy under the Interactive Mode of New Energy and Electrolytic Aluminum Load. Processes 2022, 10, 606. [Google Scholar] [CrossRef]
- Köberlein, J.; Bank, L.; Roth, S.; Köse, E.; Kuhlmann, T.; Prell, B.; Stange, M.; Münnich, M.; Flum, D.; Moog, D.; et al. Simulation Modeling for Energy-Flexible Manufacturing: Pitfalls and How to Avoid Them. Energies 2022, 15, 3593. [Google Scholar] [CrossRef]
- Kaczmarski, J.; Jones, B.; Chermak, J. Determinants of Demand Response Program Participation: Contingent Valuation Evidence from a Smart Thermostat Program. Energies 2022, 15, 590. [Google Scholar] [CrossRef]
- Binyet, E.; Chiu, M.-C.; Hsu, H.-W.; Lee, M.-Y.; Wen, C.-Y. Potential of Demand Response for Power Reallocation, a Literature Review. Energies 2022, 15, 863. [Google Scholar] [CrossRef]
- Schöne, N.; Greilmeier, K.; Heinz, B. Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte. Energies 2022, 15, 1338. [Google Scholar] [CrossRef]
- Santos, R.; Diniz, A.L.; Borba, B. Assessment of the Modeling of Demand Response as a Dispatchable Resource in Day-Ahead Hydrothermal Unit Commitment Problems: The Brazilian Case. Energies 2022, 15, 3928. [Google Scholar] [CrossRef]
- Ming, G.; Geng, J.; Liu, J.; Chen, Y.; Yuan, K.; Zhang, K. Load Frequency Robust Control Considering Intermittent Characteristics of Demand-Side Resources. Energies 2022, 15, 4370. [Google Scholar] [CrossRef]
- Salazar, E.J.; Jurado, M.; Samper, M.E. Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids. Energies 2023, 16, 1466. [Google Scholar] [CrossRef]
- Mimi, S.; Maissa, Y.B.; Tamtaoui, A. Optimization Approaches for Demand-Side Management in the Smart Grid: A Systematic Mapping Study. Smart Cities 2023, 6, 77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, A.G.; Neves, L.P.; Sousa, J.L. Electricity Demand Side Management. Energies 2023, 16, 6014. https://doi.org/10.3390/en16166014
Martins AG, Neves LP, Sousa JL. Electricity Demand Side Management. Energies. 2023; 16(16):6014. https://doi.org/10.3390/en16166014
Chicago/Turabian StyleMartins, António Gomes, Luís Pires Neves, and José Luís Sousa. 2023. "Electricity Demand Side Management" Energies 16, no. 16: 6014. https://doi.org/10.3390/en16166014
APA StyleMartins, A. G., Neves, L. P., & Sousa, J. L. (2023). Electricity Demand Side Management. Energies, 16(16), 6014. https://doi.org/10.3390/en16166014