The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells
Acknowledgments
Conflicts of Interest
References
- Kyriakopoulos, G.L.; Streimikiene, D.; Baležentis, T. Addressing Challenges of Low-Carbon Energy Transition. Energies 2022, 15, 5718. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-P.; Li, C.-T.; Ho, K.-C. Use of organic materials in dye-sensitized solar cells. Mater. Today 2017, 20, 267–283. [Google Scholar] [CrossRef]
- Sheibani, E.; Yang, L.; Zhang, J. Recent advances in organic hole transporting materials for perovskite solar cells. Sol. RRL. 2020, 4, 2000461. [Google Scholar] [CrossRef]
- Mohammadpourasl, S.; Fabrizi de Biani, F.; Coppola, C.; Parisi, M.L.; Zani, L.; Dessì, A.; Calamante, M.; Reginato, G.; Basosi, R.; Sinicropi, A. Ground-State Redox Potentials Calculations of D-π-A and D-A-π-A Organic Dyes for DSSC and Visible-Light-Driven Hydrogen Production. Energies 2020, 13, 2032. [Google Scholar] [CrossRef] [Green Version]
- Coppola, C.; Infantino, R.; Dessì, A.; Zani, L.; Parisi, M.L.; Mordini, A.; Reginato, G.; Basosi, R.; Sinicropi, A. DFT and TDDFT investigation of four triphenylamine/phenothiazine-based molecules as potential novel organic hole transport materials for perovskite solar cells. Mater. Chem. Phys. 2022, 278, 125603. [Google Scholar] [CrossRef]
- Coppola, C.; D’Ettorre, A.; Parisi, M.L.; Zani, L.; Reginato, G.; Calamante, M.; Mordini, A.; Taddei, M.; Basosi, R.; Sinicropi, A. In silico investigation of catechol-based sensitizers for type II dye sensitized solar cells (DSSCs). Inorg. Chim. Acta 2021, 518, 120233. [Google Scholar] [CrossRef]
- Kim, M.-R.; Pham, T.C.; Choi, Y.; Yang, S.; Yang, H.-S.; Park, S.H.; Kang, M.; Lee, S. Syntheses and Photovoltaic Properties of New Pyrazine-Based Organic Photosensitizers for Dye-Sensitized Solar Cells. Energies 2022, 15, 5938. [Google Scholar] [CrossRef]
- Holliman, P.J.; Mohsen, M.; Connell, A.; Kershaw, C.P.; Meza-Rojas, D.; Jones, E.W.; Geatches, D.; Sen, K.; Hsiao, Y.-W. Double Linker Triphenylamine Dyes for Dye-Sensitized Solar Cells. Energies 2020, 13, 4637. [Google Scholar] [CrossRef]
- Chalkias, D.A.; Charalampopoulos, C.; Aivali, S.; Andreopoulou, A.K.; Karavioti, A.; Stathatos, E. A Di-Carbazole-Based Dye as a Potential Sensitizer for Greenhouse-Integrated Dye-Sensitized Solar Cells. Energies 2021, 14, 1159. [Google Scholar] [CrossRef]
- Desoky, M.M.H.; Bonomo, M.; Buscaino, R.; Fin, A.; Viscardi, G.; Barolo, C.; Quagliotto, P. Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure-Property Relationships. Energies 2021, 14, 2279. [Google Scholar] [CrossRef]
- Magaldi, D.; Ulfa, M.; Péralta, S.; Goubard, F.; Pauporté, T.; Bui, T.-T. Carbazole Electroactive Amorphous Molecular Material: Molecular Design, Synthesis, Characterization and Application in Perovskite Solar Cells. Energies 2020, 13, 2897. [Google Scholar] [CrossRef]
- Vesce, L.; Stefanelli, M.; Di Carlo, A. Efficient and Stable Perovskite Large Area Cells by Low-Cost Fluorene-Xantene-Based Hole Transporting Layer. Energies 2021, 14, 6081. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, J.; Hua, Y.; Liu, P.; Wang, L.; Ruan, C.; Li, Y.; Boschloo, G.; Johansson, E.M.J.; Kloo, L.; et al. Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells. Chem 2017, 2, 676–687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, C.; Parisi, M.L.; Sinicropi, A. The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells. Energies 2023, 16, 573. https://doi.org/10.3390/en16020573
Coppola C, Parisi ML, Sinicropi A. The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells. Energies. 2023; 16(2):573. https://doi.org/10.3390/en16020573
Chicago/Turabian StyleCoppola, Carmen, Maria Laura Parisi, and Adalgisa Sinicropi. 2023. "The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells" Energies 16, no. 2: 573. https://doi.org/10.3390/en16020573
APA StyleCoppola, C., Parisi, M. L., & Sinicropi, A. (2023). The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells. Energies, 16(2), 573. https://doi.org/10.3390/en16020573