Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K
Abstract
:1. Introduction
2. Research Status of Turbine Blade Cooling Technology
2.1. External Cooling Technology
2.2. Internal Cooling Technology
3. Development Trends of Cooling Technology for Blades with Super-High Temperature
3.1. Innovative Excavation of High-Efficiency Composite Cooling Configuration
3.2. Multi-Objective Cooperative Cooling Structure and Optimization Design Based on 3D Printing
3.3. Composite Cooling Structure Design and Optimization Based on Artificial Intelligent Algorithm
3.4. Tapping the Cooling Potential of New Cooling Medium and Heat Pipes
3.5. Integrated Thermal Protection with New Thermal Insulators
3.6. Application of Low-Resistance and High-Efficiency Surface Dimple Cooling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
RTSH | Round-to-slot shaped film-hole |
SIJ | Swirling impinging jet |
TLC | Thermochromic liquid crystal |
AM | Additive manufacturing |
PDL | Porous double layer |
FCC | Face-centered cubic |
Pi | Impingement hole-to-hole pitch |
Di | Impingement hole diameter |
CMCs | Ceramic matrix composites |
H | Impingement channel height |
Df | Film hole diameter |
RBF | Radial Basis Function |
LS | lattice structure |
HRSG | Heat recovery steam generator |
TBC | Thermal barrier coatings |
YSZ | Yttria Stable Zirconia |
CCA | Cooled Cooling Air |
References
- Jiang, H.D.; Ren, J.; Li, X.Y.; Tan, X.Y. Status and development trend of the heavy duty gas turbine. Proc. CSEE 2014, 34, 5096–5102. (In Chinese) [Google Scholar]
- Zheng, L.; Wang, B.; Zhao, L.; Zhang, S.; Xiao, Y. The Cooling Air and Firing Temperature Estimation for GE’s Heavy Duty Gas Turbines. Proc. CSEE 2019, 39, 6943. (In Chinese) [Google Scholar]
- Du, K.; Chen, Q.-H.; Meng, X.-L.; Wang, L.-Q.; Pei, X.-P.; Li, H.-R.; Liu, C.-L.; Jiao, Y.-C. Advancement in Application and Thermal Analysis of Ceramic Matrix Composites in Aeroengine Hot Components. J. Propuls. Technol. 2022, 43, 107–125. (In Chinese) [Google Scholar]
- Shuai, S.-S.; Li, S.-L.; Xuan, W.-D.; Ren, X.-F.; Tu, T.-S.; He, L.; Wang, J.; Ren, Z.-M. Research Progress of Materials and Key Manufacturing Technologies of Heavy-Duty Gas Turbine Blades. Therm. Turbine 2022, 51, 161–169. (In Chinese) [Google Scholar]
- Skamniotis, C.; Courtis, M.; Cocks, A.C.F. Multiscale analysis of thermomechanical stresses in double wall transpiration cooling systems for gas turbine blades. Int. J. Mech. Sci. 2021, 207. [Google Scholar] [CrossRef]
- Nourin, F.N.; Amano, R.S. Review of Gas Turbine Internal Cooling Improvement Technology. J. Energy Resour. Technol. Trans. Asme 2021, 143, 080801. [Google Scholar] [CrossRef]
- Umesh, U.; Vigor, Y. A review of cooling technologies for high temperature rotating components in gas turbine. Propuls. Power Res. 2022, 11, 293–310. [Google Scholar]
- Pu, J.; Zhang, T.; Wang, J.-h. Experimental study of combined influences of wall curvature and compound angle on film cooling effectiveness of a fan-shaped film-hole. Int. Commun. Heat Mass Transf. 2022, 130. [Google Scholar] [CrossRef]
- Zamiri, A.; Barigozzi, G.; Chung, J.T. Large eddy simulation of film cooling flow from shaped holes with different geometrical parameters. Int. J. Heat Mass Transf. 2022, 196. [Google Scholar] [CrossRef]
- Li, L.; Liu, C.-l.; Ye, L.; Zhu, H.-R.; Luo, J.-X.; Liu, S. Experimental investigation on effects of cross-flow Reynolds number and blowing ratios to film cooling performance of the Y-shaped hole. Int. J. Heat Mass Transf. 2021, 179. [Google Scholar] [CrossRef]
- Zhu, X.-d.; Zhang, J.-z.; Tan, X.-m. Numerical assessment of round-to-slot film cooling performances on a turbine blade under engine representative conditions. Int. Commun. Heat Mass Transf. 2019, 100, 98–110. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.-z.; Wang, C.-h. Multi-objective optimization of round-to-slot film cooling holes on a flat surface. Aerosp. Sci. Technol. 2020, 100. [Google Scholar] [CrossRef]
- Liu, C.-l.; Xie, G.; Zhu, H.-r.; Luo, J.-x. Effect of internal coolant crossflow on the film cooling performance of converging slot hole. Int. J. Therm. Sci. 2020, 154. [Google Scholar] [CrossRef]
- Hou, R.; Wen, F.; Luo, Y.; Wang, S. Influence of Inlet Swirl on Film Cooling of the Turbine Leading Edge. Heat Transf. Eng. 2020, 42, 985–1001. [Google Scholar] [CrossRef]
- Barahate, S.D.; Vedula, R.P. Film cooling performance measurement over a flat plate for a single row of holes embedded in an inclined trench. Int. J. Therm. Sci. 2020, 150. [Google Scholar] [CrossRef]
- Skamniotis, C.G.; Cocks, A.C.F. Designing against severe stresses at compound cooling holes of double wall transpiration cooled engine components. Aerosp. Sci. Technol. 2021, 116. [Google Scholar] [CrossRef]
- Skamniotis, C.G.; Cocks, A.C.F. Minimising thermal stresses in double wall transpiration cooled components for high temperature applications. Int. J. Mech. Sci. 2020, 189. [Google Scholar] [CrossRef]
- Skamniotis, C.G.; Cocks, A.C.F. Creep-plasticity-fatigue calculations in the design of porous double layers for new transpiration cooling systems. Int. J. Fatigue 2021, 151, 106304. [Google Scholar] [CrossRef]
- Ngetich, G.C.; Murray, A.V.; Ireland, P.T.; Romero, E. A Three-Dimensional Conjugate Approach for Analyzing a Double-Walled Effusion-Cooled Turbine Blade. ASME J. Turbomach. 2019, 141, 011002. [Google Scholar] [CrossRef]
- Courtis, M.; Murray, A.; Coulton, B.; Ireland, P.; Mayo, I. Influence of Spanwise and Streamwise Film Hole Spacing on Adiabatic Film Effectiveness for Effusion-Cooled Gas Turbine Blades. Int. Jourmal Turbomach. Propuls. Power 2021, 6, 37. [Google Scholar] [CrossRef]
- Murray, A.V.; Ireland, P.T.; Wong, T.H.; Tang, S.W.; Rawlinson, A.J. High Resolution Experimental and Computational Methods for Modelling Multiple Row Effusion Cooling Performance. Int. Jourmal Turbomach. Propuls. Power 2018, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Wang, J.; He, F.; Dong, G.; Tang, L. Numerical investigation on the performances of porous matrix with transpiration and film cooling. Appl. Therm. Eng. 2019, 146, 422–431. [Google Scholar] [CrossRef]
- Kim, M.; Shin, D.H.; Lee, B.J.; Lee, J. Experimental and numerical investigation of micro-scale effusion and transpiration air cooling on cascaded turbine blades. Case Stud. Therm. Eng. 2022, 32. [Google Scholar] [CrossRef]
- Vikulin, A.V.; Yaroslavtsev, N.L.; Zemlyanaya, V.A. Investigation into Transpiration Cooling of Blades in High-Temperature Gas Turbines. Therm. Eng. 2019, 66, 397–401. [Google Scholar] [CrossRef]
- Xing, H.; Du, W.; Sun, P.; Xu, S.; He, D.; Luo, L. Influence of surface curvature and jet-to-surface spacing on heat transfer of impingement cooled turbine leading edge with crossflow and dimple. Int. Commun. Heat Mass Transf. 2022, 135. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, J.; Lv, H.; Dong, H. Numerical investigation on flow and heat transfer characteristics of single row jet impingement cooling with varying jet diameter. Int. J. Therm. Sci. 2022, 179. [Google Scholar] [CrossRef]
- Xu, L.; Xiong, Y.; Xi, L.; Gao, J.; Li, Y.; Zhao, Z. Numerical Simulation of Swirling Impinging Jet Issuing from a Threaded Hole under Inclined Condition. Entropy 2019, 22, 15. [Google Scholar] [CrossRef] [Green Version]
- Ravanji, A.; Zargarabadi, M.R. Effects of elliptical pin-fins on heat transfer characteristics of a single impinging jet on a concave surface. Int. J. Heat Mass Transf. 2020, 152, 119532. [Google Scholar] [CrossRef]
- Tanda, G.; Satta, F. Heat transfer and friction in a high aspect ratio rectangular channel with angled and intersecting ribs. Int. J. Heat Mass Transf. 2021, 169. [Google Scholar] [CrossRef]
- Zhao, K.; Lin, W.; Li, X.; Ren, J. Effect of micro rib on aerothermal dynamic in channel flow. Int. J. Heat Mass Transf. 2021, 178. [Google Scholar] [CrossRef]
- Zhang, P.; Rao, Y.; Xie, Y.; Zhang, M. Turbulent flow structure and heat transfer mechanisms over surface vortex structures of micro V-shaped ribs and dimples. Int. J. Heat Mass Transf. 2021, 178. [Google Scholar] [CrossRef]
- Bhandari, P. Numerical investigations on the effect of multi-dimensional stepness in open micro pin fin heat sink using single phase liquid fluid flow. Int. Commun. Heat Mass Transf. 2022, 138. [Google Scholar] [CrossRef]
- Kemerli, U.; Kahveci, K. Conjugate forced convective heat transfer in a sandwich panel with a Kagome truss core: The effects of strut length and diameter. Appl. Therm. Eng. 2020, 167. [Google Scholar] [CrossRef]
- Yan, H.; Luo, L.; Zhang, J.; Du, W.; Wang, S.; Huang, D. Flow structure and heat transfer characteristics of a pin-finned channel with upright/curved/inclined pin fins under stationary and rotating conditions. Int. Commun. Heat Mass Transf. 2021, 127. [Google Scholar] [CrossRef]
- Yeranee, K.; Rao, Y. A review of recent studies on rotating internal cooling for gas turbine blades. Chin. J. Aeronaut. 2021, 34, 85–113. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, C.; Song, L.; Li, J. Influence of Biot number and geometric parameters on the overall cooling effectiveness of double wall structure with pins. Appl. Therm. Eng. 2021, 198. [Google Scholar] [CrossRef]
- Courtis, M.; Skamniotis, C.; Cocks, A.; Ireland, P. Coupled aerothermal-mechanical analysis in single crystal double wall transpiration cooled gas turbine blades with a large film hole density. Appl. Therm. Eng. 2023, 219. [Google Scholar] [CrossRef]
- Ahmed, A.; Wright, E.; Abdel-Aziz, F.; Yan, Y. Numerical investigation of heat transfer and flow characteristics of a double-wall cooling structure: Reverse circular jet impingement. Appl. Therm. Eng. 2021, 189. [Google Scholar] [CrossRef]
- Click, A.; Ligrani, P.; Ritchie, D.; Liberatore, F.; Patel, R.; Ho, Y.-H. Effects of coolant supply arrangement on double wall cooling: Hot-side effusion performance and cold-side Nusselt numbers at different initial blowing ratios. Int. J. Heat Mass Transf. 2020, 156. [Google Scholar] [CrossRef]
- Liu, Y.; Rao, Y.; Yang, L.; Xu, Y.; Terzis, A. Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements. Int. J. Therm. Sci. 2021, 165. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, H.; Li, G. Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array. Energies 2020, 13, 6573. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, J.-Z.; Tan, X.-M. Numerical Study on Heat Transfer and Pressure Drop of an Integrated Array-Jets and Pin-Fins Cooling Configuration. J. Propuls. Technol. 2020, 41, 1120. (In Chinese) [Google Scholar]
- Qiu, D.; Luo, L.; Zhao, Z.; Wang, S.; Wang, Z.; Sundén, B. On heat transfer and flow characteristics of jets impingement on a concave surface with varying pin-fin arrangements. Int. J. Therm. Sci. 2021, 170. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Li, F.; Liu, Z.; Feng, Z.P. Effect of Film Hole Angle on Combined Impingement and Film Cooling on a Blade Leading Edge Model. J. Eng. Thermophys. 2021, 42, 130–135. [Google Scholar]
- Singh, K.; Udayraj. Combined film and impingement cooling of flat plate with reverse cooling hole. Appl. Therm. Eng. 2022, 208. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, T.; Wang, J.-h. Experimental study of cooling air effect on overall cooling of laminated configuration at a turbine vane end-wall. Case Stud. Therm. Eng. 2022, 32. [Google Scholar] [CrossRef]
- Wang, J.; Deng, H.; Tao, Z.; Li, Y.; Zhu, J. Heat transfer in a rotating rectangular channel with impingement jet and film holes. Int. J. Therm. Sci. 2021, 163. [Google Scholar] [CrossRef]
- Rao, Y.; Liu, Y.; Wan, C. Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes. Int. J. Therm. Sci. 2018, 133, 106–119. [Google Scholar] [CrossRef]
- Fan, X. Numerical research of a new vortex double wall cooling configuration for gas turbine blade leading edge. Int. J. Heat Mass Transf. 2022, 183. [Google Scholar] [CrossRef]
- Gebisa, A.W.; Lemu, H.G. Additive manufacturing for the manufacture of gas turbine engine components: Literature review and future perspectives. Turbo Expo Power Land Sea Air 2018, 6, 51128. [Google Scholar]
- Dutta, S.; Kaur, I.; Singh, P. Review of Film Cooling in Gas Turbines with an Emphasis on Additive Manufacturing-Based Design Evolutions. Energies 2022, 15, 6968. [Google Scholar] [CrossRef]
- Ma, Y.; Yan, H.; Xie, G. Flow and thermal performance of sandwich panels with plate fins or/and pyramidal lattice. Appl. Therm. Eng. 2020, 164, 114468. [Google Scholar] [CrossRef]
- Xi, L.; Xu, L.; Gao, J.; Zhao, Z.; Li, Y. Study on flow and heat transfer performance of X-type truss array cooling channel. Case Stud. Therm. Eng. 2021, 26, 101034. [Google Scholar] [CrossRef]
- Liang, D.; Bai, W.; Chen, W.; Chyu, M.K. Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel. Int. J. Heat Mass Transf. 2020, 153, 119579. [Google Scholar] [CrossRef]
- Wang, X.; Wei, K.; Wang, K.; Yang, X.; Qu, Z.; Fang, D. Effective thermal conductivity and heat transfer characteristics for a series of lightweight lattice core sandwich panels. Appl. Therm. Eng. 2020, 173, 115205. [Google Scholar] [CrossRef]
- Xu, L.; Shen, Q.; Ruan, Q.; Xi, L.; Gao, J.; Li, Y. Optimization Design of Lattice Structures in Internal Cooling Channel of Turbine Blade. Appl. Sci. 2021, 11, 5838. [Google Scholar] [CrossRef]
- Xu, L.; Ruan, Q.; Shen, Q.; Xi, L.; Gao, J.; Li, Y. Optimization Design of Lattice Structures in Internal Cooling Channel with Variable Aspect Ratio of Gas Turbine Blade. Energies 2021, 14, 3954. [Google Scholar] [CrossRef]
- Yang, G.; Hou, C.; Zhao, M.; Mao, W. Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Shen, B.; Yan, H.; Xue, H.; Xie, G. The effects of geometrical topology on fluid flow and thermal performance in Kagome cored sandwich panels. Appl. Therm. Eng. 2018, 142, 79–88. [Google Scholar] [CrossRef]
- Shen, B.; Li, Y.; Yan, H.; Boetcher, S.K.S.; Xie, G. Heat transfer enhancement of wedge-shaped channels by replacing pin fins with Kagome lattice structures. Int. J. Heat Mass Transf. 2019, 141, 88–101. [Google Scholar] [CrossRef]
- Sarwesh, P.; Zheng, M.; Li, Y.; Minking, C. Experimental and Numerical Analysis of Additively Manufactured Inconel 718 Coupons With Lattice Structure. J. Turbomach. 2020, 142. [Google Scholar] [CrossRef]
- Aghasi, P.; Gutmark, E.; Munday, D. Dependence of film cooling effectiveness on three-dimensional printed cooling holes. J. Heat Transf. 2017, 139, 102003. [Google Scholar] [CrossRef]
- Schroeder, R.P.; Thole, K.A. Effect of In-Hole Roughness on Film Cooling from a Shaped Hole. J. Turbomach. 2017, 139, 031004. [Google Scholar] [CrossRef] [Green Version]
- Bu, H.; Guo, Z.; Song, L.; Li, J. Effects of Cooling Configurations on the Aerothermal Performance of a Turbine Endwall With Jet Impingement and Film Cooling. J. Turbomach. 2021, 143. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.-z.; Wang, C.-h. Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat surface. Heat Mass Transf. 2018, 54, 1741–1754. [Google Scholar] [CrossRef]
- Hoang, V.-N.; Tran, P.; Vu, V.-T.; Nguyen-Xuan, H. Design of lattice structures with direct multiscale topology optimization. Compos. Struct. 2020, 252, 112718. [Google Scholar] [CrossRef]
- Zhang, J.; Yanagimoto, J. Topology optimization of microlattice dome with enhanced stiffness and energy absorption for additive manufacturing. Compos. Struct. 2021, 255. [Google Scholar] [CrossRef]
- Yeranee, K.; Rao, Y.; Yang, L.; Li, H. Enhanced thermal performance of a pin-fin cooling channel for gas turbine blade by density-based topology optimization. Int. J. Therm. Sci. 2022, 181. [Google Scholar] [CrossRef]
- Zhuang, L.; Xu, G.; Wen, J.; Dong, B.; Xiao, Y. Superiority analysis of CCA technology under typical flight mission. J. Aerosp. Power 2022, 37, 1363–1378. (In Chinese) [Google Scholar]
- Barreto, D.; Fajardo, J.; Caballero, G.C.; Escorcia, Y.C. Advanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine. Energy Technol. 2021, 9, 2000993. [Google Scholar] [CrossRef]
- Gong, J.; Ma, C.; Lu, J.; Gao, T. Effect of rib orientation on heat transfer and flow characteristics of mist/steam in square channels. Int. Commun. Heat Mass Transf. 2020, 118. [Google Scholar] [CrossRef]
- Alhajeri, H.M.; Almutairi, A.; Alenezi, A.; Gamil, A.A.A.; Al-Hajeri, M.H. Effect of mist/steam uniformity on heat transfer characteristics in unconfined jet impingement. Appl. Therm. Eng. 2021, 186. [Google Scholar] [CrossRef]
- Zhang, R.; Luo, C.; Zhou, L.; Li, L.; Zhang, H.; Du, X. Impingement/film cooling of C3X vane with double-wall cooling structure using air/mist mixture. Int. J. Heat Mass Transf. 2022, 188. [Google Scholar] [CrossRef]
- Jiang, G.; Gao, J.; Shi, X. Flow and heat transfer characteristics of mist/steam two-phase flow in the U-shaped cooling passage with 60 deg. Ribs. Int. Commun. Heat Mass Transf. 2019, 105, 73–83. [Google Scholar] [CrossRef]
- Jiang, G.; Gao, J.; Shi, X.; Li, F.; Xu, L. Flow and heat transfer characteristics of the mist/steam two-phase flow cooling the rectangular channel with column-row-ribs. Int. J. Heat Mass Transf. 2020, 156, 119737. [Google Scholar] [CrossRef]
- Zhang, R.; Song, Y.; Han, S.; Zhou, L.; Li, L.; Zhang, H.; Du, X. Film cooling performance enhancement of serrate-type trenched cooling holes by injecting mist into the cooling air. Int. J. Therm. Sci. 2022, 179. [Google Scholar] [CrossRef]
- Chen, Z.-Z.; Chen, H.-Q.; Huang, L.; Zhang, Y.-H.; Hao, N.-J. Research progress on silica nanofluids for convective heat transfer enhancement. Chin. J. Eng. 2022, 44, 812–825. (In Chinese) [Google Scholar]
- Xi, L.; Xu, L.; Gao, J.; Zhao, Z.; Li, Y. Numerical analysis and optimization on flow and heat transfer performance of a steam-cooled ribbed channel. Case Stud. Therm. Eng. 2021, 28, 101442. [Google Scholar] [CrossRef]
- Xi, L.; Gao, J.; Xu, L.; Zhao, Z.; Li, Y. Study on heat transfer performance of steam-cooled ribbed channel using neural networks and genetic algorithms. Int. J. Heat Mass Transf. 2018, 127, 1110–1123. [Google Scholar] [CrossRef]
- Zou, L.; Wang, F.; Yan, D.; Gu, M.; Li, M.; Li, M.; Liu, M.; Wang, W. Synergy investigations for the thermal transportation performance of a coaxial gravity heat pipe with internally finned in evaporator section. Int. J. Heat Mass Transf. 2022, 184. [Google Scholar] [CrossRef]
- Taamneh, Y. Thermal analysis of gas turbine disk integrated with rotating heat pipes. Case Stud. Therm. Eng. 2017, 10, 335–342. [Google Scholar] [CrossRef]
- Chen, J.; Fu, Y.; Qian, N.; Ching, C.Y.; Ewing, D.; He, Q. A study on thermal performance of revolving heat pipe grinding wheel. Appl. Therm. Eng. 2021, 182. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Y.; Liu, M.; Zhu, S.; Zheng, K.; Du, X. Experimental study on heat transfer performance of axially rotating heat pipe in steady state. Int. J. Therm. Sci. 2023, 184. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Liu, T.; Wang, S.; Wang, K.; Chen, H.; Wang, Y.; Zhu, Y. CFD modeling of liquid-metal heat pipe and hydrogen inactivation simulation. Int. J. Heat Mass Transf. 2022, 199. [Google Scholar] [CrossRef]
- Yilgor, I.; Shi, S. Scaling laws for two-phase flow and heat transfer in high-temperature heat pipes. Int. J. Heat Mass Transf. 2022, 189. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, T.; Huang, X.; Wang, J.; Wu, W. Overall Thermal Performances of Double-Wall Effusion Cooling Covered by Simulated Thermal Barrier Coatings. J. Therm. Sci. 2022, 31, 224–238. [Google Scholar] [CrossRef]
- Guangwu, F.; Jie, S.; Xiguang, G.; Yingdong, S. Micromechanical finite element analysis of effect of multilayer interphase on crack propagation in SiC/SiC composites. Model. Simul. Mater. Sci. Eng. 2021, 29, 1–21. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Yang, L.; Liu, Z.Y.; Zhu, W. Research Progress on Insulation Performance of Thermal Barrier Coatings on Turbine Blade. Mater. China 2020, 10, 707. (In Chinese) [Google Scholar]
- Zhao, L.S.; Zhong, S.M.; Wang, X.Y. Development of the Latest H class Heavy-Duty Gas Turbine. Gas Turbine Technol. 2017, 30. (In Chinese) [Google Scholar]
- Zontul, H.; Hamzah, H.; Kurtulmuş, N.; Şahin, B. Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels. Int. Commun. Heat Mass Transf. 2021, 126, 105366. [Google Scholar] [CrossRef]
- Soliman, A.S.; Xu, L.; Dong, J.; Cheng, P. A novel heat sink for cooling photovoltaic systems using convex/concave dimples and multiple PCMs. Appl. Therm. Eng. 2022, 215, 118644. [Google Scholar] [CrossRef]
- Jing, Q.; Zhang, D.; Xie, Y. Numerical investigations of impingement cooling performance on flat and non-flat targets with dimple/protrusion and triangular rib. Int. J. Heat Mass Transf. 2018, 126, 169–190. [Google Scholar] [CrossRef]
- Jeong, M.; Ha, M.Y.; Park, Y.G. Numerical investigation of heat transfer enhancement in a dimpled cooling channel with different angles of the vortex generator. Int. J. Heat Mass Transf. 2019, 144. [Google Scholar] [CrossRef]
- Yang, J.S.; Jeong, M.; Park, Y.G.; Ha, M.Y. Numerical study on the flow and heat transfer characteristics in a dimple cooling channel with a wedge-shaped vortex generator. Int. J. Heat Mass Transf. 2019, 136, 1064–1078. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Sun, Z.; Ruan, Q.; Xi, L.; Gao, J.; Li, Y. Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K. Energies 2023, 16, 668. https://doi.org/10.3390/en16020668
Xu L, Sun Z, Ruan Q, Xi L, Gao J, Li Y. Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K. Energies. 2023; 16(2):668. https://doi.org/10.3390/en16020668
Chicago/Turabian StyleXu, Liang, Zineng Sun, Qicheng Ruan, Lei Xi, Jianmin Gao, and Yunlong Li. 2023. "Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K" Energies 16, no. 2: 668. https://doi.org/10.3390/en16020668
APA StyleXu, L., Sun, Z., Ruan, Q., Xi, L., Gao, J., & Li, Y. (2023). Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K. Energies, 16(2), 668. https://doi.org/10.3390/en16020668