Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy
Abstract
:1. Introduction
2. Energy Security and Eco-Efficiency and Policy of the European Union
3. Materials and Methods
3.1. Data Sources
3.2. Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ADF | Augmented Dickey–Fuller test |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
EU | European Union |
GARCH | Generalized AutoRegressive Conditional Heteroskedasticity |
GDP | Gross Domestic Product |
GHG | Greenhouse gas |
HQC | Hannan–Quinn criterion |
IEA | International Energy Agency |
MLN | Million |
PEP | Polish Energy Policy |
RES | Renewable Energy Sources |
SDG | Sustainable Development Goals |
PLN | Polish currency zloty |
T | ton |
References
- Li, Y.; Zhang, H.; Kang, Y. Will Poland fulfill its coal commitment by 2030? An answer based on a novel time series prediction method. Energy Rep. 2020, 6, 1760–1767. [Google Scholar] [CrossRef]
- Kuchler, M.; Bridge, G. Down the black hole: Sustaining national socio-technical imaginaries of coal in Poland. Energy Res. Soc. Sci. 2018, 41, 136–147. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Perrera, F.; Nadeau, K. Climate change, Fossil Fuel Pollution, and Children’s Health. N. Engl. J. Med. 2022, 386, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Widera, M.; Kasztelewicz, Z.; Prak, M. Lignite mining and electricity generation in Poland: The current state and future prospects. Energy Policy 2016, 92, 151–157. [Google Scholar] [CrossRef]
- Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.A.; Sathre, R.; Le Truong, N.; Wikberg, P.-E. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. 2017, 67, 612–624. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Dudek, M. Coal mining waste in Poland in reference to circular economy principles. Fuel 2020, 270, 117493. [Google Scholar] [CrossRef]
- Dzikić, M.; Piwowar, A. Ecological and economic aspects of electric energy production using the biomass co-firing method: The case of Poland. Renew. Sustain. Energy Rev. 2016, 55, 856–862. [Google Scholar] [CrossRef]
- Perera, F.P. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environ. Health Perspect. 2017, 125, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Pudasainee, D.; Gupta, R. Review on chemical upgrading of coal: Production processes, potential applications, and recent developments. Fuel Process. Technol. 2017, 158, 35–56. [Google Scholar] [CrossRef]
- Gil-Alana, L.; Gupta, R.; Perez de Gracia, F. Modeling persistence of carbon emission allowance process. Renew. Sustain. Energy Rev. 2016, 55, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Dubiński, J.; Prusek, S.; Turek, M. Key tasks of science in improving effectiveness of hard coal production in Poland. Arch. Min. Sci. 2017, 62, 597–620. [Google Scholar] [CrossRef] [Green Version]
- Burchart-Karol, D.F.; Fugiel, A.; Czaplicka-Kolarz, A.; Turek, M. Model of environmental life cycle assessment for coal mining operations. Sci. Total Environ. 2016, 562, 61–72. [Google Scholar] [CrossRef]
- Woźniak, J.; Krysa, Z.; Dudek, M. Concept of government subsidized energy prices for a group of individual consumers in Poland as a means to reduce smog. Energy Policy 2020, 144, 111620. [Google Scholar] [CrossRef]
- Li, Y.; Chiu, Y.-H.; Lin, T.-Y. Coal production efficiency and land destruction in China’s mining industry. Resour. Policy 2019, 63, 101449. [Google Scholar] [CrossRef]
- International Energy Agency, World Energy Statistics; International Energy Agency: Paris, France, 2017.
- Wang, N.; Wen, Z.; Liu, M.; Guo, J. Constructing an energy efficiency benchmarking system for coal production. Appl. Energy 2016, 169, 301–308. [Google Scholar] [CrossRef]
- Bai, X.; Ding, H.; Lian, J.; Ma, D.; Yang, X.; Sun, N.; Xue, W.; Chang, Y. Coal production in China: Past, present, and future projections. Int. Geol. Rev. 2018, 60, 535–547. [Google Scholar] [CrossRef]
- Nyga-Łukaszewska, H.; Aruga, K.; Stala-Szlugaj, K. Energy Security of Poland and Coal Supply: Price Analysis. Sustainability 2020, 12, 2541. [Google Scholar] [CrossRef] [Green Version]
- Gawlik, L.; Kaliski, M.; Kamiński, J.; Sikora, A.P.; Szurej, A. Hard coal in the fuel-mix of Poland: The long-term perspective. Arch. Min. Sci. 2016, 61, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Stala-Szlugaj, K. The development of the marjet of qualified coal fuels in Poland. Mineral Resources Management 2017, 33, 95–108. [Google Scholar] [CrossRef]
- Szpor, A.; Ziółkowska, K. The Transformation of the Polish Coal Sector. International Institute for Sustainable Development. 2018. Available online: https://www.iisd.org/system/files/publications/transformation-polish-coal-sector.pdf (accessed on 1 January 2020).
- Korski, J.; Tabór-Osadnik, K.; Wyganowska, M. Reasons for problems of the polish hard coal mining in connection with restructuring changes in the period 1988–2014. Resour. Policy 2016, 48, 25–31. [Google Scholar] [CrossRef]
- Dubiński, J.; Prusek, S.; Turek, M.; Wachowicz, J. Hard coal production competitiveness in Poland. Mining Ecology and Exploitation of the earth’s bowels. J. Min. Sci. 2020, 56, 322–330. [Google Scholar] [CrossRef]
- Blaschke, W.S.; Baic, I. Coal mining and coal preparation in Poland. Czas. Tech. 2011, 4, 22. [Google Scholar]
- Flach, B.; Lieberz, S.; Bolla, S. Biofuels Annual; Foreign Agricultural Service; United States Department of Agriculture: Washington, DC, USA, 2021. [Google Scholar]
- Mohideen, M.M.; Ramakrishna, S.; Prabu, S.; Liu, Y. Advancing green energy solution with the impetus of COVID-19 pandemic. J. Energy Chem. 2021, 59, 688–705. [Google Scholar] [CrossRef]
- Koutrouma, T.; Ioannou, K.; Arabatzis, G. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks, and a hybrid ARIMA-ANN model. Energy Policy 2009, 37, 3627–3634. [Google Scholar] [CrossRef]
- Shekhar, J.; Suri, D.; Somani, P.; Lee, S.J.; Arora, M. Reduced renewable energy stability in India following COVID-19: Insights and key policy recommendations. Renew. Sustain. Energy Rev. 2021, 144, 111015. [Google Scholar] [CrossRef]
- Siddique, A.; Shahzad, A.; Lawler, J.; Mahmoud, K.A.; Lee, D.S.; Ali, N.; Bilal, M.; Rasool, K. Unprecedented environmental and energy impacts and challenges of COVID-19 pandemic. Environ. Res. 2021, 193, 110443. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; An, J.; Mikhaylov, A.; Moiseev, N.; Danish, M.S.S. Renewable energy development and COVID-19 measures for sustainable development. Sustainability 2021, 13, 4418. [Google Scholar] [CrossRef]
- Deshwal, D.; Sangwan, P.; Dahiya, N. How will COVID-19 impact renewable energy in India? Exploring challenges, lessons, and emerging opportunities. Energy Res. Soc. Sci. 2021, 77, 102097. [Google Scholar] [CrossRef]
- Gebreslassie, M.G. COVID-19 and energy access: An opportunity or a challenge for the African continent? Energy Res. Soc. Sci. 2020, 68, 101677. [Google Scholar] [CrossRef]
- Badera, J.; Kocoń, P. Local community opinions regarding the socio-environmental aspects of lignite surface mining: Experience from central Poland. Energy Policy 2014, 66, 507–516. [Google Scholar] [CrossRef]
- Kiulia, O. Decarbonisation perspectives for the Polish economy. Energy Policy 2018, 118, 69–76. [Google Scholar] [CrossRef]
- Xu, C.; Xu, G.; Zhao, S.; Dong, W.; Zhou, L.; Yang, Y. A theoretical investigation of energy efficiency improvement by coal pre-drying in coal fired power plants. Energy Convers. Manag. 2016, 122, 580–588. [Google Scholar] [CrossRef]
- Vaněk, M.; Bora, P.; Maruszewska, E.W.; Kašparková, A. Benchmarking of mining companies extracting hard coal in the Upper Silesian Coal Basin. Resour. Policy 2017, 53, 378–383. [Google Scholar] [CrossRef]
- Rybak, A.; Rybak, A. Possible strategies for hard coal mining in Poland as a result of production function analysis. Resour. Policy 2016, 50, 27–33. [Google Scholar] [CrossRef]
- Gharavi, H.; Ghafurian, R. Smart Grid: The Electric Energy System of the Future; IEEE: Piscataway, NJ, USA, 2011; Volume 99. [Google Scholar]
- Czyżewski, B.; Majchrzak, A. Market versus agriculture in Poland—Macroeconomic relations of income, prices, and productivity in terms of the sustainable development paradigm. Technol. Econ. Dev. Econ. 2018, 24, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Czyżewski, B.; Guth, M. Impact of policy and factor intensity on sustainable value of European agriculture: Exploiting trade-offs of environmental, economic, and social efficiency at the regional level. Agriculture 2021, 11, 78. [Google Scholar] [CrossRef]
- Rita, E.; Chizoo, E.; Cyril, U.S. Sustaining COVID-19 pandemic lockdown era air pollution impact through utylization of more renewable energy resources. Helion 2021, 7, e07455. [Google Scholar] [CrossRef]
- Kretschmann, J.; Efremenkov, A.B.; Khoreshok, A.A. From mining to post-mining: The sustainable development strategy of the Grrman hard coal mining industry. Ecology and safety in technosphere: Current problems and solutions. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Yurga, Russian, 2017; Volume 50. [Google Scholar] [CrossRef]
- Shah, M.I.; Kirikkaleli, D.; Adedoyin, F.F. Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark. Renew. Energy 2021, 175, 797–806. [Google Scholar] [CrossRef]
- Hosseinin, S.E. An outlook on the global development of renewable and sustainable energy at the time of COVID-19. Energy Res. Soc. Sci. 2020, 68, 101633. [Google Scholar] [CrossRef]
- Tsao, Y.-C.; Thanh, V.-V.; Lu, J.-C.; Wei, H.-H. A risk-sharinf-based resilient renewable energy supply network model under the COVID-19 pandemic. Sustain. Prod. Consum. 2021, 25, 484–498. [Google Scholar] [CrossRef]
- Markevych, K.; Maistro, S.; Koval, V.; Paliukh, V. Mining sustainability and circular economy in the context of economic security in Ukraine. Min. Miner. Depos. 2022, 16, 101–113. [Google Scholar] [CrossRef]
- Yuan, Z.; Bi, J.; Moriguichi, Y. The circular economy: A new development strategy in China. J. Ind. Ecol. 2006, 10, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Towards the Circular Economy; Ellen MacArthur Foundation: Cowes, UK, 2013; 96p.
- Geng, Y.; Zhu, Q.; Doberstein, B.; Fujita, T. Implementing China’s circular economy concept at the regional level: A review of progress in Dalian, China. Waste Manag. 2009, 29, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Zink, T.; Geyer, R. Circular economy rebound. J. Ind. Ecol. 2017, 21, 593–602. [Google Scholar] [CrossRef]
- Geissdoerfer, M. The circular economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Bastein, T.; Roelofs, E.; Rietveld, E.; Hoogendoorn, A. Opportunities for a Circular Economy in the Netherlands; Report; Netherlands Ministry of Infrastructure and Environment: Hague, The Netherlands, 2013. [Google Scholar]
- Ingebrightsen, S.; Jakobsen, O. Circulation economics—An ecological image of man based upon an organic worldview. Circ. Econ. Ecol. Man 2007, 253–272. [Google Scholar]
- Hislop, H.; Hill, J. Reinventing the Wheel: A Circular Economy for Resource Security; Green Alliance: London, UK, 2011; 52p. [Google Scholar]
- Wijkman, A.; Skånberg, K. The Circular Economy and Benefits for Society Jobs and Climate Clear Winners in an Economy Based on Renewable Energy and Resource Efficiency. A Study Report at the Request of the Club of Rome with Support from the MAVA Foundation. 2017. Available online: https://circulareconomy.europa.eu/platform/sites/default/files/the-circular-economy-czech-republic-and-poland.pdf (accessed on 29 December 2022).
- Guo, X.; Shi, J.; Ren, D. Coal price forecasting and structural analysis in China. Hindawi Publishing Corporation. Discret. Dyn. Nat. Soc. 2016, 1256168. [Google Scholar] [CrossRef] [Green Version]
- Lajdová, Z.; Bielik, P. Vertical price transmission analysis: The case of milk in the Slovak dairy sector. Appl. Stud. Agribus. Commer. 2013, 7, 89–96. [Google Scholar] [CrossRef]
- Kharin, S. Price Transmission Analysis: The Case of Milk Products in Russia. Agris-Line Pap. Econ. Inform. 2018, 10, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 1982, 50, 987. [Google Scholar] [CrossRef]
- Bellerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- McGinley, O.; Moran, P.; Goggins, J. An Assessment of the Key Performance Indicators (KPIs) of Energy Efficient Retrofits to Existing Residential Buildings. Energies 2022, 15, 334. [Google Scholar] [CrossRef]
- Teresiene, D.; Dubauskas, G. Modelling stock price of Lithuanian manufacture of milk and dairy products companies’ volatility with GARCH models. Manag. Theory Stud. Rural. Dev. 2008, 13, 154–161. [Google Scholar]
- Daryanto, A.; Sahara, D.A.S.; Singa, A.R. Climate change and milk price volatility in Indonesia. Int. J. Econ. Financ. Issues 2020, 10, 282–288. [Google Scholar] [CrossRef]
- Hossain, A. Forecasting volatility of processed milk products in the framework of ARCH model. Int. J. Mod. Sci. Technol. 2018, 3, 190–195. [Google Scholar]
- Bórawski, P.; Wyszomierski, R.; Bełdycka-Bórawska, A.; Mickiewicz, B.; Kalinowska, B.; Dunn, J.W.; Rokicki, T. Development of Renewable Energy Sources in the European Union in the Context of Sustainable Development Policy. Energies 2022, 15, 1545. [Google Scholar] [CrossRef]
- Ghahramani, M.; Thavanewaran, A. A note on GARCH model identifying. Comput. Math. 2008, 55, 2469–2475. [Google Scholar]
- Stewart, H.; Blayney, D.P. Retail dairy prices fluctuate with the farm value of milk. Agric. Resour. Econ. Rev. 2011, 40, 201–217. [Google Scholar] [CrossRef]
- Kumar, D.; Maheswaran, S. Modelling asymmetry and persistence under the impact of sudden changes in the volatility of Indian stock market. IIMB Manag. Rev. 2012, 24, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Jonek-Kowalska, I.; Turek, M. Dependence of total production costs on production and infrastructure parameters in the Polish hard coal mining industry. Energies 2017, 10, 1480. [Google Scholar] [CrossRef] [Green Version]
- Skibska, M.; Osadnik, K.; Białas, M. Górnictwo węgla kamiennego w Polsce w latach 1990–2020. Min.-Inform. Autom. Electr. Eng. 2020, 4, 26–34. [Google Scholar]
- Frankowski, J.; Mazurkiewicz, J.; Sokołowski, J. Mapping the Indirect Employment of Hard Coal Mining: A Case Study of Upper Silesia, Poland. IBS Working Paper No. 07/2022. Available online: https://ibs.org.pl/app/uploads/2022/11/IBS_WP_07_2022.pdf (accessed on 1 January 2023).
- Kaushik, M.K.; Mathur, B. Data analysis of students marks with descriptive statistics. Int. J. Recent Innov. Trends Comput. Commun. 2014, 2, 1188–1191. [Google Scholar]
- Liu, R.Y.; Parelius, J.M.; Singh, K. Multivariate analysis by data depyh: Descriptive statistics, graphics, and inference. Ann. Statisctc 1999, 27, 783–858. [Google Scholar]
- Grodzicka, A.; Plewa, F.; Krause, M.; Figiel, A.; Rozmus, M. Selection of Employees for Performing Work Activities in Currently Used Ventilation Systems in Hard Coal Mining. Energies 2022, 15, 408. [Google Scholar] [CrossRef]
- Bauwens, L.; Laaurent, S.; Rombouts, J.V.K. Multivariate GARCH models: A survey. J. Appl. Econom. 2006, 21, 79–109. [Google Scholar] [CrossRef] [Green Version]
- Maruszewska, E.W.; Vaněk, M.; Vilamová, Š. Economic situation of hard coal mining industry in Upper Silesian Coal Basin. Acta Montan. Slovaca 2014, 19, 2–116. [Google Scholar]
- Kowal, B.; Ranosz, R.; Karkula, M.; Kowal, D. Process Management in Hard Coal Mining Companies. J. Pol. Miner. Eng. Soc. 2018, 2, 111–116. Available online: http://www.potopk.com.pl/Full_text/2018_full/IM%202-2018-a14.pdf (accessed on 1 January 2023).
- Laurent, S.; Romboust, J.V.K.; Violante, F. On the forecasting accuracy of multivariate GARCH models. J. Appl. Econom. 2011, 27, 934–955. [Google Scholar] [CrossRef]
- World Energy Employment. Available online: https://iea.blob.core.windows.net/assets/a0432c97-14af-4fc7-b3bf-c409fb7e4ab8/WorldEnergyEmployment.pdf (accessed on 29 December 2022).
- Katsiampa, P. Volatility estimation for Bitcoin: A comparison of GARCH models. Econ. Lett. 2017, 158, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Discussion about Energy. Rozmowy o Energetyce. Available online: https://www.cire.pl/artykuly/o-tym-sie-mowi/trzy-scenariusze-przyszlosci-sektora-energetycznego-w-polsce (accessed on 29 December 2022). (In Polish).
- Bórawski, P.; Bełdycka-Bórawska, A.; Holden, L.; Rokicki, T. The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis. Energies 2022, 15, 8771. [Google Scholar] [CrossRef]
- Braun, J. Ekonomiczny Aspect Bezpieczeństwa Energetycznego—Anbaliza Obecnej Sytuacji w Polsce I w Wybranych Krajach Unii Europejskiej. Energie Gigawat. 2020, p. 9. Available online: https://www.cire.pl/pliki/2/2020/jan_braun.pdf (accessed on 29 December 2022). (In Polish).
- PEP 2040. Polityka Energetyczna Polski do 2040 R (Energy Policy of Poland to 2040). Ministerstwo Klimatu i Środowiska. GUS ’Załacznik do uchwały nr 22/2021 Rady Ministrów z dnia 2 lutego 2021. Available online: https://www.gov.pl/web/klimat/zalozenia-do-aktualizacji-polityki-energetycznej-polski-do-2040-r (accessed on 10 November 2022). (In Polish)
Variable | Average | Median | Minimal | Maximal | Std. Dev. | Coefficient of Variation | Skewedness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Hard coal sector mining results | −0.671 | −0.400 | −4.500 | 3.00 | 2.057 | 3.067 | −0.226 | −0.527 |
Total coal sales prices [PLN/t] | 193.030 | 187.88 | 12.670 | 349.660 | 104.520 | 0.541 | −0.025 | −1.249 |
Number of active mines with coal [number] | 40.645 | 32.000 | 20.000 | 70.000 | 16.744 | 0.411 | 0.595 | −1.041 |
Employment in Polish hard coal [thousand people] | 167.670 | 123.400 | 82.700 | 387.500 | 90.825 | 0.541 | 1.091 | −0.150 |
Specification | Levels of Dependant Variable | First Differences of Dependant Variable | ||||||
---|---|---|---|---|---|---|---|---|
Estimated Value (a-1) | Tau Test Statistics | p Value | Autocorelation of Resuduela | Estimated Value (a-1) | Tau Test Statistics | p Value | Autocorelation of Resuduela of First Raw | |
Hard coal sector mining results | −0.553 | −3.123 | 0.005 | 0.140 | −1.024 | −5.274 | 0.000 | −0.006 |
Total coal prices | −0.0149 | −0.336 | 0.854 | 0.366 | −0.761 | −3.903 | 0.001 | 0.084 |
Number of active mines | −0.014 | −0.594 | 0.769 | −0.071 | −0.621 | −3.508 | 0.002 | 0.013 |
Employment in Polish hard coal | 0.006 | 0.745 | 0.995 | −0.133 | −0.012 | −0.100 | 0.925 | 0.046 |
Specification | Coefficient | Standard Error | z | p Value | Arithmetic Mean of the Dependent Variable | Likelihood Logarithm | Critical Bayesian Schwarz Criterion | Standard Deviation of Dependent Variable | Critical Information Akaike Criterion | Critical Hannan–Quinn Criterion | Chi Square | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hard coal sector mining results | Const | −0.446 | 0.352 | −1.265 | 0.206 | |||||||
Alpha 0 | 3.454 | 0.892 | 3.873 | 0.111 | ||||||||
Alpha 1 | 0.066 | 0.259 | 0.255 | 0.799 | ||||||||
Beta 1 | 0.449 | 0.174 | 2.577 | 0.010 | 0.670 | −65.814 | 145.365 | 2.057 | 139.629 | 141.499 | 0.0720 | |
Total coal sale prices | Const | 119.477 | 6.389 | 18.70 | 0.004 | |||||||
Alpha 0 | 88.509 | 205.019 | 0.432 | 0.666 | ||||||||
Alpha 1 | 0.961 | 0.707 | 1.359 | 0.174 | 193.0268 | −178.394 | 373.957 | 104.522 | 366.787 | 369.124 | 18.433 | |
Beta 1 | 0.038 | 0.554 | 0.068 | 0.945 | ||||||||
Number of active mines | Const | 30.066 | 0.889 | 33.80 | 0.175 | |||||||
Alpha 0 | 4.534 | 3.545 | 1.279 | 0.208 | ||||||||
Alpha 1 | 0.887 | 0.469 | 1.891 | 0.058 | 40.645 | −110.571 | 238.312 | 16.744 | 231.142 | 233.479 | 40.535 | |
Beta 1 | 1.000 | 0.325 | 0.000 | 1.000 | ||||||||
Employment in Polish hard coal | Const | 117.283 | 1.570 | 74.69 | 0.000 | |||||||
Alpha 0 | 8.203 | 11.835 | 0.693 | 0.488 | ||||||||
Alpha 1 | 0.866 | 0.349 | 2.481 | 0.013 | 167.677 | −150.378 | 317.926 | 90.825 | 310.756 | 313.093 | 65.755 | |
Beta 1 | 1.000 | 0.266 | 0.375 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bórawski, P.; Bełdycka-Bórawska, A.; Holden, L. Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy. Energies 2023, 16, 726. https://doi.org/10.3390/en16020726
Bórawski P, Bełdycka-Bórawska A, Holden L. Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy. Energies. 2023; 16(2):726. https://doi.org/10.3390/en16020726
Chicago/Turabian StyleBórawski, Piotr, Aneta Bełdycka-Bórawska, and Lisa Holden. 2023. "Changes in the Polish Coal Sector Economic Situation with the Background of the European Union Energy Security and Eco-Efficiency Policy" Energies 16, no. 2: 726. https://doi.org/10.3390/en16020726