Experimental Study on a Novel Form-Stable Phase Change Material Based on Solid Waste Iron Tailings as Supporting Material for Thermal Energy Storage
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of FSPCM
2.3. Characterization of FSPCMs
3. Results and Discussion
3.1. Leakage Phenomenon and Leakage Evaluation
3.2. Morphology and Microstructure of FSPCMS
3.3. Chemical Compatibility of FSPCMs
3.4. Thermal Properties of the FSPCMs
3.5. Thermal Reliability of LA/CIT/CNT FSPCM
3.6. Thermal Stability of the FSPCMs
3.7. Heat Transfer Efficiency of the FSPCMs
4. Conclusions
- (1)
- The leakage test results and SEM analysis results indicated that CITs can be employed as a supporting matrix for preventing leakage of LA. Moreover, when the mass fraction of LA retained in the composite was 27.5%, the LA/CIT/CNT FSPCM was formed without the leakage of LA.
- (2)
- The FTIR showed there were no chemical reactions among the three components, namely, LA, CITs, and CNTs of the FSPCMs. The results of TGA demonstrated that the thermal stability of the LA/CIT/CNT FSPCMs at their working temperature was satisfactory.
- (3)
- The LA/CIT/CNT FSPCMs melted at 45.24 °C with a latent heat of 39.95 J/g and solidified at 39.61 °C with a latent heat of 35.63 J/g, respectively. Through the repeated heating and cooling cycles, the LA/CIT/CNT FSPCMs had good thermal reliability.
- (4)
- Compared with pure LA, the thermal transfer efficiency of the LA/CIT/CNT FSPCMs were significantly improved with the addition of CNTs. The thermal transfer efficiency of the LA/CIT/CNT FSPCMs was improved by 80.43% for the melting process and 84.62% for the solidification process than those of LA.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Gu, X.B.; Bian, L. Enhanced thermal conductivity of palmitic acid/mullite phase change composite with graphite powder for thermal energy storage. Renew. Energ. 2019, 138, 833–841. [Google Scholar]
- Sun, M.Y.; Liu, T.; Sha, H.N.; Li, M.L.; Liu, T.Z.; Wang, X.L.; Chen, G.J.; Wang, J.D.; Jiang, D.Y. A review on thermal energy storage with eutectic phase change materials: Fundamentals and applications. J. Energy Storage 2023, 68, 107713. [Google Scholar]
- Adesusi, O.M.; Adetunji, O.R.; Kuye, S.I.; Musa, A.I.; Erinle, T.J.; Gbadamosi-Olatunde, O.B.; Ipadeola, S.O. A comprehensive review of the materials degradation phenomena in solid-liquid phase change materials for thermal energy storage. Int. J. Thermofluids 2023, 18, 100360. [Google Scholar]
- Liu, P.; Gu, X.B.; Bian, L.; Cheng, X.F.; Peng, L.H.; He, H.C. Thermal properties and enhanced thermal conductivity of capric acid/diatomite/Carbon nanotubes composite as form-stable phase change materials for thermal energy storage. ACS Omega 2019, 4, 2964–2972. [Google Scholar] [CrossRef]
- Zhang, H.J.; Zhang, X.G.; Pan, D.; Ai, Y.H.; Chen, Y.S. Preparation and application of high-temperature composite phase change materials. J. Energy Storage 2023, 68, 107669. [Google Scholar]
- Luo, L.X.; Luo, W.X.; Chen, W.J.; Hu, X.W.; Ma, Y.; Xiao, S.K.; Li, Q.l.; Jiang, X.G. Form-stable phase change materials based on graphene-doped PVA aerogel achieving effective solar energy photothermal conversion and storage. Sol. Energy 2023, 255, 146–156. [Google Scholar] [CrossRef]
- Khademi, A.; Mehrjardi Seyed, A.A.; Said, Z.; Saidur, R.; Ushak, S.; Chamkha Ali, J. A comparative study of melting behavior of phase change material with direct fluid contact and container inclination. Energy Nexus 2023, 10, 100196. [Google Scholar]
- Kumar, N.; Rathore Pushpendra, K.S.; Sharma, R.K.; Gupta Naveen, K. Integration of lauric acid/zeolite/graphite as shape stabilized composite phase change material in gypsum for enhanced thermal energy storage in buildings. Appl. Therm. Eng. 2023, 224, 120088. [Google Scholar] [CrossRef]
- Wu, M.M.; Liu, C.Z.; Rao, Z.H. Preparation and performance of lauric acid phase change material with the double-layer structure for solar energy storage. J. Energy Storage 2023, 65, 107385. [Google Scholar] [CrossRef]
- Karaipekli, A.; Biçer, A.; Sarı, A.; Tyagi, V. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers. Manag. 2017, 134, 373–381. [Google Scholar] [CrossRef]
- Lin, J.H.; Ouyang, Y.X.; Chen, L.; Wen, K.; Li, Y.; Mu, H.Z.; Ren, Q.L.; Xie, X.Z.; Long, J.Y. Enhancing the solar absorption capacity of expanded graphite-paraffin wax composite phase change materials by introducing carbon nanotubes additives. Surf. Interfaces 2022, 30, 101871. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J. Thermal enhancement of paraffin/hydrophobic expanded perlite granular phase change composite using graphene nanoplatelets. Energy Build. 2018, 169, 206–215. [Google Scholar] [CrossRef]
- Zhou, D.Y.; Xiao, S.Z.; Xiao, X.H. Preparation and Thermal Performance of Fatty Acid Binary Eutectic Mixture/Expanded Graphite Composites as Form-Stable Phase Change Materials for Thermal Energy Storage. ACS Omega 2023, 8, 8596–8604. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.X.; Zhao, Y.C.; Ding, Y.F.; Shi, Y.; Liu, X.Y.; Jiang, D.H. Fabrication and comprehensive analysis of expanded perlite impregnated with myristic acid-based phase change materials as composite materials for building thermal management. J. Energy Storage 2022, 55, 105710. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhao, Y.C.; Fan, Z.X.; Shi, Y.; Jiang, D.H. Preparation and characterization of lauric acid–stearic acid/expanded perlite as a composite phase change material. RSC Adv. 2022, 12, 23860–23868. [Google Scholar] [CrossRef]
- Sarı, A. Fabrication and thermal characterization of kaolin-based composite phase change materials for latent heat storage in buildings. Energy Build. 2015, 96, 193–200. [Google Scholar] [CrossRef]
- Jafaripour, M.; Sadrameli, S.M.; Pahlavanzadeh, H.; Mousavi, S.S. Fabrication and optimization of kaolin/stearic acid composite as a form-stable phase change material for application in the thermal energy storage systems. J. Energy Storage 2021, 33, 102155. [Google Scholar]
- Ren, M.; Zhao, H.; Gao, X.J. Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar. Energy 2022, 241, 122823. [Google Scholar] [CrossRef]
- Jia, W.B.; Wang, C.M.; Wang, T.J.; Cai, Z.Y.; Chen, K. Preparation and performances of palmitic acid/diatomite form-stable composite phase change materials. Int. J. Energ. Res. 2020, 44, 4298–4308. [Google Scholar] [CrossRef]
- Wang, H.; Rao, Z.H.; Li, L.Q.; Liao, S.M. A novel composite phase change material of high-density polyethylene/d-mannitol/expanded graphite for medium-temperature thermal energy storage: Characterization and thermal properties. J Energy Storage 2023, 60, 106603. [Google Scholar]
- Liang, Z.k.; Peng, X.; Huang, Z.C.; Li, J.Y.; Yi, L.Y.; Huang, B.Y.; Chen, C.Z. Innovative methodology for comprehensive utilization of refractory low-grade iron ores. Powder Technol. 2023, 418, 118283. [Google Scholar]
- Li, C.; Sun, H.H.; Bai, J.; Li, L.T. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J. Hazard. Mater. 2010, 174, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.V.; Markandeya, R.; Sharma, S.K. Recovery of Iron Values from Iron Ore Slimes of Donimalai Tailing Dam Recovery of Iron Values from Iron Ore Slimes of Donimalai Tailing Dam. Trans. Indian Inst. Met. 2016, 69, 143–150. [Google Scholar] [CrossRef]
- Lv, P.Z.; Liu, C.Z.; Rao, Z.H. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renew. Sust. Energ. Rev. 2017, 68, 707–726. [Google Scholar]
- Sobolciak, P.; Karkri, M.; Al-Maadeed, M.; Krupa, I. Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renew. Energ. 2016, 88, 372–382. [Google Scholar] [CrossRef]
- Liu, S.; Han, L.; Xie, S.; Jia, Y.; Sun, J.; Jing, Y.; Zhang, Q. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites. Sol. Energy 2017, 143, 22–30. [Google Scholar] [CrossRef]
- Karaipekli, A.; Sarı, A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J. Ind. Eng. Chem. 2010, 16, 767–773. [Google Scholar]
- Jeong, S.; Jeon, J.; Chung, O.; Kim, S.; Kim, S. Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties. J. Therm. Anal. Calorim. 2013, 114, 689–698. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.H.; Qian, T.T.; Guan, W.M.; Wang, X. Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage. J. Mater. Sci. Technol. 2016, 33, 198–203. [Google Scholar] [CrossRef]
- Li, M.; Guo, Q.G.; Nutt, S. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol. Energy 2017, 146, 1–7. [Google Scholar] [CrossRef]
- Liu, P.; Gu, X.B.; Zhang, Z.K.; Shi, J.P.; Rao, J.; Bian, L. Fabrication and Thermal Properties of Capric Acid/Calcinated Iron Tailings/Carbon Nanotubes Composite as Form-Stable Phase Change Materials for Thermal Energy Storage. Minerals 2019, 9, 648. [Google Scholar] [CrossRef]
- Gu, X.B.; Liu, P.; Bian, L.; Peng, L.H.; Liu, Y.G.; He, H.C. Mullite Stabilized Palmitic Acid as Phase Change Materials for Thermal Energy Storage. Minerals 2018, 8, 440–450. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Z.K.; Gu, X.B.; Rao, J.; Shi, J.P.; Bian, L. Fabrication of a novel shape-stabilized composite phase change material based on multivariate supporting materials by using typical solid wastes. Constr. Build. Mater. 2020, 240, 118156. [Google Scholar] [CrossRef]
- Lv, P.Z.; Liu, C.Z.; Rao, Z.H. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl. Energ. 2016, 182, 475–487. [Google Scholar]
- Liu, P.; Gu, X.B.; Bian, L.; Peng, L.H.; He, H.C. Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage. J. Therm. Anal. Calorim. 2019, 138, 359–368. [Google Scholar]
- Ramakrishnan, S.; Wang, X.; Sanjayan, J.; Wilson, J. Assessing the feasibility of integrating form-stable phase change material composites with cementitious composites and prevention of pcm leakage. Mater. Lett. 2017, 192, 88–91. [Google Scholar] [CrossRef]
- Feng, Y.; Wei, R.; Huang, Z.; Zhang, X.; Wang, G. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials. Phys. Chem. Chem. Phys. 2018, 20, 7772–7780. [Google Scholar]
- Shen, Q.; Ouyang, J.; Zhang, Y.; Yang, H. Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage. Appl. Clay Sci. 2017, 146, 14–22. [Google Scholar]
- Karaipekli, A.; Sari, A. Capric–myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol. Energy 2009, 83, 323–332. [Google Scholar] [CrossRef]
- Shilei, L.; Neng, Z.; Guohui, F. Eutectic mixtures of capric acid and lauric acid applied in building wallboards for heat energy storage. Energy Build. 2006, 38, 708–711. [Google Scholar] [CrossRef]
- Memon, S.; Liao, W.; Yang, S.; Cui, H.; Shah, S. Development of composite PCMs by incorporation of paraffin into various building materials. Materials 2015, 8, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Karaman, S.; Karaipekli, A.; Sari, A.; Bicer, A. Polyethylene glycol (peg)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2011, 95, 1647–1653. [Google Scholar]
- Sari, A.; Karaipekli, A.; Kaygusuz, K. Capric acid and myristic acid for latent heat thermal energy storage. Energ Source Part A 2008, 30, 1498–1507. [Google Scholar] [CrossRef]
- Biçer, A.; Sarı, A. New kinds of energy-storing building composite PCMs for thermal energy storage. Energy Convers. Manag. 2013, 69, 148–156. [Google Scholar]
- Fang, G.; Li, H.; Cao, L.; Shan, F. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage. Mater. Chem. Phys. 2012, 137, 558–564. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Z.; Yuan, Y.; Wang, Y.; Lei, J.; Zhou, C. Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage. Energy Build. 2018, 171, 88–99. [Google Scholar]
- Zhang, X.; Fan, Y.; Tao, X.; Yick, K. Crystallization and prevention of supercooling of microencapsulated n-alkanes. J. Colloid Interf. Sci. 2005, 281, 299–306. [Google Scholar] [CrossRef]
Material | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O + Na2O | Others |
---|---|---|---|---|---|---|---|
IT | 31.98 | 6.49 | 10.23 | 30.77 | 13.84 | 1.64 | 5.05 |
CIT | 33.97 | 7.23 | 10.59 | 31.14 | 13.91 | 1.66 | 1.50 |
Sample | LA | CIT | CNT | Leakage Area of Samples (cm2) | Leakage Ration (%) |
---|---|---|---|---|---|
S1-1 | 5 | 5 | 0 | 88.25 | 19.6 |
S1-2 | 4 | 6 | 0 | 65.04 | 12.4 |
S1-3 | 3 | 7 | 0 | 33.18 | 3.83 |
S1-4 | 2 | 8 | 0 | 0 | 0 |
S2-1 | 2.75 | 7.25 | 0 | 19.63 | 2.433 |
S2-2 | 2.5 | 7.5 | 0 | 12.25 | 1.233 |
S2-3 | 2.25 | 7.75 | 0 | — | 0.1 |
S2-4 | 3 | 7 | 1 | — | 0.4 |
S3-1 | 2.75 | 7.25 | 1 | — | 0.23 |
S3-2 | 2.75 | 7.25 | 3 | 0 | 0 |
S3-3 | 2.75 | 7.25 | 5 | 0 | 0 |
S3-4 | 2.75 | 7.25 | 7 | 0 | 0 |
Samples | Loading of LA (%) | Melting Temperature (°C) | Solidifying Temperature (°C) | Measured Latent Heat of Melting (J/g) | Measured Latent Heat of Solidifying (J/g) |
---|---|---|---|---|---|
LA | 100 | 46.46 | 41.23 | 182.6 | 181.4 |
LA27.5%/CIT | 24.68 | 45.8 | 39.39 | 45.06 | 38.73 |
LA27.5%/CIT/CNT3% | 21.88 | 45.24 | 39.61 | 39.95 | 35.63 |
Item (wt%) | Melting Temperature (°C) | Solidifying Temperature (°C) | Latent Heat of Melting (J/g) | Latent Heat of Solidifying (J/g) | References |
---|---|---|---|---|---|
Capric-myristic acid (20)/vermiculite + expanded graphite (2) | 19.7 | 17.1 | 26.9 | missing | [39] |
Capric acid-lauric acid (26)/gypsum | 19.11 | missing | 35.24 | missing | [40] |
Paraffin(18)/kaolin | 23.9 | 26.3 | 27.9 | missing | [41] |
Propyl palmitate(25–30)/gypsun | 19.0 | 16.0 | 40.0 | missing | [42] |
Capric acid-Palmitic acid (25)/gypsum wallboard | 21.12 | 21.46 | 36.23 | 38.28 | [43] |
Xylitol pentalaurate (20)/gypsum | 40.44 | 39.53 | 31.77 | 29.47 | [44] |
Palmitic acid (25)/active aluminum oxide | 74.13 | 59.57 | 28.56 | 17.53 | [45] |
LA (27.5)/CIT | 45.8 | 39.39 | 45.06 | 38.73 | This study |
LA (27.5)/CIT/CNT (3) | 45.24 | 39.61 | 39.95 | 35.63 | This study |
Sample | Heat Time (min) | Heat Storing Time (min) | Freezing Time (min) | Heat Releasing Time (min) | Improved Heat Rate (%) | Improved Freezing Rate (%) |
---|---|---|---|---|---|---|
LA | 12 | 23 | 6 | 13 | — | — |
LA/CIT | 11 | 5 | 5 | 4 | 78.26 | 69.23 |
LA/CIT/CNT | 10.5 | 4.5 | 3 | 2 | 80.43 | 84.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Wang, Y.; Liang, Z.; Zhang, Z.; Rao, J.; Jiang, S. Experimental Study on a Novel Form-Stable Phase Change Material Based on Solid Waste Iron Tailings as Supporting Material for Thermal Energy Storage. Energies 2023, 16, 7037. https://doi.org/10.3390/en16207037
Liu P, Wang Y, Liang Z, Zhang Z, Rao J, Jiang S. Experimental Study on a Novel Form-Stable Phase Change Material Based on Solid Waste Iron Tailings as Supporting Material for Thermal Energy Storage. Energies. 2023; 16(20):7037. https://doi.org/10.3390/en16207037
Chicago/Turabian StyleLiu, Peng, Yajing Wang, Zhao Liang, Zhikai Zhang, Jun Rao, and Shuai Jiang. 2023. "Experimental Study on a Novel Form-Stable Phase Change Material Based on Solid Waste Iron Tailings as Supporting Material for Thermal Energy Storage" Energies 16, no. 20: 7037. https://doi.org/10.3390/en16207037
APA StyleLiu, P., Wang, Y., Liang, Z., Zhang, Z., Rao, J., & Jiang, S. (2023). Experimental Study on a Novel Form-Stable Phase Change Material Based on Solid Waste Iron Tailings as Supporting Material for Thermal Energy Storage. Energies, 16(20), 7037. https://doi.org/10.3390/en16207037