Reviewing the Situation and Prospects for Developing Small Renewable Energy Systems in Poland
Abstract
:1. Introduction
2. Literature Review
2.1. Reasons for Increasing the Use of Renewable Energy Sources
2.2. Potential of Primary Renewable Energy Sources
2.3. The Impact of the COVID-19 Pandemic on the Development of Renewable Energy Sources
3. Materials and Methods
- Provinces with a high number of small RES power plants: ;
- Provinces with a moderate number: + Sdi;
- Provinces with an average number: () − Sdi ≤ di < ();
- Provinces with a low number: di < () − Sdi
4. Results
- Lubelskie province: a decrease by one in the number of wind-power plants,
- Łódzkie province: a decrease by five in the number of hydropower plants,
- Podkarpackie province: a decrease by one in the number of hydropower plants,
- Śląskie province: a decrease by one in the number of hydropower plants,
- Warmińsko-Mazurskie province: a decrease by two in the number of hydropower plants.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stahl, W. Effect of the COVID-19 pandemic on the load of the Polish power system and the potential of using the DSR method. Zesz. Nauk. Wydziału Elektrotechniki Autom. Politech. Gdańskiej 2021, 73, 47–51. [Google Scholar] [CrossRef]
- Zinecker, M.; Doubravský, K.; Balcerzak, A.; Pietrzak, M.B.; Dohnal, M. The COVID-19 disease and policy re-sponse to mitigate the economic impact in the EU. Technol. Econ. Dev. Econ. 2021, 27, 742–762. [Google Scholar] [CrossRef]
- Grzybowska-Brzezińska, M.; Grzywińska-Rąpca, M.; Batyk, I.; Janusz, M. Determinanty Decyzji Rynkowych Pokolenia Z na Rynku dóbr i Usług ze Szczególnym Uwzględnieniem Zmian ich Zachowań Konsumpcyjnych Spowodowanych Pandemią COVID-19; Instytut Badań Gospodarczych: Toruñ, Poland, 2022. [Google Scholar] [CrossRef]
- Liu, N.; Xu, Z.; Skare, M. The research on COVID-19 and economy from 2019 to 2020: Analysis from the perspective of bibliometrics. Oeconomia Copernic. 2021, 12, 217–268. [Google Scholar] [CrossRef]
- Waliszewski, K.; Warchlewska, A. Comparative analysis of Poland and selected countries in terms of household financial behaviour during the COVID-19 pandemic. Equilib. Q. J. Eco-Nomics Econ. Policy 2021, 16, 577–615. [Google Scholar] [CrossRef]
- Kramarova, K.; Švábová, L.; Gabrikova, B. Impacts of the Covid-19 crisis on unemployment in Slo-vakia: A statistically created counterfactual approach using the time series analysis. Equilib. Q. J. Econ. Econ. Policy 2022, 17, 343–389. [Google Scholar] [CrossRef]
- Svabova, L.; Tesarova, E.N.; Durica, M.; Strakova, L. Evaluation of the impacts of the COVID-19 pandemic on the development of the unemployment rate in Slovakia: Counterfactual before-after compari-son. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 261–284. [Google Scholar] [CrossRef]
- Nazarczuk, J.; Cicha-Nazarczuk, M.; Szczepańska, K. Wrażliwość Polskiej Gospodarki na Zmiany Wywołane Pandemią COVID-19; Instytut Badań Gospodarczych: Toruñ, Poland, 2022; p. 128. [Google Scholar] [CrossRef]
- Dębkowska, K.; Kłosiewicz-Górecka, U.; Szymańska, A.; Ważniewski, P.; Zybertowicz, K. Foresight Polska 2035. Eksperci o Przyszłości Przez Pryzmat Pandemii; Polski Instytut Ekonomiczny: Warsaw, Poland, 2020; pp. 33–38. [Google Scholar]
- Mędrzycki, R. Odnawialne źródła energii w kontekście solidarności społecznej—Wprowadzenie do problematyki. Internetowy Kwart. Antymonop. I Regul. 2019, 1, 6–15. [Google Scholar] [CrossRef]
- Szyrski, M. Prawo energetyczne z uwzględnieniem odnawialnych źródeł energii. W: I. Lipowicz (Red), Insty-Tucje Materialnego Prawa Administracyjnego; Przegląd regulacji; Wydawnictwo Naukowe UKSW: Warszawa, Poland, 2017; pp. 224–248. [Google Scholar]
- Wytwarzanie Energii Elektrycznej w Polsce w Małych Instalacjach OZE. Raport Prezesa URE za 2020 rok (Podstawa Prawna: Art. 17 Ustawy o Odnawialnych Źródłach Energii). Warszawa, Kwiecień 2021. Available online: https://bip.ure.gov.pl/download/3/13385/RAPORTURE-art17uOZE2020.pdf (accessed on 1 January 2022).
- Ustawa z Dnia 20 Lutego 2015 r. o Odnawialnych Źródłach Energii (t.j. Dz. U. z 2023 r. poz. 1436). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000478/U/D20150478Lj.pdf (accessed on 1 January 2022).
- Rozporządzenie Rady Ministrów z Dnia 12 Września 2012 r. w Sprawie Gleboznawczej Klasyfikacji Gruntów (Dz.U.2012.0.1246). Available online: https://www.google.com/search?client=firefox-b-d&q=14.+Rozporz%C4%85dzenie+Rady+Ministr%C3%B3w+z+dnia+12+wrze%C5%9Bnia+2012+r.+w+sprawie+gleboznawczej+klasyfikacji+grunt%C3%B3w+%28Dz.U.2012.0.1246 (accessed on 1 January 2022).
- Krishnamurthy, S.; Lind, A.; Bouzga, A.; Pierchala, J.; Blom, R. Post combustion carbon capture with support-ed amine sorbents: From adsorbent characterization to process simulation and optimization. Chem. En-Gineering J. 2021, 406, 127121. [Google Scholar] [CrossRef]
- European Commission. In Focus: Energy Efficiency in Buildings. Available online: https://ec.europa.eu/info/news/focus-energy-efficiency-buildings-2020-feb-17en (accessed on 30 August 2023).
- A Roadmap for Moving to a Competitive Low Carbon Economy in 2050. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels, European Commission. 2011. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?Uri=COM:2011:0112:FIN:EN:PDF (accessed on 30 August 2023).
- Elavarasan, R.M.; Pugazhendhi, R.; Shafiullah, G.M.; Kumar, N.M.; Arif, M.T.; Jamal, T.; Chopra, S.S.; Dyduch, J. Impacts of COVID-19 on Sustainable Development Goals and effective approaches to maneuver them in the post-pandemic environment. Environ. Sci. Pollut. Res. 2022, 29, 33957–33987. [Google Scholar] [CrossRef]
- Glasgow Climate Change Conference—October–November 2021, Website: United Nations Climate Change, 31 October–12 November 2021. Available online: https://un-fccc.int/conference/glasgow-climate-change-conference-october-november-2021 (accessed on 1 January 2022).
- A European Green Deal Striving to be the First Climate-Neutral Continen. Available online: https://ec.europa.eu/info/strate-gy/priorities-2019-2024/european-green-deal/energy-and-green-deal_pl (accessed on 30 August 2023).
- Kan, A.; Zeng, Y.; Meng, X.; Wang, D.; Xina, J.; Yang, X.; Tesren, L. The linkage between renewable energy poten-tial and sustainable development: Understanding solar energy variability and photovoltaic power potential in Tibet, China. Sustain. Energy Technol. Assess. 2021, 48, 101551. [Google Scholar] [CrossRef]
- Daly, H.E. Ecological Economics and Sustainable Development: Selected essays of Herman Daly; Edward Elgar: London, UK, 2007; pp. 64–81. [Google Scholar]
- Szyja, P. The Role of the State and the Market in the Development of Energy Efficiency. 2019. Available online: http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.cejsh-dbf2482e-6415-42a3-9a3c-2e40eec6456b/c/06.pdf (accessed on 1 January 2022).
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyred, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy Vol. 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Rifkin, J. The Third Industrial Revolution. How Lateral Power is Transforming Energy, the Economy, and the World; Palgrave Macmillan: New York, NY, USA, 2011. [Google Scholar]
- Jain, A.; Yamujala, S.; Gaur, A.; Das, P.; Bhakar, R.; Mathur, J. Power sector decarbonization planning consid-ering renewable resource variability and system operational constraints. Appl. Energy 2023, 331, 120404. [Google Scholar] [CrossRef]
- Jurasz, F.A.; Canales, A.; Kies, M.; Guezgouz, A.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2023, 195, 703–724. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Brecha, R.; Luderer, G. Analyzing major challenges of wind and solar variability in power sys-tems. Renew. Energy 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Ringkjøb, H.K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shah, K.U. Filling the gaps: Policy supports and interventions for scaling up renewable energy development in Small Island Developing States. Energy Policy 2016, 98, 653–662. [Google Scholar] [CrossRef]
- Das, P.; Mathur, J.; Bhakar, R.; Kanudia, A. Implications of short-term renewable energy resource intermittency in long-term power system planning. Energy Strategy Rev. 2018, 22, 1–15. [Google Scholar] [CrossRef]
- Szostok, A.; Stanek, W. Thermo-ecological analysis of the power system based on renewable energy sources integrated with energy storage system. Renew. Energy 2023, 216, 119035. [Google Scholar] [CrossRef]
- Zarębski, P.; Katarzyński, D. Small Modular Reactors (SMRs) as a Solution for Renewable Energy Gaps: Spa-tial Analysis for Polish Strategy. Energies 2023, 16, 6491. [Google Scholar] [CrossRef]
- Makpal, Z.; Nurbakhyt, N.; Mikhail, T.; Kassymkhan, S.; Altyn, A. Comparative Analysis of Strategies for In-novative Development of the Fuel and Energy Complex: The Experience of the Eu Countries. Int. J. Energy Econ. Policy 2023, 13, 128–134. [Google Scholar] [CrossRef]
- Kułyk, P.; Kaźmierczak-Piwko, L.; Gąsiorek-Kowalewicz, A.; Świstak, P. Development of Green Jobs in the Res Sector in the Visegrad Group Countries. Multidiscip. Asp. Prod. Eng. 2019, 1, 570–588. [Google Scholar] [CrossRef]
- Klein, M.; Deissenroth, M. When do households invest in solar photovoltaics? An application of prospect theory. Energy Policy 2017, 109, 270–278. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Filimonova, I.V.; Nemov, V.Y.; Komarova, A.V.; Mishenin, M.V.; Kozhevin, V.D. Relationship of renewable energy consumption to economic, environmental and institutional factors in Europe. Energy Rep. 2021, 7 (Suppl. S5), 358–365. [Google Scholar] [CrossRef]
- Jaworski, S.; Chrzanowska, M.; Zielińska-Sitkiewicz, M.; Pietrzykowski, R.; Jezierska-Thöle, A.; Zielonka, P. Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis. Energies 2023, 16, 6431. [Google Scholar] [CrossRef]
- Wang, J.; Geng, L.; Ding, L.; Zhu, H.; Yurchenko, D. The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl. Energy 2020, 267, 114902. [Google Scholar] [CrossRef]
- Pacesila, M.; Burcea, G.S.; Colesca, S.E. Analysis of renewable energies in European Union. Renew. Sustain. Energy Rev. 2016, 56, 156–170. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Lu, G.; Xu, Z.; Yan, X.; Khu, S.T.; Yang, J.; Zhao, J. Influence of Russia-Ukraine War on the Global Energy and Food Security. Resources. Conserv. Recycl. 2023, 188, 106657. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Medhi, H.; Bhattacharyya, K.G.; Hussain, C.M. Severe deterioration in food-energy-ecosystem nexus due to ongoing Russia-Ukraine war: A critical review. Sci. Total Environ. 2023, 902, 166131. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Assessing the energy security of European Union countries from two perspectives—A new integrated approach based on MCDM methods. Appl. Energy 2023, 347, 121443. [Google Scholar] [CrossRef]
- Juściński, J. Perspektywy rozwoju Odnawialnych Źródeł Energii (OZE) w Polsce do 2020 roku. In Odna-Wialne Źródła Energii w Świetle Globalnego Kryzysu Energetycznego; Wybrane problemy, Red. F. Krawiec; Wydawnictwo Difin: Warszawa, Poland, 2010; Volume 38. [Google Scholar]
- Gawlik, L.; Mirowski, T. Strategic directions of development of the Polish power sector in the light of climate and energy policy of the European Union. Humanit. Soc. Sci. 2016, 23, 49–62. [Google Scholar] [CrossRef]
- Bednarczyk, J.L.; Brzozowska-Rup, K.; Luściński, S. Determinants of the Energy Development Based on Re-newable Energy Sources in Poland. Energies 2021, 14, 6762. [Google Scholar] [CrossRef]
- Emodi, N.V.; Chaiechi, T.; Beg, A.R.A. The impact of climate variability and change on the energy system: A systematic scoping review. Sci. Total Environ. 2019, 676, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Fadly, D.; Fontes, F. Geographical proximity and renewable energy diffusion: An empirical approach. Energy Policy 2019, 129, 422–435. [Google Scholar] [CrossRef]
- Chudy-Laskowska, K.; Pisula, T.; Liana, M.; Vasa, L. Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries. Energies 2020, 13, 4371. [Google Scholar] [CrossRef]
- Renewable Energy Statistics. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics (accessed on 1 May 2023).
- Global Wind Atlas. Available online: https://irena.masdar.ac.ae/GIS/?&tool=dtu:gwa&map=103 (accessed on 12 September 2020).
- Dudin, M.N.; Frolova, E.E.; Protopopova, O.V.; Mamedov, A.A.; Odintsov, S.V. Study of innovative technolo-gies in the energy industry: Nontraditional and renewable energy sources. Entrep. Sustain. 2019, 6, 1704–1713. [Google Scholar] [CrossRef]
- Collins, S.; Deane, J.P.; Ó Gallachóir, B. Adding value to EU energy policy analysis using a multi-model ap-proach with an EU-28 electricity dispatch model. Energy 2017, 130, 433–447. [Google Scholar] [CrossRef]
- Rabe, M.; Streimikiene, D.; Bilan, Y. Model of Optimization of Wind Energy Production in the Light of Legal Changes in Poland. Energies 2020, 13, 1557. [Google Scholar] [CrossRef]
- Witkowska-Dabrowska, M.; Świdyńska, N.; Napiórkowska-Baryła, A. Attitudes of Communities in Rural Ar-eas towards the Development of Wind Energy. Energies 2021, 14, 8052. [Google Scholar] [CrossRef]
- Dragomir, G.; Șerban, A.; Năstase, G.; Brezeanu, A.I. Wind energy in Romania: A review from 2009 to 2016. Renew. Sustain. Energy Rev. 2016, 64, 129–143. [Google Scholar] [CrossRef]
- Wolsink, M. Wind power and the NIMBY-myth: Institutional capacity and the limited significance of public support Renewable. Energy 2000, 21, 49–64. [Google Scholar] [CrossRef]
- Serri, L.; Lembo, E.; Airoldi, D.; Gelli, C.; Beccarello, M. Wind energy plants repowering potential in Italy: Technical-economic assessment. Renew. Energy 2018, 115, 382–390. [Google Scholar] [CrossRef]
- Sahri, Y.; Belkhier, Y.; Tamalouzt, S.; Ullah, N.; Shaw, R.N.; Chowdhury, M.S.; Techato, K. Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage. Energies 2021, 14, 5722. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Kefala, G.; Dakanali, E.; Katsaprakakis, D.A. Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes. Energies 2022, 15, 6822. [Google Scholar] [CrossRef]
- Bartle, A. Hydropower potential and development activities. Energy Policy 2002, 30, 1231–1239. [Google Scholar] [CrossRef]
- IHA; IEAHA; CHA ICOLD. Hydropower and the world’s energy future. In Compton, UK, Paris, France, and Ottawa, Canada, International Hydropower Association, IEA Hydropower Agreement; International Com-mission on Large Dams, and Canadian Hydropower Association: Ottawa, ON, Canada, 2000; Available online: https://www.ieahydro.org/media/ffab53b0/Hydropower%20and%20the%20World%27s%20Energy%20Future%20.pdf (accessed on 1 May 2023).
- Katsaprakakis, D.A.; Christakis, D.G.; Zervos, A.; Papantonis, D.; Voutsinas, S. Pumped storage systems introduction in isolated power production systems. Renew. Sustain. Energy Renew. Energy 2008, 33, 467–490. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A. Computational Simulation and Dimensioning of Solar-Combi Systems for Large-Size Sports Fa-cilities: A Case Study for the Pancretan Stadium, Crete, Greece. Energies 2020, 13, 2285. [Google Scholar] [CrossRef]
- Wasti, A.; Ray, P.; Wi, S.; Folch, C.; Ubierna, M.; Karki, P. Climate changeand the hydropower sector: A global review. Wiley Interdiscip. Rev. Clim. Change 2022, 13, e757. [Google Scholar] [CrossRef]
- Wagner, B.; Hauer, C.; Schoder, A.; Habersack, H. A review of hydropower in Austria: Past, present and future development. Renew. Sustain. Energy Rev. 2015, 50, 304–314. [Google Scholar] [CrossRef]
- Kałuża, T.; Hämmerling, M.; Zawadzki, P.; Czekała, W.; Kasperek, R.; Sojka, M.; Mokwa, M.; Ptak, M.; Szkud-larek, A.; Czechlowski, M.; et al. The hydropower sector in Poland: Historical development and current status. Renew. Sustain. Energy Rev. 2022, 158, 112150. [Google Scholar] [CrossRef]
- Kakoulaki, G.; Gonzalez Sanchez, R.; Gracia Amillo, A.; Szabo, S.; De Felice, M.; Farinosi, F.; De Felice, L.; Bis-selink, B.; Seliger, R.; Kougias, I.; et al. Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe. Renew. Sustain. Energy Rev. 2023, 171, 112989. [Google Scholar] [CrossRef]
- Lewis, N.S. Toward cost-effective solar energy use. Science 2007, 315, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Katsaprakakis, D.A.; Zidianakis, G. Optimized Dimensioning and Operation Automation for a Solar-Combi System for Indoor Space Heating. A Case Study for a School Building in Crete. Energies 2019, 12, 177. [Google Scholar] [CrossRef]
- Katsaprakakis, D. Introducing a solar-combi system for hot water production and swimming pools heating in the Pancretan Stadium, Crete, Greece. Energy Procedia 2019, 159, 174–179. [Google Scholar] [CrossRef]
- Ullah, N.; Sami, I.; Jamal Babqi, A.; Alkhammash, H.I.; Belkhier, Y.; Althobaiti, A.; Ibeas, A. Processor in the Loop Verification of Fault Tolerant Control for a Three Phase Inverter in Grid Connected PV System. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 3760–3776. [Google Scholar] [CrossRef]
- Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410. [Google Scholar] [CrossRef]
- Louzazni, M.; Cotfas, D.T.; Cotfas, P.A. Management and Performance Control Analysis of Hybrid Photovol-taic Energy Storage System under Variable Solar Irradiation. Energies 2020, 13, 3043. [Google Scholar] [CrossRef]
- Aslam, A.; Ahmed, N.; Qureshi, S.A.; Assadi, M.; Ahmed, N. Advances in Solar PV Systems; A Comprehen-sive Review of PV Performance, Influencing Factors, and Mitigation Techniques. Energies 2022, 15, 7595. [Google Scholar] [CrossRef]
- Hu, G.; Ning, X.; Hussain, M.; Sajjad, U.; Sultan, M.; Ali, H.M.; Shah, T.R.; Ahmad, H. Potential evaluation of hybrid nanofluids for solar thermal energy harvesting: A review of recent advances. Sustain. Energy Technol. Assess. 2021, 48, 101651. [Google Scholar] [CrossRef]
- Kaur, G.; Brar, Y.S.; Kothari, D.P. Potential of Livestock Generated Biomass: Untapped Energy Source in India. Energies 2017, 10, 847. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, N.K.; Kaur, J.; Bahah, M.; Zawbaa, H.M.; Turky, R.A.; Kamel, S. Prospects of biogas and evaluation of unseen livestock based resource potential as distributed generation in India. Ain Shams Eng. J. 2022, 13, 101657. [Google Scholar] [CrossRef]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N.A. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Convers. Manag. 2019, 195, 885–908. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hossain, S.; Mofijur, M.; Kabir, Z.; Badruddin, I.A.; Yunus Khan, T.M.; Jassim, E. Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions. Energies 2023, 16, 6456. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar energy for future world—A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Georgiou, D.; Liliopoulos, V.; Aivasidis, A. Upgrading of biogas by utilizing aqueous ammonia and the alka-line effluent from air-stripping of anaerobically digested animal manure. Application on the design of a semi-industrial plant unit. J. Water Process Eng. 2020, 36, 101318. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Oludolapo, A.O. The potential of power generation from municipal solid waste. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management, Harare, Zimbabwe, 7–10 December 2020; Available online: https://ieomsociety.org/harare2020/papers/81.pdf (accessed on 1 May 2023).
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Kumar, R.; Jilte, R.; Ahmadi, M.H. Electricity alternative for e-rickshaws: An approach towards green city. Int. J. Intell. Enterp. (IJIE) 2018, 5, 333–344. [Google Scholar] [CrossRef]
- Abanades, S.; Abbaspour, H.; Ahmadi, A.; Das, B.; Ehyaei, M.A.; Esmaeilion, F.; Assad, M.E.H.; Hajilounezhad, T.; Jamali, D.H.; Hmida, A.; et al. A critical review of biogas production and usage with legislations framework across the globe. Int. J. Environ. Sci. Technol. 2022, 19, 3377–3400. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Oludolapo, A.O. Development of a Biogas Plant with Electricity Generation, Heating and Fertilizer Recovery Systems. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Man-agement, IEOM Society International, Harare, Zimbabwe, 7–10 December 2020; Available online: http://ieomsociety.org/harare2020/papers/82.pdf (accessed on 1 May 2023).
- Kaur, G.; Kaur, J.; Baredar, P.; Shukla, A. A review on biomass energy resources, potential, conversion and policy in India. Energies 2015, 45, 530–539. [Google Scholar] [CrossRef]
- Wang, Y.; Zhi, B.; Xiang, S.; Ren, G.; Feng, Y.; Yang, G.; Wang, X. China’s Biogas Industry’s Sustainable Transition to a Low-Carbon Plan—A Socio-Technical Perspective. Sustainability 2023, 15, 5299. [Google Scholar] [CrossRef]
- Machado, P.G.; Teixeira, A.C.R.; Collaço, F.M.A.; Mouette, D. Review of life cycle greenhouse gases, air pollu-tant emissions and costs of road medium and heavy-duty trucks. WIREs Energy Environ. 2021, 10, e395. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Peterson, T.; Sharma, N.; Shojaeiarani, J.; Bajwa, S.G. A review of densified solid biomass for energy production. Renew. Sustain. Energy Rev. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- Madhiarasan, M.; Louzazni, M. Analysis of Artificial Neural Network: Architecture, Types, and Forecasting Applications. J. Electr. Comput. Eng. 2022, 2022, 5416722. [Google Scholar] [CrossRef]
- Louzazni, M.; Mosalam, H.; Cotfas, D.T. Forecasting of Photovoltaic Power by Means of Non-Linear Au-to-Regressive Exogenous Artificial Neural Network and Time Series Analysis. Electronics 2021, 10, 1953. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Muhsen, H.; Sari, M.S.; Alrbai, M.; Louzazni, M.; Omran, N. An adaptive approach-based ensemble for 1 day-ahead production prediction of solar PV systems. Adv. Mech. Eng. 2022, 14, 16878132221089436. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Louzazni, M. Assessment of Artificial Neural Networks Learn-ingAlgorithms and Training Datasets fo Solar Photovoltaic Power Production Prediction. Front. Energy Res. 2019, 7, 130. [Google Scholar] [CrossRef]
- Budzianowski, W.M.; Wylock, C.E.; Marciniak, P.M. Power requirements of biogas upgrading by water scrubbing and biomethane compression: Comparative analysis of various plant configurations. Energy Convers. Manag. 2017, 141, 2–19. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Proka, A.; Zafirakis, D.; Damasiotis, M.; Kotsampopoulos, P.; Hatziargyriou, N.; Daka-nali, E.; Arnaoutakis, G.; Xevgenos, D. Transformacja energetyczna wysp greckich: Od projektów latarni mor-skich do powstawania społeczności energetycznych. Energie 2022, 15, 5996. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Michopoulos, A.; Skoulou, V.; Dakanali, E.; Maragkaki, A.; Pappa, S.; Antonakakis, I.; Christakis, D.; Condaxakis, C. A Multidisciplinary Approach for an Effective and Rational Energy Transition in Crete Island, Greece. Energies 2022, 15, 3010. [Google Scholar] [CrossRef]
- De’, R.; Pandey, N.; Pal, A. Impact of digital surge during COVID-19 pandemic: A viewpoint on research and practice. Int. J. Inf. Manag. 2020, 55, 102171. [Google Scholar] [CrossRef]
- Fallah, S.N.; Ganjkhani, M.; Shamshirband, S.; Chau, K.-W. Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview. Energies 2019, 12, 393. [Google Scholar] [CrossRef]
- Farrokhabadi, M.; Browell, J.; Wang, Y.; Makonin, S.; Su, W.; Zareipour, H. Day-Ahead Electricity Demand Forecasting Competition: Post-COVID Paradigm. IEEE Open Access J. Power Energy 2022, 9, 185–191. [Google Scholar] [CrossRef]
- Arsad, S.R.; Hasnul Hadi, M.H.; Mohd Afandi, N.A.; Ker, P.J.; Tang, S.G.H.; Mohd Afzal, M.; Ramanathan, S.; Chen, C.P.; Krishnan, P.S.; Tiong, S.K. The Impact of COVID-19 on the Energy Sector and the Role of AI: An Analytical Review on Pre- to Post-Pandemic Perspectives. Energies 2023, 16, 6510. [Google Scholar] [CrossRef]
- Brzozowski, A. Wpływ Zmiany Okoliczności na Zobowiązania w Dobie Pandemii—O Konieczności Za-Stosowania Nadzwyczajnych Środków; Legalis: Warszawa, Poland, 2020. [Google Scholar]
- Plebański, J. Analiza zmian legislacyjnych w przedmiocie prawa energetycznego, ze szczególnym uwzględnieniem prawa odnawialnych źródeł energii, spowodowanych epidemią COVID-19. W: Państwo i Prawo w Czasach COVID-19. Stępniak Kamil (Red.): Państwo i Prawo w Czasach COVID-19; Wydawnictwo Think & Make: Warszawa, Poland, 2020; ISBN 978-83-956684-2-5. [Google Scholar]
- Muszyński, I. Tarcza Antykryzysowa—Pułapki w Nowelizacji Ustawy o OZE. 2020. Available online: https://wysokienapiecie.pl/28544-tarcza-antykryzysowa-pulapki-w-nowelizacjiustawy-o-oze/,dostęp20.06.2 (accessed on 1 May 2023).
- Hemrit, W.; Benlagha, N. Does renewable energy index respond to the pandemic uncertainty? Renew. Energy 2021, 177, 336–347. [Google Scholar] [CrossRef]
- Kumar, S.; Managi, S.; Matsuda, A. Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis. Energy Econ. 2012, 34, 215–226. [Google Scholar] [CrossRef]
- Raport—Zbiorcze Informacje Dotyczące Wytwarzania Energii Elektrycznej z Odnawialnych Źródeł Energii w Małej Instalacji (art. 17 Ustawy o Odnawialnych Źródłach Energii). Available online: https://bip.ure.gov.pl/bip/o-urzedzie/zadania-prezesa-ure/raport-oze-art-17-ustaw/3556,Raport-zbiorcze-informacje-dotyczace-wytwarzania-energii-elektrycznej-z-odnawial.html (accessed on 5 May 2023).
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich; Wyd, I., Ed.; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2010. [Google Scholar]
- Peitgen, H.O.; Jurgens, H.; Saupe, D. Granice Chaosu Fraktale; PWN: Warsawa, Poland, 2002. [Google Scholar]
- Świdyńska, N. Rola Infrastruktury w Tworzeniu Warunków Lokalnego Rozwoju Społecz-No-Gospodarczego na Przykładzie Gmin Wiejskich Województwa Warmińsko-Mazurskiego; Olsztyn, Wydawnictwo UWM: Olsztyn, Poland, 2021. [Google Scholar]
- Grzegorek, J.; Wierzbicki, A.P. New Statistical Approaches in the Systemic Analysis of Regional, In-tra-regional and Cross-Regional Factors of Information Society and Economic Development: The Case of Ma-zovia. Maz. Stud. Reg. 2009, 3, 117–128. [Google Scholar]
- Mitić, P.; Munitlak Ivanović, O.; Zdravković, A. A Cointegration Analysis of Real GDP and CO2 Emissions in Transitional Countries. Sustainability 2017, 9, 568. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.; Gröne, M.-C.; Dienst, C.; Ortiz, W. Impact pathways of small-scale energy projects in the global south—Findings from a systematic evaluation. Renew. Sustain. Energy 2018, 95, 84–94. [Google Scholar] [CrossRef]
- Rej, S.; Nag, B.; Hossain, M.E. Can Renewable Energy and Export Help in Reducing Ecological Footprint of India? Empirical Evidence from Augmented ARDL Co-Integration and Dynamic ARDL Simulations. Sustainability 2022, 14, 15494. [Google Scholar] [CrossRef]
- Renewable Energy. Available online: https://www.europarl.europa.eu/erpl-app-public/factsheets/pdf/en/FTU_2.4.9.pdf (accessed on 5 May 2023).
- Juszczak, A.; Maj, M. Rozwój i Potencjał Energetyki Odnawialnej w Polsce; PIE: Warszawa, Poland, 2020. [Google Scholar]
- Nalepa, K. Poradnik Małej Energetyki Wiatrowej; Warmińsko-Mazurska Agencja Energetyczna: Olsztyn, Poland, 2011. [Google Scholar]
- Hektus, P. Czynniki lokalizacji elektrowni wiatrowych w Polsce. In Rozprawa Doktorska Napisana w Zakładzie Ekonometrii Przestrzennej Pod Kierunkiem Prof. UAM dr Hab; Elizy Kalbarczyk: Poznań, Poland, 2020; pp. 35–58. [Google Scholar]
- Copena, D.; Simón, X. Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia. Renew. Sustain. Energy Rev. 2018, 95, 38–47. [Google Scholar] [CrossRef]
- Rikkonen, P.; Tapio, P.; Rintamäki, H. Visions for small-scale renewable energy production on Finnish farms—A Delphi study on the opportunities for new business. Energy Policy 2019, 129, 939–948. [Google Scholar] [CrossRef]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Polityka Energetyczna Polski do 2040 r. (PEP2040). Available online: https://www.gov.pl/web/ia/polityka-energetyczna-polski-do-2040-r-pep2040 (accessed on 1 May 2023).
- Pred, A. Behaviour and Location: Foundations for a Geographic and Dynamic Location Theory, Lund; The Royal University of Lund, Department of Geography Studies in Geography, Human Geography: Lund, Sweden, 1967; p. 280. [Google Scholar]
- Pilewicz, T.; Sabat, W. Behawioralna teoria lokalizacji—Ewolucja, narzędzia i przyszłość. Kwart. Nauk. O Przedsiębiorstwie 2018, 46, 61–68. [Google Scholar] [CrossRef]
- Valadkhani, A.; Nguyen, J.; Bowden, M. Pathways to reduce CO2 emissions as countries proceed through stages of economic development. Energy Policy 2019, 129, 268–278. [Google Scholar] [CrossRef]
- Köhl, M.; Linser, S.; Prins, K.; Talarczyk, A. The EU climate package “Fit for 55”—A double-edged sword for Europeans and their forests and timber industry. For. Policy Econ. 2021, 132, 102596. [Google Scholar] [CrossRef]
- Paska, J.; Surma, T.; Terlikowski, P.; Zagrajek, K. Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy. Energies 2020, 13, 4261. [Google Scholar] [CrossRef]
- Amelin, M. Small-Scale Renewable Energy Sources for Rural Electrification Possibilities and Limitations; Department of Electric Power Engineering Stockholm: Stockholm, Sweden, 1998; Available online: https://www.diva-portal.org/smash/get/diva2:476745/FULLTEXT01.pdf (accessed on 1 May 2023).
- Jonek-Kowalska, I. Assessing the energy security of European countries in the resource and economic context. Oeconomia Copernic. 2022, 13, 301–334. [Google Scholar] [CrossRef]
- Sánchez García, J.; Galdeano Gómez, E. What drives the preferences for cleaner energy? Para-metrizing the elasticities of environmental quality demand for greenhouse gases. Oeconomia Copernic. 2023, 14, 449–482. [Google Scholar] [CrossRef]
- Lund, P.D. Effects of energy policies on industry expansion in renewable energy. Renew Energy 2009, 34, 53–64. [Google Scholar] [CrossRef]
- Hirmer, S.; Guthrie, P. The benefits of energy appliances in the off-grid energy sector based on seven off-grid initiatives in rural Uganda. Renew. Sustain. Energy Rev. 2017, 79, 924–934. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R., III; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. Available online: https://energyinnovation.org/wp-content/uploads/2020/04/Technologies-and-policies-to-decarbonize-global-industry-review-and-assessment-of-mitigation-drivers-through-2070.pdf (accessed on 1 May 2023). [CrossRef]
- Davidson, N.; Mariev, O.; Turkanova, S. Does income inequality matter for CO2 emissions in Rus-sian regions? Equilibrium. Q. J. Econ. Econ. Policy 2021, 16, 533–551. [Google Scholar] [CrossRef]
- IRENA. International Renewable Energy Agency. 2021. Available online: https://www.irena.org/ (accessed on 1 May 2023).
- Budiarto, R.; Ridwan, M.K.; Haryoko, A.; Anwar, Y.S.; Suchono, S.; Suryopratomo, K. Sustainability challenge for small scale renewable energy use in Yogyakarta. Procedia Environ. Sci. 2013, 17, 513–518. [Google Scholar] [CrossRef]
- Owusu Ph, A.; Asumadu-Sarkodie, S.A. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Rydin, Y.; Turcu, C. Revisiting urban energy initiatives in the UK: Declining local capacity in a shifting policy context. Energy Policy 2019, 129, 653–660. [Google Scholar] [CrossRef]
- Raport Prezesa URE. Wytwarzanie Energii z Małych Instalacji OZE w 2020 r. Available online: https://www.ure.gov.pl/pl/urzad/informacje-ogolne/aktualnosci/9437,Wytwarzanie-energii-z-malych-instalacji-OZE-w-2020-r-kolejny-zielony-raport-Prez.html (accessed on 1 May 2023).
- Dong, L.; Liu, H.; Riffat, S. Development of Small-Scale and Micro-Scale Biomass-Fuelled CHP Systems—A literature review. Appl. Therm. Eng. Elsevier 2009, 29, 2119. [Google Scholar] [CrossRef]
- Abdelrazik, A.S.; Al-Sulaiman, F.; Saidur, R.; Ben-Mansour, R. A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems. Renew. Sustain. Energy Rev. 2018, 95, 110–129. [Google Scholar] [CrossRef]
- Ferrer-Martí, L.; Ferrer, I.; Sánchez, E.; Garfí, M. A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru. Renew. Sustain. Energy Rev. 2018, 95, 74–83. [Google Scholar] [CrossRef]
- Vladimirov, M.; Georgiev, A.; Kolarova, S. Development of Small-Scale Renewable Energy Sources in Bulgaria: Legislative and Administrative Challenges; Center for the Study of Democracy: Mary’s City, Maryland, 2018; Available online: https://www.researchgate.net/publication/328137725_Development_of_Small-Scale_Renewable_Energy_Sources_in_Bulgaria_Legislative_and_Administrative_Challenges (accessed on 1 May 2023).
- Zhao, X.; Cai, Q.; Li, S.; Ma, C. Public preferences for biomass electricity in China. Renew. Sustain. Energy Rev. 2018, 95, 242–253. [Google Scholar] [CrossRef]
- Maradin, D. Advantages and Disadvantages of Renewable Energy Sources Utilization. Int. J. Energy Econ. Policy 2021, 11, 176–183. [Google Scholar] [CrossRef]
- Beckman, J.; Xiarchos, I.M. Why are Californian farmers adopting more (and larger) renewable energy opera-tions? Renew. Energy 2013, 55, 322–330. [Google Scholar] [CrossRef]
- Fujii, E.T.; Mak, J. A model of household electricity conservation behavior. Land Econ. 1984, 60, 340–351. [Google Scholar] [CrossRef]
- Durham, C.; Colby, B.; Longstreth, M. The impact of state tax credits and energy prices on adoption of solar energy systems. Land Econ. 1988, 64, 347–355. [Google Scholar] [CrossRef]
- Jia, J.-J.; Xu, J.-H.; Fan, Y.; Ji, Q. Willingness to accept energy-saving measures and adoption barriers in the resi-dential sector: An empirical analysis in Beijing, China. Renew. Sustain. Energy Rev. 2018, 95, 56–73. [Google Scholar] [CrossRef]
- Lopatkin, D.S.; Shushunova, T.N.; Shaldina, G.E.; Gibadullin, A.A.; Smirnova, I.L. Renewable and small energy development management. J. Phys. Conf. Ser. 2019, 1399, 033061. [Google Scholar] [CrossRef]
- Shaikh, Z.A.; Datsyuk, P.; Baitenova, L.M.; Belinskaja, L.; Ivolgina, N.; Rysmakhanova, G.; Senjyu, T. Effect of the COVID-19 Pandemic on Renewable Energy Firm’s Profitability and Capitalization. Sustainability 2022, 14, 6870. [Google Scholar] [CrossRef]
- Olabi, V.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A. Impact of COVID-19 on the Renewable Energy Sector and Mitigation Strategies. Chem Eng Technol. 2022, 45, 558–571. [Google Scholar] [CrossRef]
- Khanna, M. COVID-19: A Cloud with a Silver Lining for Renewable Energy? Appl. Econ. Perspect. Policy 2021, 43, 73–85. [Google Scholar] [CrossRef]
Types of Installations | Until 30 October 2021 | After 30 October 2021 |
---|---|---|
Micro | up to 50 kW | up to 50 kW |
Small | 50–500 kW | 50–1000 kW |
Big | above 500 kW | above 1 MW |
Name of Producer | Location (Province, Locality) | Type of Power Plant |
---|---|---|
Inter Energia S.A | śląskie; Pyskowice Zaolszany śląskie; Racibórz | biogas biogas |
MEWAT Sp. z o.o. | pomorskie; Zapora kujawsko-pomorskie; Łochowo | hydropower hydropower |
Mała Elektrownia Wodna Nowy Młyn S.C. W. Kotarska, L. Kotarski | warmińsko-mazurskie; Nowy Młyn podlaskie; Blenda | hydropower solar radiation 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkowska-Dąbrowska, M.; Świdyńska, N.; Napiórkowska-Baryła, A. Reviewing the Situation and Prospects for Developing Small Renewable Energy Systems in Poland. Energies 2023, 16, 7339. https://doi.org/10.3390/en16217339
Witkowska-Dąbrowska M, Świdyńska N, Napiórkowska-Baryła A. Reviewing the Situation and Prospects for Developing Small Renewable Energy Systems in Poland. Energies. 2023; 16(21):7339. https://doi.org/10.3390/en16217339
Chicago/Turabian StyleWitkowska-Dąbrowska, Mirosława, Natalia Świdyńska, and Agnieszka Napiórkowska-Baryła. 2023. "Reviewing the Situation and Prospects for Developing Small Renewable Energy Systems in Poland" Energies 16, no. 21: 7339. https://doi.org/10.3390/en16217339
APA StyleWitkowska-Dąbrowska, M., Świdyńska, N., & Napiórkowska-Baryła, A. (2023). Reviewing the Situation and Prospects for Developing Small Renewable Energy Systems in Poland. Energies, 16(21), 7339. https://doi.org/10.3390/en16217339