Sustainable Antioxidant Production for Hygienic Disinfection Using Bioextractants from Lavender and Oregano Distillation Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Distillation Process for the Production of Lavender and Oregano Bioextractant Oils and Chemical Analysis
2.2. Distillation for the Production of Lavender and Oregano Waters and Chemical Analysis
2.3. Evaluation of the Antioxidant Radical Scavenging Capacity (RSC)
2.4. Production of Disinfectants
3. Results
3.1. Lavender Oil Analysis
3.2. Oregano Oil Analysis
3.3. Lavender Water and Oregano Water Analysis
3.4. Evaluation of Antioxidant Activity
3.5. Potential Use of Essential Oils for Disinfectant Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological activities of Lavender essential oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Giray, F.H. An Analysis of World Lavender Oil Markets and Lessons for Turkey. J. Essent. Oil Bear. Plants 2018, 21, 1612–1623. [Google Scholar] [CrossRef]
- Denner, S.S. Lavandula Angustifolia Miller. Holist. Nurs. Pract. 2009, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Héral, B.; Stierlin, É.; Fernandez, X.; Michel, T. Phytochemicals from the genus Lavandula: A review. Phytochem. Rev. 2020, 20, 751–771. [Google Scholar] [CrossRef]
- Vijulie, I.; Lequeux-Dincă, A.-I.; Preda, M.; Mareci, A.; Matei, E. Could Lavender Farming Go from a Niche Crop to a Suitable Solution for Romanian Small Farms? Land 2022, 11, 662. [Google Scholar] [CrossRef]
- Demasi, S.; Caser, M.; Lonati, M.; Cioni, P.L.; Pistelli, L.; Najar, B.; Scariot, V. Latitude and Altitude Influence Secondary Metabolite Production in Peripheral Alpine Populations of the Mediterranean Species Lavandula angustifolia Mill. Front. Plant Sci. 2018, 9, 983. [Google Scholar] [CrossRef]
- Alasalvar, H.; Yildirim, Z. Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach. Sustain. Chem. Pharm. 2021, 22, 100492. [Google Scholar] [CrossRef]
- Perra, M.; Fancello, L.; Castangia, I.; Allaw, M.; Escribano-Ferrer, E.; Peris, J.E.; Usach, I.; Manca, M.L.; Koycheva, I.K.; Georgiev, M.I.; et al. Formulation and Testing of Antioxidant and Protective Effect of Hyalurosomes Loading Extract Rich in Rosmarinic Acid Biotechnologically Produced from Lavandula angustifolia Miller. Molecules 2022, 27, 2423. [Google Scholar] [CrossRef]
- Kozics, K.; Srancikova, A.; Sedlackova, E.; Horvathova, E.; Melusova, M.; Melus, V.; Krajcovicova, Z.; Sramkova, M. Antioxidant potential of essential oil from Lavandula angustifolia in in vitro and ex vivo cultured liver cells. Neoplasma 2017, 64, 485–493. [Google Scholar] [CrossRef]
- Prashar, A.; Locke, I.C.; Evans, C.S. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif. 2004, 37, 221–229. [Google Scholar] [CrossRef]
- Papathanasiou, T.; Gougoulias, N.; Karayannis, V.G.; Kamvoukou, C.-A. Investigation of the Total Phenolic Content and Antioxidant Capacity of Three Sweet Pepper Cultivars (Capsicum annuum L.) at Different Development and Maturation Stages. Period. Polytech. Chem. Eng. 2021, 65, 219–228. [Google Scholar] [CrossRef]
- Achour, H.Y.; Llamero, C.B.; Saadi, S.A.; Bouras, N.; Zitouni, A.; Señoráns, J. Pressurized Liquid Extraction for the Recovery of Carotenoids and Functional Compounds from Green and Orange Dunaliella salina Biomasses. Period. Polytech. Chem. Eng. 2023, 67, 278–286. [Google Scholar] [CrossRef]
- Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Et-Touys, A.; Abrini, J.; Talbaoui, A.; Fellah, H.; Bakri, Y.; Dakka, N. Lavandula stoechas essential oil from Morocco as novel source of antileishmanial, antibacterial and antioxidant activities. Biocatal. Agric. Biotechnol. 2017, 12, 179–184. [Google Scholar] [CrossRef]
- Fahmy, M.; Farghaly, A.; Hassan, E.; Hassan, E.M.; Hassan, Z.M.; Mahmoud, K.; Omara, E. Evaluation of the Anti-Cancer/Anti-Mutagenic Efficiency of Lavandula officinalis Essential Oil. Asian Pac. J. Cancer Prev. 2022, 23, 1215–1222. [Google Scholar] [CrossRef]
- Evandri, M.; Battinelli, L.; Daniele, C.; Mastrangelo, S.; Bolle, P.; Mazzanti, G. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem. Toxicol. 2005, 43, 1381–1387. [Google Scholar] [CrossRef]
- Wang, B.; Avula, Y.H.; Ali, Z.; Smillie, T.J.; Khan, I.A. Quantitative determination of triperpene saponins and alkenat-ed-phenolics from Labisia pumila using an LC-UV/ELSD method and confirmation by LC-ESI-TOF. Planta Medica 2011, 77, 1742–1748. [Google Scholar] [CrossRef]
- Soulaimani, B.; Nafis, A.; Kasrati, A.; Rochdi, A.; Mezrioui, N.-E.; Abbad, A.; Hassani, L. Chemical composition, antimicrobial activity and synergistic potential of essential oil from endemic Lavandula maroccana (Mill.). S. Afr. J. Bot. 2019, 125, 202–206. [Google Scholar] [CrossRef]
- De Martino, L.; De Feo, V.; Formisano, C.; Mignola, E.; Senatore, F. Chemical Composition and Antimicrobial Activity of the Essential Oils from Three Chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart Growing Wild in Campania (Southern Italy). Molecules 2009, 14, 2735–2746. [Google Scholar] [CrossRef]
- Chishti, S.; Kaloo, Z.A.; Sultan, P. Medicinal importance of genus Origanum: A review. J. Pharmacogn. Phytother. 2013, 5, 170–177. [Google Scholar]
- Yan, F.; Azizi, A.; Janke, S.; Schwarz, M.; Zeller, S.; Honermeier, B. Antioxidant capacity variation in the oregano (Origanum vulgare L.) collection of the German National Genebank. Ind. Crop. Prod. 2016, 92, 19–25. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Henriques, M.; Silva, S.; Ferreira, I.C. Decoction, infusion and hydroalcoholic extract of Origanum vulgare L.: Different performances regarding bioactivity and phenolic compounds. Food Chem. 2014, 158, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Skoula, M.; Harborne, J.B. Τhe taxonomy and chemistry of Origanum. In Oregano: The Genera Origanum and Lippia; Kintzios, S.E., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 67–108. Available online: http://www.sciepub.com/reference/327921 (accessed on 14 January 2004).
- De Falco, E.; Roscigno, G.; Landolfi, S.; Scandolera, E.; Senatore, F. Growth, essential oil characterization, and antimicrobial activity of three wild biotypes of oregano under cultivation condition in Southern Italy. Ind. Crop. Prod. 2014, 62, 242–249. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Salami, S.A.; Nazeri, V.; Maggi, F.; Craker, L. Essential oil profile of oregano (Origanum vulgare L.) populations grown under similar soil and climate conditions. Ind. Crop. Prod. 2018, 119, 183–190. [Google Scholar] [CrossRef]
- Ben Farhat, M.; Jordán, M.J.; Chaouech-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Variations in Essential Oil, Phenolic Compounds, and Antioxidant Activity of Tunisian Cultivated Salvia officinalis L. J. Agric. Food Chem. 2009, 57, 10349–10356. [Google Scholar] [CrossRef] [PubMed]
- Pirbalouti, A.G.; Hashemi, M.; Taherian Ghahfarokhi, F. Essential oil and chemical compositions of wild and cultivated Thymus daenensis Celak and Thymus vulgaris L. Ind. Crop. Prod. 2013, 48, 43–48. [Google Scholar] [CrossRef]
- Hassiotis, C.; Ntana, F.; Lazari, D.; Poulios, S.; Vlachonasios, K. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crop. Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Theofanous, A.; Sarli, I.; Fragou, F.; Bletsa, E.; Deligiannakis, Y.; Louloudi, M. Antioxidant Hydrogen-Atom-Transfer to DPPH Radicals by Hybrids of {Hyaluronic-Acid Components}@SiO2. Langmuir 2022, 38, 12333–12345. [Google Scholar] [CrossRef]
- Rozman, U.; Pušnik, M.; Kmetec, S.; Duh, D.; Turk, S.Š. Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021, 9, 2550. [Google Scholar] [CrossRef]
- Crews, P. Organic Structure Analysis. Google Books. Available online: https://books.google.com/books/about/Organic_Structure_Analysis.html?id=7ksvAQAAIAAJ (accessed on 10 April 2023).
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Deligiannakis, Y.; Sotiriou, G.A.; Pratsinis, S.E. Antioxidant and Antiradical SiO2 Nanoparticles Covalently Functionalized with Gallic Acid. ACS Appl. Mater. Interfaces 2012, 4, 6609–6617. [Google Scholar] [CrossRef]
- Sotiriou, G.A.; Blattmann, C.O.; Deligiannakis, Y. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer. Nanoscale 2016, 8, 796–803. [Google Scholar] [CrossRef] [PubMed]
- EN 1040:2005; Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Basic Bactericidal Activity of Chemical Disinfectants and Antiseptics—Test Method and Requirements (2005) (Phase 1). British Standards Institution: London, UK, 2005.
- Détár, E.; Zámbori-Németh, E.; Gosztola, B.; Harmath, A.; Ladányi, M.; Pluhár, Z. Ontogenesis and harvest time are crucial for high quality lavender—Role of the flower development in essential oil properties. Ind. Crop. Prod. 2021, 163, 113334. [Google Scholar] [CrossRef]
- ISO 9308-1:2014; Water Quality—Enumeration of Escherichia coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora (ISO 9308-1:2014; EN ISO 9308-1:2014). International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 16266:2006; Water Quality—Detection and Enumeration of Pseudomonas aeruginosa—Method by Membrane Filtration. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 6888-1:1999; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and other species): Part 1. Technique Using Baird–Parker Agar Medium. International Organization for Standardization: Geneva, Switzerland, 1999.
- ISO 4833-1:2013; Microbiology of the Food Chain-Horizontal Method for the Enumeration of Microorganisms-Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 21527–2:2008(E); Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2. Colony Count Technique in Products with Water Activity of Less Than or Equal to 0.95. International Organization for Standardization: Geneva, Switzerland, 2008.
- Monograph ‘Oxygen (93 per cent)’ 04/2011:2455. In European Pharmacopoeia 7.1; Council of Europe: Strasbourg, France, 2011.
- Pokajewicz, K.; Białoń, M.; Svydenko, L.; Hudz, N.; Balwierz, R.; Marciniak, D.; Wieczorek, P.P. Comparative Evaluation of the Essential Oil of the New Ukrainian Lavandula angustifolia and Lavandula x intermedia Cultivars Grown on the Same Plots. Molecules 2022, 27, 2152. [Google Scholar] [CrossRef]
- Tarakemeh, A.; Rowshan, V.; Najafian, S. Essential Oil Content and Composition of Lavandula Angustifolia Mill. as Affected by Drying Method and Extraction Time. Anal. Chem. Lett. 2012, 2, 244–249. [Google Scholar] [CrossRef]
- Dakhlaoui, S.; Wannes, W.A.; Sari, H.; Ben Hmida, M.; Frouja, O.; Limam, H.; Tammar, S.; Bachkouel, S.; Ben Jemaa, M.; Jallouli, S.; et al. Combined Effect of Essential Oils from Lavender (Lavandula officinalis L.) Aerial Parts and Coriander (Coriandrum sativum L.) Seeds on Antioxidant, Anti-diabetic, Anti-cancer and Anti-inflammatory Activities. J. Essent. Oil Bear. Plants 2022, 25, 188–199. [Google Scholar] [CrossRef]
- Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Ayvaz, M.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesterase and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Molecules 2020, 25, 1710. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, S.A. Essential oil composition of Lavandula offinalis grown in Jordan. J. Kerbala Univ. 2006, 2, 18–21. [Google Scholar]
- Alatrache, A.; Jamoussi, B.; Tarhouni, R.; Abdrabba, M. Analysis of the Essential Oil of Lavandula latifolia from Tunisia. J. Essent. Oil Bear. Plants 2007, 10, 446–452. [Google Scholar] [CrossRef]
- El Abdali, Y.; Agour, A.; Allali, A.; Bourhia, M.; El Moussaoui, A.; Eloutassi, N.; Salamatullah, A.M.; Alzahrani, A.; Ouahmane, L.; Aboul-Soud, M.A.M.; et al. Lavandula dentata L.: Phytochemical Analysis, Antioxidant, Antifungal and Insecticidal Activities of Its Essential Oil. Plants 2022, 11, 311. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavandula genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Dušková, E.; Dušek, K.; Indrák, P.; Smékalová, K. Postharvest changes in essential oil content and quality of lavender flowers. Ind. Crop. Prod. 2016, 79, 225–231. [Google Scholar] [CrossRef]
- Pokajewicz, K.; Białoń, M.; Svydenko, L.; Fedin, R.; Hudz, N. Chemical Composition of the Essential Oil of the New Cultivars of Lavandula angustifolia Mill. Bred in Ukraine. Molecules 2021, 26, 5681. [Google Scholar] [CrossRef] [PubMed]
- Tardugno, R.; Serio, A.; Pellati, F.; D’amato, S.; López, C.C.; Bellardi, M.G.; Di Vito, M.; Savini, V.; Paparella, A.; Benvenuti, S. Lavandula x intermedia and Lavandula angustifolia essential oils: Phytochemical composition and antimicrobial activity against foodborne pathogens. Nat. Prod. Res. 2018, 33, 3330–3335. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities. Planta Medica 2015, 82, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Hadian, J.; Gholami, M.; Friedt, W.; Honermeier, B. Correlations between Genetic, Morphological, and Chemical Diversities in a Germplasm Collection of the Medicinal Plant Origanum vulgare L. Chem. Biodivers. 2012, 9, 2784–2801. [Google Scholar] [CrossRef]
- D’antuono, L.F.; Galletti, G.C.; Bocchini, P. Variability of Essential Oil Content and Composition of Origanum vulgare L. Populations from a North Mediterranean Area (Liguria Region, Northern Italy). Ann. Bot. 2000, 86, 471–478. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Dardioti, A.; Krigas, N.; Lanaras, T. Autumn essential oils of Greek oregano. Phytochemistry 1997, 44, 883–886. [Google Scholar] [CrossRef]
- Konakchiev, A.; Genova, E.; Couladis, M. Chemical Composition of the Essential Oil of Origanum vulgare ssp. hirtum (Link) Ietswaart in Bulgaria. NASA/ADS. 1 January 1970. Available online: https://ui.adsabs.harvard.edu/abs/2004CRABS..57k..49K/abstract (accessed on 10 April 2023).
- Kosakowska, O.; Węglarz, Z.; Pióro-Jabrucka, E.; Przybył, J.L.; Kraśniewska, K.; Gniewosz, M.; Bączek, K. Antioxidant and Antibacterial Activity of Essential Oils and Hydroethanolic Extracts of Greek Oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and Common Oregano (O. vulgare L. subsp. vulgare). Molecules 2021, 26, 988. [Google Scholar] [CrossRef]
- Shafiee-Hajiabad, M.; Hardt, M.; Honermeier, B. Comparative investigation about the trichome morphology of Common oregano (Origanum vulgare L. subsp. vulgare) and Greek oregano (Origanum vulgare L. subsp. hirtum). J. Appl. Res. Med. Aromat. Plants 2014, 1, 50–58. [Google Scholar] [CrossRef]
- Baranauskienė, R.; Venskutonis, P.R.; Dambrauskienė, E.; Viškelis, P. Harvesting time influences the yield and oil composition of Origanum vulgare L. ssp. vulgare and ssp. hirtum. Ind. Crop. Prod. 2013, 49, 43–51. [Google Scholar] [CrossRef]
- Lukas, B.; Novak, B. The Complete Chloroplast Genome of Origanum vulgare L. (Lamiaceae). Gene. Available online: https://www.sciencedirect.com/science/article/pii/S0378111913008974 (accessed on 10 April 2023).
- European Pharmacopoeia (ph. eur.) 11th edition—European Directorate for the Quality of Medicines & Healthcare—EDQM. European Directorate for the Quality of Medicines & HealthCare. Available online: https://www.edqm.eu/en/web/edqm/european-pharmacopoeia-ph.-eur.-11th-edition (accessed on 10 April 2023).
- Dhama, K.; Patel, S.K.; Kumar, R.; Masand, R.; Rana, J.; Yatoo, M.I.; Tiwari, R.; Sharun, K.; Mohapatra, R.K.; Natesan, S.; et al. The role of disinfectants and sanitizers during COVID-19 pandemic: Advantages and deleterious effects on humans and the environment. Environ. Sci. Pollut. Res. 2021, 28, 34211–34228. [Google Scholar] [CrossRef] [PubMed]
- Carlie, S.M.; Boucher, C.E.; Bragg, R.R. Molecular basis of bacterial disinfectant resistance. Drug Resist. Updates 2020, 48, 100672. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Hu, H.; Chen, G.; Li, Z.; Li, A.; Zhang, J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environ. Res. 2021, 195, 110897. [Google Scholar] [CrossRef] [PubMed]
- Rocha, P.K.; Rickard, C.M.; Gales, A.C.; Sincero, T.C.M.; Ray-Barruel, G.; Ullman, A.J.; Dalcin, C.B.; Pedreira, M.L.G. Disinfection of needleless connectors to reduce Staphylococcus aureus bacterial load. Br. J. Nurs. 2022, 31, S26–S31. [Google Scholar] [CrossRef]
- Selam, M.N.; Habte, B.M.; Marew, T.; Bitew, M.; Getachew, T.; Getachew, S.; Abate, A.; Mitiku, M.; Matsabisa, M.; Birhanu, G. Evaluation of quality and antimicrobial efficacy of locally manufactured alcohol-based hand sanitizers marketed in Addis Ababa, Ethiopia in the era of COVID-19. Antimicrob. Resist. Infect. Control 2022, 11, 1–15. [Google Scholar] [CrossRef]
- Booq, R.Y.; Alshehri, A.A.; Almughem, F.A.; Zaidan, N.M.; Aburayan, W.S.; Bakr, A.A.; Kabli, S.H.; Alshaya, H.A.; Alsuabeyl, M.S.; Alyamani, E.J.; et al. Formulation and Evaluation of Alcohol-Free Hand Sanitizer Gels to Prevent the Spread of Infections during Pandemics. Int. J. Environ. Res. Public Health 2021, 18, 6252. [Google Scholar] [CrossRef]
- Youn, B.H.; Kim, Y.S.; Yoo, S.; Hur, M.H. Antimicrobial and hand hygiene effects of Tea Tree Essential Oil disinfectant: A randomised control trial. Int. J. Clin. Pract. 2021, 75, e14206. [Google Scholar] [CrossRef]
- Lee, S.H.; Chow, P.S.; Yagnik, C.K. Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil. Cosmetics 2022, 9, 30. [Google Scholar] [CrossRef]
A/A | Parameter | Unit | Result Sample 1 (Retention Time: 0.00–10.26) | Result Sample 2 (Retention Time: 0.07–10.21) |
---|---|---|---|---|
1 | α-Terpineol | % w/w | 1.43 | 1.27 |
2 | β-Farnesene | % w/w | 3.19 | 2.74 |
3 | Borneol | % w/w | 1.80 | 1.58 |
4 | Camphor | % w/w | 0.73 | 0.53 |
5 | Caryophyllene | % w/w | 5.24 | 3.79 |
6 | Limonene | % w/w | 0.43 | 0.22 |
7 | 1,8 Cineole (Eucalyptol) | % w/w | 2.61 | 0.97 |
8 | Octanone-3 | % w/w | 0.94 | 0.61 |
9 | Cis-β-Ocimene | % w/w | 3.85 | 3.99 |
10 | Trans-β-Ocimene | % w/w | 2.53 | 1.80 |
11 | Linalool | % w/w | 21.73 | 26.57 |
12 | Terpinen-4-ol | % w/w | 5.12 | 5.33 |
13 | Linalyl acetate | % w/w | 33.61 | 26.98 |
14 | Lavandulyl acetate | % w/w | 5.46 | 4.04 |
A/A | Parameter | Unit | Result Sample 1 (Retention Time: 0.00–10.19) | Result Sample 2 (Retention Time: 2.09–11.85) |
---|---|---|---|---|
1 | α-Thujene | % w/w | 0.29 | 0.23 |
2 | α- Pinene | % w/w | 0.58 | 0.12 |
3 | Myrcene | % w/w | 0.63 | 0.88 |
4 | α-Terpinene | % w/w | 0.78 | 0.28 |
5 | p-Cymene | % w/w | 9.60 | 11.29 |
6 | γ-Terpinene | % w/w | 2.90 | 0.87 |
7 | Borneol | % w/w | 0.47 | 0.39 |
8 | Terpinen-4-ol | % w/w | 0.49 | 0.80 |
9 | Thymol | % w/w | 3.36 | 1.24 |
10 | Carvacrol | % w/w | 65.97 | 78.56 |
11 | Caryophyllene | % w/w | 1.33 | 1.69 |
A | |||
A/A | Parameter | Units | Result |
1 | Density at 20 °C | gr/mL | 0.9971 |
2 | PH at 20 °C | - | 3.88 |
3 | Conductivity (EC) at 20 °C | μS/cm | 97.0 |
4 | Refractive Index at 20 °C | - | 1.3329 |
5 | Flash Point (FP) | °C | >215.0 |
B | |||
A/A | Parameter | Units | Result |
1 | Density at 20 °C | gr/mL | 0.9972 |
2 | PH at 20 °C | - | 3.85 |
3 | Conductivity (EC) at 20 °C | μS/cm | 88.2 |
4 | Refractive Index at 20 °C | - | 1.3327 |
5 | Flash Point (FP) | °C | >215.0 |
A | |||
A/A | Parameter | Units | Result |
1 | Density at 20 °C | gr/mL | 0.9982 |
2 | PH at 20 °C | - | 3.5 |
3 | Conductivity (EC) at 20 °C | μS/cm | 214.1 |
4 | Refractive Index at 20 °C | - | 1.3329 |
5 | Flash Point (FP) | °C | >215.0 |
B | |||
A/A | Parameter | Units | Result |
1 | Density at 20 °C | gr/mL | 0.9981 |
2 | PH at 20 °C | - | 4.05 |
3 | Conductivity (EC) at 20 °C | μS/cm | 429.2 |
4 | Refractive Index at 20 °C | - | 1.3329 |
5 | Flash Point (FP) | °C | >215.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itziou, A.; Zaralis, K.; Theofanous, A.; Louloudi, M.; Rozos, G.; Vasiliadou, I.A.; Lakioti, E.; Karayannis, V.; Tsanaktsidis, C. Sustainable Antioxidant Production for Hygienic Disinfection Using Bioextractants from Lavender and Oregano Distillation Process. Energies 2023, 16, 7534. https://doi.org/10.3390/en16227534
Itziou A, Zaralis K, Theofanous A, Louloudi M, Rozos G, Vasiliadou IA, Lakioti E, Karayannis V, Tsanaktsidis C. Sustainable Antioxidant Production for Hygienic Disinfection Using Bioextractants from Lavender and Oregano Distillation Process. Energies. 2023; 16(22):7534. https://doi.org/10.3390/en16227534
Chicago/Turabian StyleItziou, Aikaterini, Konstantinos Zaralis, Annita Theofanous, Maria Louloudi, Georgios Rozos, Ioanna A. Vasiliadou, Evangelia Lakioti, Vayos Karayannis, and Constantinos Tsanaktsidis. 2023. "Sustainable Antioxidant Production for Hygienic Disinfection Using Bioextractants from Lavender and Oregano Distillation Process" Energies 16, no. 22: 7534. https://doi.org/10.3390/en16227534
APA StyleItziou, A., Zaralis, K., Theofanous, A., Louloudi, M., Rozos, G., Vasiliadou, I. A., Lakioti, E., Karayannis, V., & Tsanaktsidis, C. (2023). Sustainable Antioxidant Production for Hygienic Disinfection Using Bioextractants from Lavender and Oregano Distillation Process. Energies, 16(22), 7534. https://doi.org/10.3390/en16227534