Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies
Abstract
:1. Introduction
2. Methods
- -
- -
- studies published before 2013;
- -
- conference papers, posters and abstracts;
- -
- papers that did not consider electricity as the final product;
- -
- studies concerning only one phase of LCA.
2.1. LCA of Conventional Systems
- -
- subcritical “pulverized coal” (PC) thermal power plants, which use finely ground coal for combustion;
- -
- supercritical power plants, based on PC technologies, but at much higher pressures and temperatures;
- -
- the integrated gasification combined cycle (IGCC), which relies on converting coal into a synthetic gas before combustion.
2.2. LCA of Renewable Energy Systems
2.2.1. Hydropower
2.2.2. Wind
2.2.3. Photovoltaics
2.2.4. Concentrated Solar Power
2.2.5. Geothermal
2.3. LCA of Nuclear Systems
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
a-Si | amorphous silicon PV technology |
BWR | boiling water reactor |
CCS | carbon capture and storage |
CdTe | cadmium telluride PV technology |
CHP | combined heat and power |
CIGS | copper indium gallium selenide |
CIS | copper indium selenide |
CSP | concentrated solar power |
CZTS | copper zinc tin sulfide |
DNI | direct normal irradiance |
DNSH | do not significant harm |
DSSC | dye sensitized solar cell |
EDF | Electricitè de France |
EGS | enhanced geothermal systems |
EPR | European pressurized water reactor |
FBR | fast breeder reactor |
GEMIS | global emission model for integrated systems |
GHG | greenhouse gas |
GT-MHR | gas turbine modular helium reactor |
GWP | global warming potential |
HT | hydrothermal |
HWR | heavy water reactor |
IAEA | International Atomic Energy Agency |
IEA | International Energy Agency |
IGCC | integrated gasification combined cycle |
IRENA | International Renewable Energy Agency |
ISO | International Organization for Standardization |
ITRPV | International Technology Roadmap for Photovoltaic |
JRC | Joint Research Centre |
LCA | life cycle assessment |
LWR | light water reactor |
NDC | nationally determined contributions |
NGCC | natural gas combined cycle |
NRE | non-renewable energy |
NREL | National Renewable Energy Laboratory |
ORC | organic Rankine cycle |
PC | pulverized coal |
PMF | particulate matter formation |
PV | photovoltaics |
PVPS | photovoltaic power systems |
PWR | pressurized water reactor |
QDSSC | quantum dot sensitized solar cell |
SMR | small modular reactor |
TAP | terrestrial acidification potential |
TCP | Technology Collaboration Programme |
TTC | twice through cycle |
UNECE | United Nations Economic Commission for Europe |
References
- International Energy Agency. Net Zero by 2050; IEA: Paris, France, 2021.
- Eurostat. Greenhouse Gas Emission Statistics—Emission Inventories. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Greenhouse_gas_emission_statistics_-_emission_inventories (accessed on 12 June 2023).
- United Nations. Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 16 October 2023).
- IEA. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach, IEA, Paris. 2023. Available online: http://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach (accessed on 16 October 2023).
- Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal—COM(2019) 640 final; European Commission: Brussels, Belgium, 2019.
- USA Congress. H.R.1512—CLEAN Future Act 117th Congress (2021–2022). Available online: https://www.govinfo.gov/content/pkg/BILLS-117hr1512ih/pdf/BILLS-117hr1512ih.pdf (accessed on 8 June 2023).
- Japanese Ministry of Economy, Trade and Industry, Ministry of International Affairs and Communications, Ministry of Education, Culture, Sports, Science and Technology, Ministry of Agriculture, Forestry and Fisheries, Ministry of Land, Infrastructure, Transport and Tourism, Ministry of the Environment. Green Growth Strategy. 2020. Available online: https://www.meti.go.jp/english/policy/energy_environment/global_warming/ggs2050/pdf/ggs_full_en1013.pdf (accessed on 8 June 2023).
- United Nations Climate Change, National Determined Contributions Registry. Available online: https://unfccc.int/NDCREG (accessed on 12 October 2023).
- EMBER. Global Electricity Review 2022. 2022. Available online: https://ember-climate.org/insights/research/global-electricity-review-2022/ (accessed on 12 September 2023).
- Available online: https://ourworldindata.org/energy (accessed on 16 October 2023).
- Notarnicola, B. Literature Review of LCA Studies for Power Generation Systems. 2022. Available online: https://www.mase.gov.it/sites/default/files/archivio/allegati/PTE/rapporto_LCA_Energia_Elettrica_Notarnicola_Finale_16-10-2022.pdf (accessed on 8 June 2023). (In Italian)
- International Standard ISO 14040; Environmental Management—Life Cycle Assessment—Principle and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- International Standard ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Guidi, G.; Gugliermetti, G.; Violante, A.C. Environmental impact of nuclear energy and comparison with the alternatives. In Proceedings of the ASME-ATI-UIT 2010 Conference on Thermal and Environmental Issues in Energy Systems, Sorrento, Italy, 16–19 May 2010. [Google Scholar]
- United Nations Economic Commission for Europe (UNECE). Life Cycle Assessment of Electricity Generation Options; United Nations: Geneva, Switzerland, 2021. [Google Scholar]
- National Renewable Energy Laboratory (NREL). Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update, September 2021. Available online: https://www.nrel.gov/docs/fy21osti/80580.pdf (accessed on 15 September 2023).
- Pieragostini, C.; Mussati, M.C.; Aguirre, P. On process optimization considering LCA methodology. J. Environ. Manag. 2012, 96, 43–54. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Rhodium Group. Global Greenhouse Gas Emissions: 1990–2021 and Preliminary 2022 Estimates. Available online: https://rhg.com/research/global-greenhouse-gas-emissions-2022/ (accessed on 20 September 2023).
- Asdrubali, F.; Baldinelli, G.; D’Alessandro, F.; Scrucca, F. Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew. Sustain. Energy Rev. 2015, 42, 1113–1122. [Google Scholar] [CrossRef]
- Turconi, R.; Boldrin, A.; Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 2013, 28, 555–565. [Google Scholar] [CrossRef]
- Li, H.; Jiang, H.-D.; Dong, K.-Y.; Wei, Y.-M.; Liao, H. A comparative analysis of the life cycle environmental emissions from wind and coal power: Evidence from China. J. Clean. Prod. 2020, 248, 119192. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Jain, S.; Jain, A.K.; Dahiya, S. Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach. Int. J. Environ. Sci. Technol. 2014, 11, 1157–1164. [Google Scholar] [CrossRef]
- Akber, M.Z.; Thaheem, M.J.; Arshad, H. Life cycle sustainability assessment of electricity generation in Pakistan: Policy regime for a sustainable energy mix. Energy Policy 2017, 111, 111–126. [Google Scholar] [CrossRef]
- Rasheed, R.; Javed, H.; Rizwan, A.; Sharif, F.; Yasar, A.; Tabinda, A.B.; Ahmad, S.R.; Wang, Y.; Su, Y. Life cycle assessment of a cleaner supercritical coal-fired power plant. J. Clean. Prod. 2021, 279, 123869. [Google Scholar] [CrossRef]
- Šerešová, M.; Štefanica, J.; Vitvarová, M.; Zakuciová, K.; Wolf, P.; Kocí, V. Life cycle performance of various energy sources used in the Czech Republic. Energies 2020, 13, 5833. [Google Scholar] [CrossRef]
- Malode, S.; Mohanta, J.C.; Prakash, R. A review on life cycle assessment approach on thermal power generation. Mater. Today-Proc. 2022, 56, 791–798. [Google Scholar] [CrossRef]
- IRENA. Renewable Capacity Statistics 2023; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023.
- United Nations Economic Commission for Europe (UNECE). Carbon Neutrality in the UNECE Region: Integrated Life-Cycle Assessment of Electricity Sources; United Nations: Geneva, Switzerland, 2022. [Google Scholar]
- Motuziene, V.; Ciuprinskas, K.; Rogoža, A.; Lapinskiene, V. A Review of the Life Cycle Analysis Results for Different Energy Conversion Technologies. Energies 2022, 15, 8488. [Google Scholar] [CrossRef]
- Ding, N.; Pan, J.; Liu, J.; Yang, J. An optimization method for energy structures based on life cycle assessment and its application to the power grid in China. J. Environ. Manag. 2019, 238, 18–24. [Google Scholar] [CrossRef]
- Hertwich, E.G. Addressing Biogenic Greenhouse Gas Emissions from Hydropower in LCA. Environ. Sci. Technol. 2013, 47, 9604–9611. [Google Scholar] [CrossRef]
- Verán-Leigh, D.; Vázquez-Rowe, I. Life cycle assessment of run-of-river hydropower plants in the Peruvian Andes: A policy support perspective. Int. J. Life Cycle Assess. 2019, 24, 1376–1395. [Google Scholar] [CrossRef]
- Briones-Hidrovo, A.; Uche, J.; Martínez-Gracia, A. Accounting for GHG net reservoir emissions of hydropower in Ecuador. Renew. Energy 2017, 112, 209–221. [Google Scholar] [CrossRef]
- Mahmud, M.A.P.; Huda, N.; Farjana, S.H.; Lang, C. A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe. Appl. Energy 2019, 250, 198–214. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Du, H.; Zuo, J.; Li, R.Y.M.; Zhou, Z.; Bi, F.; McSimon, P. Garvlehn. A comparative life cycle assessment of hydro-electric, nuclear and wind power: A China study. Appl. Energy 2019, 249, 37–45. [Google Scholar] [CrossRef]
- Li, Z.; Du, H.; Xiao, Y.; Guo, J. Carbon footprints of two large hydro-projects in China: Life-cycle assessment according to ISO/TS 14067. Renew. Energy 2017, 114, 534–546. [Google Scholar] [CrossRef]
- Paulillo, A.; Striolo, A.; Lettieri, P. The environmental impacts and the carbon intensity of geothermal energy: A case study on the Hellisheiði plant. Environ. Int. 2019, 133, 105226. [Google Scholar] [CrossRef]
- Alsaleh, A.; Sattler, M. Comprehensive life cycle assessment of large wind turbines in the US. Clean Technol. Environ. Policy 2019, 21, 887–903. [Google Scholar] [CrossRef]
- Xu, K.; Chang, J.; Zhou, W.; Li, S.; Shi, Z.; Zhu, H.; Chen, Y.; Guo, K. A comprehensive estimate of life cycle greenhouse gas emissions from onshore wind energy in China. J. Clean. Prod. 2022, 338, 130683. [Google Scholar] [CrossRef]
- Teffera, B.; Assefa, B.; Björklund, A.; Assefa, G. LCA for energy systems and food products Life cycle assessment of wind farms in Ethiopia. Int. J. Life Cycle Assess. 2021, 26, 76–96. [Google Scholar] [CrossRef]
- Bonou, A.; Laurent, A.; Olsen, S.I. Life cycle assessment of onshore and offshore wind energy—From theory to application. Appl. Energy 2016, 180, 327–337. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Characterization of the life cycle greenhouse gas emissions from wind electricity generation systems. Int. J. Energy Environ. Eng. 2017, 8, 55–64. [Google Scholar] [CrossRef]
- Li, Q.; Duan, H.; Xie, M.; Kang, P.; Ma, Y.; Zhong, R.; Gao, T.; Zhong, W.; Wen, B.; Bai, F.; et al. Life cycle assessment and life cycle cost analysis of a 40 MW wind farm with consideration of the infrastructure. Renew. Sustain. Energy Rev. 2021, 138, 110499. [Google Scholar] [CrossRef]
- Khoie, R.; Bose, A.; Saltsman, J. A study of carbon emissions and energy consumption of wind power generation in the Panhandle of Texas. Clean Technol. Environ. Policy 2021, 23, 653–667. [Google Scholar] [CrossRef]
- Vélez-Henao, J.A.; Vivanco, D.F. Hybrid life cycle assessment of an onshore wind farm including direct and indirect services: A case study in Guajira, Colombia. J. Environ. Manag. 2021, 284, 112058. [Google Scholar] [CrossRef]
- Xie, J.B.; Fu, J.X.; Liu, S.Y.; Hwang, W.S. Assessments of carbon footprint and energy analysis of three wind farms. J. Clean. Prod. 2020, 254, 120159. [Google Scholar] [CrossRef]
- Nugent, D.; Sovacool, B.K. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy 2014, 65, 229–244. [Google Scholar] [CrossRef]
- Basosi, R.; Bonciani, R.; Frosali, D.; Manfrida, G.; Parisi, M.L.; Sansone, F. Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems. Sustainability 2020, 12, 2786. [Google Scholar] [CrossRef]
- Brussa, G.; Grosso, M.; Rigamonti, L. Life cycle assessment of a floating offshore wind farm in Italy. Sustain. Prod. Consum. 2023, 29, 134–144. [Google Scholar] [CrossRef]
- Garcia-Teruel, A.; Rinaldi, G.; Thies, P.R.; Johanning, L.; Jeffrey, H. Life cycle assessment of floating offshore wind farms: An evaluation of operation and maintenance. Appl. Energy 2022, 307, 118067. [Google Scholar] [CrossRef]
- Frischknecht, R.; Stolz, P.; Krebs, L.; de Wild-Scholten, M.; Sinha, P.; Fthenakis, V.; Kim, H.C.; Raugei, M.; Stucki, M. Life Cycle Inventories and Life Cycle Assessment of Photovoltaic Systems. International Energy Agency (IEA) PVPS Task 12, Report T12-19:2020. Available online: https://iea-pvps.org/wp-content/uploads/2020/12/IEA-PVPS-LCI-report-2020.pdf (accessed on 18 September 2023).
- Frischknecht, R. (Ed.) Environmental Life Cycle Assessment of Electricity from PV Systems—2021 Data Update. International Energy Agency (IEA) PVPS Task 12. Available online: https://iea-pvps.org/wp-content/uploads/2022/11/Fact-Sheet-IEA-PVPS-T12-23-LCA-update-2022.pdf (accessed on 18 September 2023).
- Ali, A.; Koch, T.W.; Volk, T.A.; Malmsheimer, R.W.; Eisenbies, M.H.; Kloster, D.; Brown, T.R.; Naim, N.; Therasme, O. The environmental life cycle assessment of electricity production in New York State from distributed solar photovoltaic systems. Energies 2022, 15, 7278. [Google Scholar] [CrossRef]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.N.; Ibrahim, M.A.; Teridi, M.A.M.; Sepeai, S.; Zaharim, A.; Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renew. Sustain. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Bergesen, J.D.; Heath, G.A.; Gibon, T.; Suh, S. Thin-film photovoltaic power generation offers decreasing greenhouse gas emissions and increasing environmental co-benefits in the long term. Environ. Sci. Technol. 2014, 48, 9834–9843. [Google Scholar] [CrossRef]
- Stylos, N.; Koroneos, C. Carbon footprint of polycrystalline photovoltaic systems. J. Clean. Prod. 2014, 64, 639–645. [Google Scholar] [CrossRef]
- Hou, G.; Sun, H.; Jiang, Z.; Pan, Z.; Wang, Y.; Zhang, X.; Zhao, Y.; Yao, Q. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China. Appl. Energy 2016, 164, 882–890. [Google Scholar] [CrossRef]
- Kim, B.J.; Lee, J.Y.; Kim, K.H.; Hur, T. Evaluation of the environmental performance of sc-Si and mc-Si PV systems in Korea. Sol. Energy 2014, 99, 100–114. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, X.; Yuan, Z. Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China. J. Clean. Prod. 2015, 86, 180–190. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Moore, S.; Alvarez-Gaitan, J.P.; Yan, C.; Hao, X.; Corkish, R. A comparative life cycle assessment of chalcogenide/Si tandem solar modules. Energy 2018, 145, 700–709. [Google Scholar] [CrossRef]
- Collier, J.; Wu, S.; Apul, D. Life cycle environmental impacts from CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV (photovoltaic) cells. Energy 2014, 74, 314–321. [Google Scholar] [CrossRef]
- Celik, I.; Song, Z.; Cimaroli, A.J.; Yan, Y.; Heben, M.J.; Apul, D. Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Sol. Energy Mater. Sol. Cells 2016, 156, 157–169. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, X.; Deng, Y.; Li, B.; Yuan, C. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing. ChemSusChem 2015, 8, 3882–3891. [Google Scholar] [CrossRef] [PubMed]
- Guillén-Lambea, S.; Carvallo, M. A critical review of the greenhouse gas emissions associated with parabolic trough concentrating solar power plants. J. Clean. Prod. 2021, 289, 125774. [Google Scholar] [CrossRef]
- Gasa, G.; Lopez-Roman, A.; Prieto, C.; Cabeza, L.F. Life Cycle Assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with and without thermal energy storage (TES). Sustainability 2021, 13, 3672. [Google Scholar] [CrossRef]
- Ko, N.; Lorenz, M.; Horn, R.; Krieg, H.; Baumann, M. Sustainability assessment of concentrated solar power (CSP) tower plants—Integrating LCA, LCC and LCWE in one framework. Procedia CIRP 2018, 69, 395–400. [Google Scholar] [CrossRef]
- Gasa, G.; Prieto, C.; Lopez-Roman, A.; Cabeza, L.F. Life Cycle Assessment (LCA) of a concentrating solar power (CSP) plant in tower configuration with different storage capacity in molten salts. J. Energy Storage 2022, 53, 105219. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Wang, H.; Tu, Q.; Wang, X. Integrated hybrid life cycle assessment and contribution analysis for CO2 emission and energy consumption of a concentrated solar power plant in China. Energy 2019, 174, 310–322. [Google Scholar] [CrossRef]
- Whitaker, M.B.; Heath, G.A.; Burkhardt, J.J.; Turchi, C.S. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives. Environ. Sci. Technol. 2013, 47, 5896–5903. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA); International Geothermal Association (IGA). Global Geothermal Market and Technology Assessment; IRENA: Abu Dhabi, United Arab Emirates; IGA: The Hague, The Netherlands, 2023; ISBN 978-92-9260-495-0. [Google Scholar]
- Pratiwi, A.; Ravier, G.; Genter, A. Life-cycle climate-change impact assessment of enhanced geothermal system plants in the Upper Rhine Valley. Geothermics 2018, 75, 26–39. [Google Scholar] [CrossRef]
- Karlsdottir, M.R.; Heinonen, J.; Palsson, H.; Palsson, O.P. Life cycle assessment of a geothermal combined heat and power plant based on high temperature utilization. Geothermics 2020, 84, 101727. [Google Scholar] [CrossRef]
- Sigurjónsson, H.Æ.; Cook, D.; Davíðsdóttir, B.; Bogason, S.G. A life-cycle analysis of deep enhanced geothermal systems–The case studies of Reykjanes, Iceland and Vendenheim, France. Renew. Energy 2021, 177, 1076–1086. [Google Scholar] [CrossRef]
- Lacirignola, M.; Blanc, I. Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment. Renew. Energy 2013, 50, 901–914. [Google Scholar] [CrossRef]
- Menberg, K.; Heberle, F.; Bott, C.; Brüggemann, D.; Bayer, P. Environmental performance of a geothermal power plant using a hydrothermal resource in the Southern German Molasse Basin. Renew. Energy 2021, 167, 20–31. [Google Scholar] [CrossRef]
- Heberle, F.; Schifflechner, C.; Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 2016, 64, 392–400. [Google Scholar] [CrossRef]
- IAEA. Nuclear Power Reactors in the World—2023 Edition; IAEA: Vienna, Austria, 2023; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/RDS-2-43_web.pdf (accessed on 20 September 2023).
- Abousahl, S.; Carbol, P.; Farrar, B.; Gerbelova, H.; Konings, R.; Lubomirova, K.; Martin Ramos, M.; Matuzas, V.; Nilsson, K.; Peerani, P.; et al. Technical Assessment of Nuclear Energy with Respect to the ‘Do No Significant Harm’ Criteria of Regulation (EU) 2020/852 (‘Taxonomy Regulation’); EUR 30777 EN; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-40537-5. [Google Scholar] [CrossRef]
- Pomponi, F.; Hart, J. The greenhouse gas emissions of nuclear energy—Life cycle assessment of a European pressurized reactor. Appl. Energy 2021, 290, 116743. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Quantification of the lifecycle greenhouse gas emissions from nuclear power generation systems. Energies 2016, 9, 863. [Google Scholar] [CrossRef]
- Poinssot, C.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzales, M.; Bruno, J. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy 2014, 69, 199–211. [Google Scholar] [CrossRef]
- Nian, V.; Chou, S.K.; Bin, S.; Bauli, J. Life cycle analysis on carbon emissions from power generation—The nuclear energy example. Appl. Energy 2014, 118, 68–82. [Google Scholar] [CrossRef]
- Carless, T.S.; Griffin, W.M.; Fischbeck, P.S. The environmental competitiveness of small modular reactors: A life cycle study. Energy 2016, 114, 84–99. [Google Scholar] [CrossRef]
- Koltun, P.; Tsykalo, A.; Novozhilov, V. Life Cycle Assessment of the new generation GT-MHR Nuclear Power Plant. Energies 2018, 11, 3452. [Google Scholar] [CrossRef]
- Portugal Pereira, J.; Troncoso Parady, G.; Castro Dominguez, B. Japan’s energy conundrum: Post-Fukushima scenarios from a life cycle perspective. Energy Policy 2014, 67, 104–115. [Google Scholar] [CrossRef]
Year of the Study | Weight |
---|---|
2013–2016 | 0.8 |
2017–2019 | 1.0 |
2020–2022 | 1.2 |
Published Works | Year of the Study | Plant Type | gCO2eq/kWh |
---|---|---|---|
UNECE [15] | 2021 | IGCC (USA); pulverized coal (China) | 751–1095 |
IGCC with CCS (USA); pulverized coal with CCS (China) | 147–469 | ||
IGCC (Europe); pulverized coal (Europe) | 849–1023 | ||
IGCC with CCS; pulverized coal with CCS | 279–369 | ||
Natural gas combined cycle (NGCC) | 403–513 | ||
Natural gas combined cycle with CCS | 49–220 | ||
NREL [16] | 2021 | Coal-fired | 675–1689 |
Gas-fired combustion turbine | 307–988 | ||
Asdrubali et al. [20] | 2015 | Gas-fired combined cycle | 350–410 |
Gas-fired single cycle | 480–730 | ||
Coal-fired with direct combustion | 750–1050 | ||
IGCC | 660–800 | ||
Li et al. [22] | 2020 | Coal-fired (China) | 775.86 (mean) |
Agrawal et al. [23] | 2014 | NGCC (India) | 584 (mean) |
Coal-fired (India) | 1127 (mean) | ||
Akber et al. [24] | 2017 | Coal-fired (Pakistan) | 790.11 (mean) |
Gas-fired (Pakistan) | 531 (mean) | ||
Rasheed et al. [25] | 2021 | Coal-fired (Pakistan) | 741 (mean) |
Šerešová et al. [26] | 2020 | Coal-fired (Czech Republic) | 1004 (mean) |
Gas-fired (Czech Republic) | 440 (mean) | ||
Malode et al. [27] | 2020 | Coal-fired (India) | 898–1129 |
Plant Type | Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values |
---|---|---|---|
Coal-fired Coal-fired with CCS Gas-fired Gas-fired with CCS | 753.9 379.0 49.0 | 899.8 316.0 | 1215.4 678.3 220.0 |
Published Works | Year of the Study | Plant Type | gCO2eq/kWh |
---|---|---|---|
UNECE [29] | 2022 | Reservoir Reservoir (Europe) | 6–147 10.7 (mean) |
Motuziene et al. [30] | 2022 | Reservoir Run-of-river Run-of-river (Thailand) Run-of-river (Myanmar) | 152–237 2.06–13 52.7 (mean) 31.17–39.23 |
Ding et al. [31] | 2019 | Not specified (China) | 15.68 (mean) |
Asdrubali et al. [20] | 2015 | Reservoir and run-of-river | 2.2–74.8 11.6 (mean) |
Hertwich [32] | 2013 | Reservoir | 85 (mean) |
Veran-Leigh and Vazquez-Rowe D. [33] | 2019 | Run-of-river (Peruvian Andes) | 2.06–2.42 |
Briones Hidrovo et al. [34] | 2017 | Reservoir (Ecuador) Run-of-river (Ecuador) | 547 (mean) 2.6 (mean) |
Mahmud et al. [35] | 2019 | Reservoir (Europe) | 0.107–1.41 |
Wang et al. [36] | 2019 | Reservoir (China) | 3.1–3.7 |
Li et al. [37] | 2017 | Reservoir (China) | 6.51–10.48 |
NREL [16] | 2021 | Reservoir Run-of-river | 13 (mean) 23 (mean) |
Paulillo et al. [38] | 2019 | Not specified | 24 (mean) |
Akber et al. [24] | 2017 | Reservoir (Pakistan) Run-of-river (Pakistan) | 12.83 (mean) 8.78 (mean) |
Šerešová et al. [26] | 2020 | Not specified (Czech Republic) | 22 (mean) |
Plant Type | Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values |
---|---|---|---|
Reservoir | 31.1 | 126.2 ° (26.0) | 74.4 |
Run-of-river | 12.3 | 23.2 | 19.2 |
Not specified | 2.2 | 18.8 | 74.8 |
Published Works | Year of the Study | Plant Type | gCO2eq/kWh |
---|---|---|---|
UNECE [29] | 2022 | Onshore (Europe) Offshore (Europe) | 12.4 (mean) 14.2 (mean) |
Wang L. et al. [36] | 2019 | Onshore (China) | 25.4–31.8 |
Alsaleh and Sattler [39] | 2019 | Onshore (USA) | 18 (mean) |
Xu et al. [40] | 2022 | Onshore (China) | 19.88 (mean) 13.59–34.50 |
Teffera et al. [41] | 2013 | Onshore (Ethiopia) | 33.6 (mean) |
Bonou et al. [42] | 2019 | Onshore (Europe) Offshore (Europe) | 7 (mean) 11 (mean) |
Kadiyala et al. [43] | 2017 | Onshore Offshore | 11.75–46.4 12.9 (mean) |
Asdrubali et al. [20] | 2015 | Onshore and offshore | 9.4 (mean) 6.2–46 |
Li et al. [44] | 2021 | Onshore | 16.4–28.2 |
Li et al. [22] | 2020 | Onshore | 31.36 (mean) |
Khoie et al. [45] | 2021 | Onshore | 14.45 (mean) |
Vélez-Henao et al. [46] | 2021 | Onshore | 12.93 (mean) |
Xie et al. [47] | 2020 | Onshore | 3.9 (mean) |
Nugent and Sovacool [48] | 2014 | Onshore | 34.11 (mean) |
NREL [16] | 2021 | Onshore Offshore | 12 (mean) 19 (mean) |
Basosi et al. [49] | 2020 | Onshore (Italy) | 13.4 (mean) |
Paulillo et al. [38] | 2019 | Onshore | 11 (mean) |
Šerešová et al. [26] | 2020 | Onshore (Czech Republic) | 19 (mean) |
Akber et al. [24] | 2017 | Onshore (Pakistan) | 11.38 (mean) |
Brussa et al. [50] | 2023 | Offshore (Italy) | 31.3 (mean) |
Garcia-Teruel et al. [51] | 2022 | Offshore (Scotland) | 25.6–45.2 |
Plant Type | Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values |
---|---|---|---|
Onshore | 16.6 | 16.4 | 34.9 |
Offshore | 25.6 + | 18.1 | 45.2 + |
Onshore and offshore | 6.2 ° | 9.4 ° | 46 ° |
Published Works | Year of the Study | Technology Type | gCO2eq/kWh |
---|---|---|---|
UNECE [29] | 2022 | Multi-Si (ground-mounted) Multi-Si (roof-mounted) CdTe (ground-mounted) CdTe (roof-mounted) CIGS (ground-mounted) CIGS (roof-mounted) | 23–82 37 (mean) 23–83 37 (mean) 8–28 12 (mean) 10–35 15 (mean) 7.4–27 11 (mean) 9.2–34 14 (mean) |
IEA PVPS TCP [53] | 2022 | Mono-Si Multi-Si CIGS CdTe | 42.9 (mean) 44.0 (mean) 35.4 (mean) 25.5 (mean) |
NREL [16] | 2021 | All technologies a-Si CdTe CIGS Mono-Si Multi-Si | 11–226 43 (mean) 37 (mean) 25 (mean) 41 (mean) 64 (mean) 56 (mean) |
Asdrubali et al. [20] | 2015 | Not specified | 29.2 (mean) |
Li et al. [44] | 2021 | Not specified | 16–40 |
Paulillo et al. [38] | 2019 | Not specified | 48 (mean) |
Šerešová et al. [26] | 2020 | Mono-Si (Czech Republic) Multi-Si (Czech Republic) CdTe (Czech Republic) | 11 (mean) |
Ali et al. [54] | 2022 | Mono-Si (USA) and Multi-Si (USA) | 25.2–88.5 45.6 (mean) |
Ludin et al. [55] | 2018 | Mono-Si Multi-Si a-Si CdTe CIS DSSC Perovskite QDSSC | 5.6–87.3 6.04–81 8.1–57 8.9–66 33–95 9.8–25 56.65–497.2 2.89–5 |
Bergesen et al. [56] | 2014 | CdTe (ground-mounted) (USA) CIGS (ground-mounted) (USA) | 20 (mean) 22 (mean) |
Stylos and Koroneos [57] | 2014 | Multi-Si | 51.68–58.81 |
Hou et al. [58] | 2016 | Crystalline silicon Multi-Si (China) Mono-Si | 60.1 (large scale) 81 (distributed) 65.2 (large scale) 87.3 (distributed) |
Kim et al. [59] | 2014 | Mono-Si (Korea) Multi-Si (Korea) | 31.5 (mean) 41.8 (mean) |
Fu et al. [60] | 2015 | Multi-Si (China) | 50.9 (mean) |
Lunardi et al. [61] | 2018 | Si and tandem solar modules | 25–29 |
Collier et al. [62] | 2014 | Mono-Si Multi-Si a-Si CdTe CIGS Zn3P2 CZTS | 35 (mean) 29 (mean) 19 (mean) 18 (mean) 36 (mean) 30 (mean) 38 (mean) |
Celik et al. [63] | 2016 | Mono-Si Multi-Si a-Si CdTe CIS Perovskite | 23 (mean) 20 (mean) 12 (mean) 12 (mean) 17 (mean) 99–147 |
Zhang et al. [64] | 2015 | Mono-Si Multi-Si a-Si CdTe DSSC Perovskite | 29–45 23–44 18–50 14–35 19–120 60.1–5480 |
Plant Type | Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values |
---|---|---|---|
Mono-Si | 31.1 | 35.5 | 74.3 |
Multi-Si | 30.8 | 36.4 | 71.2 |
Mono and Multi-Si | 25.1 | 45.6 | 61.5 |
a-Si | 12.5 | 24.7 | 53.9 |
CdTe | 9.9 | 17.4 | 40.4 |
CIGS | 8.3 | 26.3 | 30.5 |
CIS | 33.0 ° | 17.0 ° | 95.0 ° |
Not specified | 16.0 | 39.6 | 40.0 |
Published Works | Year of the Study | Plant Type | gCO2eq/kWh |
---|---|---|---|
Guillen-Lambea and Carvalho [65] | 2021 | Parabolic trough with storage | 26–60 |
Gasa et al. [66] | 2021 | Tower plant with storage Tower plant without storage | 9.8 (mean) 31 (mean) |
Ko et al. [67] | 2018 | Tower plant with 12 h storage | 24.3 (mean) |
Gasa et al. [68] | 2022 | Tower plant with 3 h storage Tower plant with 6 h storage Tower plant with 9 h storage Tower plant with 17.5 h storage | 14.21 (mean) 12.26 (mean) 10.99 (mean) 9.95 (mean) |
Li et al. [69] | 2019 | Tower plant with 15 h storage (China) | 35 (mean) |
Whitaker et al. [70] | 2013 | Tower plant with storage (USA) | 37 (mean) |
Asdrubali et al. [20] | 2015 | Parabolic trough and tower plants | 30.9 (mean) |
UNECE [29] | 2022 | Parabolic trough with storage Tower plant with storage | 42 (mean) 22 (mean) |
NREL [16] | 2021 | Parabolic trough with storage Tower plant with storage Parabolic dish | 26 (mean) 38 (mean) 15 (mean) |
Plant Type | Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values |
---|---|---|---|
Parabolic trough with storage | 26.0 ° | 33.2 | 60.0 ° |
Tower plant with storage | 20.5 | ||
Tower plant without storage | 31° |
Published Works | Year of the Study | Plant Type | gCO2eq/kWh |
---|---|---|---|
Basosi et al. [49] | 2020 | Binary (Italy) | 477 (with AMIS® system) 301 (without AMIS® system) |
Asdrubali et al. [20] | 2015 | Not specified | 33.6 (mean) 16.9–142 |
Pratiwi et al. [72] | 2018 | EGS (France) | 6.97–9.15 |
Karlsdottir et al. [73] | 2020 | HT double flash | 15.9 (without CCS) 11.4 (with CCS) |
Paulillo et al. [38] | 2019 | HT single flash HT double flash | 18–24 15–23 |
Sigurjónsson et al. [74] | 2021 | EGS (Iceland) EGS (France) | 1.6–17.4 6.9–13.9 |
Lacirignola and Blanc [75] | 2013 | EGS | 16.9–49.8 |
Menberg et al. [76] | 2021 | Binary with ORC | 38.2 |
Heberle et al. [77] | 2016 | Binary with ORC | 13.2 |
NREL [16] | 2021 | EGS HT single flash Binary | 37 (mean) 32 (mean) 47 (mean) 11 (mean) |
Plant Type | Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values |
---|---|---|---|
EGS | 7.3 | 32.0 * | 20.6 |
Binary | 263.0 | ||
HT single flash | 18.0 | 47.0 * | 24.0 |
HT double flash | 15.0 | 13.7 ° | 23.0 |
Binary with ORC | 28.2 | ||
Not specified | 16.9 | 35.6 | 142.0 |
Published Works | Year of the Study | Plant Type | gCO2eq/kWh |
---|---|---|---|
UNECE [29] | 2022 | PWR and BWR (LWR) Water-cooled SMR | 5.1–6.4 4.6–8.4 |
JRC [79] | 2021 | PWR EPR (open cycle) EPR (closed cycle) | 5.3 (mean) 5 (mean) 4.6 (mean) |
Pomponi and Hart [80] | 2021 | EPR (France) | 5 (mean) 8–64 16.97, 24.89 and 27.63 (mean values) |
Kadiyala et al. [81] | 2016 | FBR HWR PWR BWR | 6.26 (mean) 28.2 (mean) 11.87 (mean) 14.52 (mean) |
Poinssot et al. [82] | 2014 | PWR (France) | 5.29 (mean) |
Nian et al. [83] | 2014 | LWR (Singapore) | 25.03 (mean) |
Carless et al. [84] | 2016 | SMR PWR (AP1000) | 5.9–13.2 9.1 (mean) 5.5–12.1 8.4 (mean) |
Koltun et al. [85] | 2018 | IV generation GT-MHR | 9.57 (w/recycling) (mean) 9.87 (w/o recycling) (mean) |
Portugal Pereira et al. [86] | 2014 | PWR (Japan) | 16.95 (mean) |
Wang et al. [36] | 2019 | PWR (China) | 10.9–13.9 |
NREL [16] | 2021 | LWR PWR BWR HWR FBR | 13 (mean) 14 (mean) 21 (mean) 57 (mean) 0.87 (mean) |
Plant Type | Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values |
---|---|---|---|
LWR | 5.1 | 17.8 * | 6.4 |
PWR | 8.0 | 10.5 | 13.1 |
BWR | 18.4 | ||
FBR | 3.0 | ||
HWR | 45.5 | ||
SMR | 5.1 | 9.1 ** | 10.3 |
EPR (III gen) | 8.0 | 14.0 | 64.0 |
GT-MHR (IV gen) | 9.6 | 9.9 |
Weighted Mean of the Minimum Values | SD of the Weighted Mean of the Minimum Values | Weighted Mean of the Mean Values | SD of the Weighted Mean of the Mean Values | Weighted Mean of the Maximum Values | SD of the Weighted Mean of the Maximum Values | |
---|---|---|---|---|---|---|
FOSSIL | ||||||
Coal-fired | 753.9 | 246.7 | 899.8 | 183.6 | 1215.4 | 619.1 |
Coal-fired with CCS | 316.0 | 136.8 | ||||
Gas-fired | 379.0 | 83.4 | 678.3 | 361.9 | ||
Gas-fired with CCS | 49.0 | 220.0 | ||||
HYDROPOWER | ||||||
Reservoir | 31.1 | 79.7 | 26.0 | 27.2 | 74.4 | 129.2 |
Run-of-river | 12.3 | 20.3 | 23.2 | 27.3 | 19.2 | 22.9 |
Not specified | 2.2 | 18.8 | 5.6 | 74.8 | ||
WIND | ||||||
Onshore | 16.6 | 5.7 | 16.4 | 8.6 | 34.9 | 6.8 |
Offshore | 25.6 | 18.1 | 10.7 | 45.2 | ||
Onshore and offshore | 6.2 | 9.4 | 46.0 | |||
PHOTOVOLTAICS | ||||||
Mono-Si | 31.1 | 23.5 | 35.5 | 24.1 | 74.3 | 26.1 |
Multi-Si | 30.8 | 17.0 | 36.4 | 18.7 | 71.2 | 25.8 |
Mono and multi-Si | 25.1 | 3.7 | 45.6 | 61.5 | 54.6 | |
a-Si | 12.5 | 4.5 | 24.7 | 18.7 | 53.9 | 12.0 |
CdTe | 9.9 | 1.4 | 17.4 | 7.8 | 40.4 | 16.8 |
CIGS | 8.3 | 1.5 | 26.3 | 14.9 | 30.5 | 5.9 |
CIS | 33.0 | 17.0 | 95.0 | |||
Not specified | 16.0 | 39.6 | 17.4 | 40.0 | ||
CONCENTRATED SOLAR POWER | ||||||
Parabolic trough with storage | 26.0 | 33.2 | 13.4 | 60.0 | ||
Tower plant with storage | 20.5 | 11.4 | ||||
Tower plant without storage | 31.0 | |||||
GEOTHERMAL | ||||||
EGS | 7.3 | 4.8 | 32.0 | 20.6 | 13.1 | |
Binary | 263.0 | 282.4 | ||||
HT single flash | 18.0 | 47.0 | 24.0 | |||
HT double flash | 15.0 | 13.7 | 3.8 | 23.0 | ||
Binary with ORC | 28.2 | 24.9 | ||||
Not specified | 16.9 | 35.6 | 12.4 | 142.0 | ||
NUCLEAR | ||||||
LWR | 5.1 | 17.8 | 3.1 | 6.4 | ||
PWR | 8.0 | 4.6 | 10.5 | 4.5 | 13.1 | 3.0 |
BWR | 18.4 | 9.6 | ||||
FBR | 3.0 | 2.8 | ||||
HWR | 45.5 | 32.4 | ||||
SMR | 5.1 | 0.6 | 9.1 | 10.3 | 0.3 | |
EPR (III generation) | 8.0 | 14.0 | 12.7 | 64.0 | ||
GT-MHR (IV generation) | 9.6 | 9.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidi, G.; Violante, A.C.; De Iuliis, S. Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies. Energies 2023, 16, 7847. https://doi.org/10.3390/en16237847
Guidi G, Violante AC, De Iuliis S. Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies. Energies. 2023; 16(23):7847. https://doi.org/10.3390/en16237847
Chicago/Turabian StyleGuidi, Giambattista, Anna Carmela Violante, and Simona De Iuliis. 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies" Energies 16, no. 23: 7847. https://doi.org/10.3390/en16237847
APA StyleGuidi, G., Violante, A. C., & De Iuliis, S. (2023). Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies. Energies, 16(23), 7847. https://doi.org/10.3390/en16237847