Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extreme Gradient Boosting Algorithms in Load Forecasting
2.2. Feature Engineering in Boosting Model
2.2.1. Load Features from Sliding Window in Width from Periodicity
2.2.2. External Features from Datetime and Meteorological Information Variables
2.3. Training Methods for Data-Driven Models
2.4. Dataset, Estonian Power Load, and Meteorological Information
2.5. Baseline Models and Evaluation Metrics
2.5.1. Baseline Models
2.5.2. Evaluations Metrics
3. Results
3.1. Historical Load Width from the Periodicity
3.1.1. Periodicity of Power Load Series
3.1.2. Window Sliding Width of Load Variable
3.2. External Information Features
3.2.1. Datetime Features
3.2.2. Meteorological Information Combination Features
3.3. Results of Forecasting Performance in Training Methods
3.4. Comparison with Baseline Models
3.4.1. Error between Forecasted and Actual Load
3.4.2. Peak Load Capture and Maximum Capacity Forecasting
3.4.3. Robustness of Models
3.4.4. Performance in Extreme Weather and Special Days
4. Conclusions
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACF | autocorrelation function |
ACPT | accuracy in peak time |
CART | classification and regression tree |
D.H. | day-ahead load |
DFT | discrete Fourier transform |
ENTSO-E | European network of transmission system operators for electricity |
FIV | feature importance value |
GRU | gate recurrent unit |
HPO | hyperparameters optimization |
LSTM | long–short-term memory |
MAE | mean absolute error |
MAPE | mean absolute percentage error |
PAC | approximately correct |
PACF | partial autocorrelation function |
RNN | recurrent neural network |
STLF | short-term load forecasting |
T.D. | today load |
TPL | time point of peak load |
Appendix A
References
- Hong, T.; Pinson, P.; Wang, Y.; Weron, R.; Yang, D.; Zareipour, H. Energy Forecasting: A Review and Outlook. IEEE Open J. Power Energy 2020, 7, 376–388. [Google Scholar] [CrossRef]
- Hong, T. Short Term Electric Load Forecasting. Doctor’s Thesis, North Carolina State University, Raleigh, NC, USA, 2010. [Google Scholar]
- Giabardo, P.; Zugno, M.; Pinson, P.; Madsen, H. Feedback, Competition and Stochasticity in a Day Ahead Electricity Market. Energy Econ. 2010, 32, 292–301. [Google Scholar] [CrossRef]
- Hirth, L.; Mühlenpfordt, J.; Bulkeley, M. The ENTSO-E Transparency Platform—A Review of Europe’s Most Ambitious Electricity Data Platform. Appl. Energy 2018, 225, 1054–1067. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M. Optimal Deep Learning LSTM Model for Electric Load Forecasting Using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef]
- Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network. Energies 2018, 11, 3493. [Google Scholar] [CrossRef]
- Morais, L.B.S.; Aquila, G.; De Faria, V.A.D.; Lima, L.M.M.; Lima, J.W.M.; De Queiroz, A.R. Short-Term Load Forecasting Using Neural Networks and Global Climate Models: An Application to a Large-Scale Electrical Power System. Appl. Energy 2023, 348, 121439. [Google Scholar] [CrossRef]
- Massaoudi, M.; Refaat, S.S.; Chihi, I.; Trabelsi, M.; Oueslati, F.S.; Abu-Rub, H. A Novel Stacked Generalization Ensemble-Based Hybrid LGBM-XGB-MLP Model for Short-Term Load Forecasting. Energy 2021, 214, 118874. [Google Scholar] [CrossRef]
- Bashir, T.; Chen, H.; Tahir, M.F.; Zhu, L. Short Term Electricity Load Forecasting Using Hybrid Prophet-LSTM Model Optimized by BPNN. Energy Rep. 2022, 8, 1678–1686. [Google Scholar] [CrossRef]
- Salmani, F.; Mahpeykar, M.R.; Rad, E.A. Estimating Heat Release Due to a Phase Change of High-Pressure Condensing Steam Using the Buckingham Pi Theorem. Eur. Phys. J. Plus 2019, 134, 48. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiang, W.; Huang, B.; Wang, J.; Fang, J. Optimised Extreme Gradient Boosting Model for Short Term Electric Load Demand Forecasting of Regional Grid System. Sci. Rep. 2022, 12, 19282. [Google Scholar] [CrossRef]
- Hong, T.; Wang, P.; White, L. Weather Station Selection for Electric Load Forecasting. Int. J. Forecast. 2015, 31, 286–295. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar]
- Zhao, Q.; Zhang, Z.; Huang, Y.; Fang, J. TPE-RBF-SVM Model for Soybean Categories Recognition in Selected Hyperspectral Bands Based on Extreme Gradient Boosting Feature Importance Values. Agriculture 2022, 12, 1452. [Google Scholar] [CrossRef]
- Adler, A.I.; Painsky, A. Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection. Entropy 2022, 24, 687. [Google Scholar] [CrossRef] [PubMed]
- Bluestein, L. A Linear Filtering Approach to the Computation of Discrete Fourier Transform. IEEE Trans. Audio Electroacoust. 1970, 18, 451–455. [Google Scholar] [CrossRef]
- Sethares, W.A.; Staley, T.W. Periodicity Transforms. IEEE Trans. Signal Process. 1999, 47, 2953–2964. [Google Scholar] [CrossRef]
- González-Romera, E.; Jaramillo-Morán, M.A.; Carmona-Fernández, D. Monthly Electric Energy Demand Forecasting with Neural Networks and Fourier Series. Energy Convers. Manag. 2008, 49, 3135–3142. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Belianinov, A.; Gianfrancesco, A.G.; Baddorf, A.P.; Tselev, A.; Kalinin, S.V.; Jesse, S. Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity. Appl. Phys. Lett. 2015, 106, 091601. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; Otexts, Online Open-Access Textbooks: Melbourne, Australia, 2021; ISBN 978-0-9875071-3-6. [Google Scholar]
- Weiß, C.H.; Aleksandrov, B.; Faymonville, M.; Jentsch, C. Partial Autocorrelation Diagnostics for Count Time Series. Entropy 2023, 25, 105. [Google Scholar] [CrossRef]
- Lo Duca, A.; Marchetti, A. Towards the Evaluation of Date Time Features in a Ship Route Prediction Model. JMSE 2022, 10, 1130. [Google Scholar] [CrossRef]
- Huang, J.; Algahtani, M.; Kaewunruen, S. Energy Forecasting in a Public Building: A Benchmarking Analysis on Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost) Networks. Appl. Sci. 2022, 12, 9788. [Google Scholar] [CrossRef]
- Shen, B.-W.; Pielke, R.; Zeng, X.; Cui, J.; Faghih-Naini, S.; Paxson, W.; Kesarkar, A.; Zeng, X.; Atlas, R. The Dual Nature of Chaos and Order in the Atmosphere. Atmosphere 2022, 13, 1892. [Google Scholar] [CrossRef]
- Elabid, Z.; Chakraborty, T.; Hadid, A. Knowledge-Based Deep Learning for Modeling Chaotic Systems. In Proceedings of the 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA), Nassau, Bahamas, 12–14 December 2022; pp. 1203–1209. [Google Scholar]
- Zheng, L.; Su, R.; Sun, X.; Guo, S. Historical PV-Output Characteristic Extraction Based Weather-Type Classification Strategy and Its Forecasting Method for the Day-Ahead Prediction of PV Output. Energy 2023, 271, 127009. [Google Scholar] [CrossRef]
- Tuy, S.; Lee, H.S.; Chreng, K. Integrated Assessment of Offshore Wind Power Potential Using Weather Research and Forecast (WRF) Downscaling with Sentinel-1 Satellite Imagery, Optimal Sites, Annual Energy Production and Equivalent CO2 Reduction. Renew. Sustain. Energy Rev. 2022, 163, 112501. [Google Scholar] [CrossRef]
- Elektri Tarbimine ja Tootmine|Elering. Available online: https://elering.ee/elektri-tarbimine-ja-tootmine (accessed on 26 October 2023).
- European Network of Transmission System Operators for Electricity. ENTSO-E Transparency Platform 2023. Available online: https://transparency.entsoe.eu (accessed on 15 June 2023).
- Eesti Statistika. KE36: ENERGIA EFEKTIIVSUSE SUHTARVUD. Available online: https://www.stat.ee/et/avasta-statistikat/valdkonnad/energia-ja-transport/energeetika (accessed on 15 June 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- European Network of Transmission System Operators for Electricity. Demand Forecasting: National Estimates Scenario-Eraa 2022. Available online: https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/2022/data-for-publication/Demand%20Forecasting%20ERAA22.pdf (accessed on 15 June 2023).
- Shohan, M.J.A.; Faruque, M.O.; Foo, S.Y. Forecasting of Electric Load Using a Hybrid LSTM-Neural Prophet Model. Energies 2022, 15, 2158. [Google Scholar] [CrossRef]
- Almazrouee, A.I.; Almeshal, A.M.; Almutairi, A.S.; Alenezi, M.R.; Alhajeri, S.N. Long-Term Forecasting of Electrical Loads in Kuwait Using Prophet and Holt–Winters Models. Appl. Sci. 2020, 10, 5627. [Google Scholar] [CrossRef]
- Huang, Y. Research on Short-Term Power Load Forecasting Method Based on MA-GRU Model. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2023. [Google Scholar]
- Wu, T. Short-Term Multi-Step Load Forecasting in High Latitude and Cold Regions Based on Recurrent Neural Network. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2022. [Google Scholar]
- Chen, Q.; Guo, H.; Zheng, K.; Wang, Y. Data Analysis in Power Markets; Science Press: Beijing, China, 2021; ISBN 9789811649752. [Google Scholar]
- Zamee, M.A.; Han, D.; Won, D. Online Hour-Ahead Load Forecasting Using Appropriate Time-Delay Neural Network Based on Multiple Correlation–Multicollinearity Analysis in IoT Energy Network. IEEE Internet Things J. 2022, 9, 12041–12055. [Google Scholar] [CrossRef]
- Jifri, M.H.; Hassan, E.E.; Miswan, N.H. Forecasting Performance of Time Series and Regression in Modeling Electricity Load Demand. In Proceedings of the 2017 7th IEEE International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 2–3 October 2017; pp. 12–16. [Google Scholar]
- Yildiz, B.; Bilbao, J.I.; Sproul, A.B. A Review and Analysis of Regression and Machine Learning Models on Commercial Building Electricity Load Forecasting. Renew. Sustain. Energy Rev. 2017, 73, 1104–1122. [Google Scholar] [CrossRef]
- Keevallik, S.; Post, P.; Tuulik, J. European Circulation Patterns and Meteorological Situation in Estonia. Theor. Appl.Climatol. 1999, 63, 117–127. [Google Scholar] [CrossRef]
Description | Feature Name | Type | Value Example 1 |
---|---|---|---|
Which day in the Month | if1 | Integer | 15 |
sf1 | Sine pairs | [sin(), cos()] | |
Which month in the year | if2 | Integer | 6 |
sf2 | Sine pairs | [sin(), cos()] | |
Which day in the week | if3 | Integer | 4 |
sf3 | Sine pairs | [sin(), cos()] | |
Which day in the year | if4 | Integer | 160 |
sf4 | Sine pairs | [sin(), cos()] | |
Is it a weekend? | bf1 | Boolean | False |
Is it a holiday? | bf2 | Boolean | False |
Class | Idx | Feature Name | Unit | Description |
---|---|---|---|---|
Temperature | a1 | Temperature | °C | -Air temperature at 2 m above ground |
a2 | Dewpoint | °C | -Dew point temperature at 2 m above ground | |
a3 | Apparent temperature | °C | -The perceived feels-like temperature | |
a4 | Soil temperature | °C | -Average temperature of different soil levels below ground at 0 to 7 cm depths. | |
Pressure | b1 | MSL pressure | hPa | -Atmospheric air pressure reduced to mean sea level |
b2 | Surface pressure | hPa | -Atmospheric air pressure at the surface. | |
Precipitation | c1 | Rain | mm | -Only liquid precipitation of the preceding hour. |
c2 | Snowfall | cm | -Snowfall amount of the preceding hour in centimeters. | |
Radiation | d1 | Shortwave radiation | W/m2 | -Shortwave solar radiation as average of the preceding hour. |
d2 | Direct radiation | W/m2 | -Direct solar radiation as average of the preceding hour on the horizontal plane | |
d3 | Direct normal irradiance radiation | W/m2 | -Direct solar radiation as average of the preceding hour on the normal plane | |
d4 | Diffuse radiation | W/m2 | -Diffuse solar radiation as average of the preceding hour | |
Wind | e1 | Wind speed | km/h | -Wind speed at 10 m above ground. |
e2 | Wind gusts | km/h | -Gusts at 10 m above ground of the indicated hour. |
Model | ||||||
---|---|---|---|---|---|---|
On Time | ||||||
V1 | 0.145 | 0.365 | 0.54 | 0.745 | 67.97114 | 76.88116 |
V2 | 0.19 | 0.445 | 0.595 | 0.75 | 64.19887 | 69.47483 |
V3 | 0.2 | 0.435 | 0.585 | 0.71 | 57.21661 | 61.5919 |
Ours | 0.345 | 0.63 | 0.775 | 0.845 | 41.61119 | 49.67199 |
EU | 0.3 | 0.615 | 0.735 | 0.81 | 71.71 | 78.83 |
LSTM | 0.135 | 0.365 | 0.475 | 0.59 | 84.44812 | 81.06971 |
GRU | 0.145 | 0.365 | 0.465 | 0.57 | 79.67624 | 78.72932 |
ETS | 0.21 | 0.41 | 0.455 | 0.49 | 92.51735 | 112.701 |
PRF | 0.21 | 0.49 | 0.555 | 0.61 | 80.61517 | 94.25627 |
ARM | 0.055 | 0.205 | 0.375 | 0.515 | 148.9198 | 164.5627 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Liu, X.; Fang, J. Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study. Energies 2023, 16, 7962. https://doi.org/10.3390/en16247962
Zhao Q, Liu X, Fang J. Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study. Energies. 2023; 16(24):7962. https://doi.org/10.3390/en16247962
Chicago/Turabian StyleZhao, Qinghe, Xinyi Liu, and Junlong Fang. 2023. "Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study" Energies 16, no. 24: 7962. https://doi.org/10.3390/en16247962
APA StyleZhao, Q., Liu, X., & Fang, J. (2023). Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study. Energies, 16(24), 7962. https://doi.org/10.3390/en16247962