Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives
Abstract
:1. Introduction
- Improvement of energy performance and reliability of systems and individual components of CSP and CPV systems, thanks to the identification and advanced development of technological solutions.
- Increase of the thermal storage capacity and, therefore, of the flexibility of the thermal energy carrier, thanks to the experimentation, modeling, and development of components for energy storage systems. Identification of configurations with a high economic/performance tradeoff and optimization of the parameters of advanced hybridization/integration solutions with conventional and non-conventional energy systems that are equipped with energy storage systems and are integrated into the network.
- Integration of production systems, in the presence of distributed storage and within energy microgrids, for the supply of energy services of an electrical and thermal type, and the consequent development of control and management strategies. Identification of eco-efficient solutions of the different technologies presented, through life cycle costing (LCC) and LCA assessments.
2. A Lens of the CSP Research
2.1. Phase of Paper Acquisition: Identification of Keywords
2.2. Phase of Paper Acquisition: Description Criteria
- -
- Data range reduction, establishing the review in a period from 2013 to 2023.
- -
- Language of publication: only works published in the English language were considered.
- -
- Source type: only papers published (or submitted) to scientific journals were considered.
- -
- Number of citations for the different publications.
- -
- Reviews were not considered in the analysis, in order to identify only specialized articles.
2.3. Phase of Descriptive and Content Analysis of the Selected Papers
2.4. Citation Analysis
3. Comparison of CSP Technologies
4. Results and Discussion
- Six LCA research studies contain a complete LCI comprising Ecoinvent processes [78] (a).
- Nine LCA research studies contain an aggregated LCI containing the bill of materials with different levels of detail (b).
- Five LCA research studies do not provide an LCI (c).
References | Power Plants | Rated Power | LCI |
---|---|---|---|
Research Papers | |||
[82] | Parabolic (Dagget) | 103 MW | b |
[84] | Parabolic (Archimede) | 1.58 MW | b |
[78] | Dish | 1 kW | c |
[89] | Parabolic | 2.61 MW | c |
[90] | Parabolic | 110 MW | b |
[79] | Parabolic, Fresnel, Tower, Dish (Andasol, Gemasolar, Puerto Errado, Maricopa) | 50, 20, 30, 1.5 MW | a |
[84] | Tower (Tucson) | 106 MW | b |
[61,80,81] | Parabolic (Ibersol) | 50 MW | a |
[59] | Tower | 180 MW | a |
[91] | Parabolic | 50 MW | b |
[31] | Heat transfert fluid | - | b |
[86] | Tower (Khi Solar One) | 101 MW | c |
[54] | Parabolic (KaXu Solar One) | 100 MW | b |
[92] | Storage materials | - | a |
[86] | Tower (Shouhang Dunhuang) | 10 MW | a |
[93] | Dish | 1 kW | c |
[94] | Parabolic | 86 kW | c |
[64] | Tower | 110 MW | a |
Reviews | |||
[81] | Parabolic, Fresnel, Tower, Dish | Review | c |
[95] | Parabolic, Tower, Dish | Review | c |
[96] | Parabolic, Fresnel, Tower, Dish | Review | c |
[97] | Parabolic, Tower | Review | c |
[98] | Parabolic | Review | c |
- Thirteen research analyses calculate GHG emissions (9.8–311 kg CO2eq/MWh); the main environmental hotspots are given by the combustion of fossil fuels in hybrid power plants, the solar field manufacturing, and the direct electricity demand of ventilators in dry-cooled for heat dissipation systems.
- Six research analyses calculate the cumulative energy demand (26–1337 MJ/MWh), which is remarkably affected by the choice to deploy fossil fuel-assisted CSP power plants.
- Three research analyses use the energy payback time (EPBT) to cross evaluate the electricity produced by the system and the energy embedded by the power plant during its life cycle (1–3.58 years).
- Six research analyses evaluate water use (1.1–277 m3/MWh). The main contributor to this impact category is the water use during cleaning maintenance operations.
- Three research studies calculate the freshwater ecotoxicity (306–1600 g 1,4-Dbeq/MWh) and human toxicity potential (10–126 kg 1,4-Dbeq/MWh); four studies instead include the marine ecotoxicity calculation (208–1579 g 1,4-Dbeq/MWh).
- Four research studies include the assessment of terrestrial acidification and eutrophication that are respectively assessed to (166–1686 g SO2eq/MWh) and (9.4–84.8 g P eq/MWh).
- Three research analyses evaluate the indicator of land use (4–70 m2/MWh).
- Two publications involve the fossil depletion impact category (estimated to be 8.11–9.29 kg oileq/MWh for solar-based plants and 123 kg oileq/MWh for gas-integrated installations).
- One research paper evaluates the category of photochemical oxidant formation (213–800 g NMVOC/MWh) as well as the environmental burden of particulate matter formation (89.1–524 kg PM10/MWh).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CSP | Concentrating solar power |
CPV | Concentrated photovoltaics |
DER | Distributed energy resources |
DG | Distributed generation |
DNI | Direct normal irradiance |
GHG | Greenhouse gas |
GWP | Global warming potential |
IRENA | International renewable energy agency |
LCA | Life cycle analysis |
LCI | Life cycle inventory |
LCIA | Life cycle impact assessment |
LCOE | Levelized cost of electricity |
MENA | Middle East and North Africa |
PCU | Power conversion unit |
PV | Photovoltaic |
RES | Renewable energy sources |
Solar PACES | Solar power and chemical energy systems |
VRE | Variable renewable energy |
References
- Chicco, G.; Di Somma, M.; Graditi, G. Chapter 1—Overview of Distributed Energy Resources in the Context of Local Integrated Energy systems. In Distributed Energy Resources in Local Integrated Energy Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–29. ISBN 9780128238998. [Google Scholar] [CrossRef]
- Di Somma, M.; Falvo, M.C.; Graditi, G.; Manganelli, M.; Scanzano, M.; Valenti, M. Integration of renewable energy source in transmission grids: Issues and perspectives. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021; pp. 1–8. [Google Scholar]
- Ciavarella, R.; Di Somma, M.; Graditi, G.; Valenti, M. Smart Grids for the Efficient Management of Distributed Energy Resources. In Technologies for Integrated Energy Systems and Networks; Graditi, G., Di Somma, M., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Ciavarella, R.; Di Somma, M.; Graditi, G.; Valenti, M. Congestion Management in distribution grid networks through active power control of flexible distributed energy resources. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Patsalides, M.; Papadimitriou, C.N.; Efthymiou, V.; Ciavarella, R.; Di Somma, M.; Wakszyńska, A.; Kosmecki, M.; Graditi, G.; Valenti, M. Frequency Stability Evaluation in Low Inertia Systems Utilizing Smart Hierarchical Controllers. Energies 2020, 13, 3506. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, X.; Li, X. Study of China’s Optimal Concentrated Solar Power Development Path to 2050. Front. Energy Res. 2021, 9, 724021. [Google Scholar] [CrossRef]
- Goyal, N.; Aggarwal, A.; Kumar, A. Concentrated solar power plants: A critical review of regional dynamics and operational parameters. Energy Res. Soc. Sci. 2022, 83, 102331. [Google Scholar] [CrossRef]
- Pazheri, F.; Othman, M.; Malik, N. A review on global renewable electricity scenario. Renew. Sustain. Energy Rev. 2014, 31, 835–845. [Google Scholar] [CrossRef]
- IRENA International Renewable Energy Agency. Renewable Energy Statistics 2022; IRENA: Abu Dhabi, United Arab Emirates, 2022. [Google Scholar]
- Schmela, M.; Rossi, R.; Lits, C.; Chunduri, S.K.; Shah, A.; Muthyal, R.; Moghe, P.; Kalam, S.; Jamkhedkar, A.; Goel, S.; et al. Advancements in solar technology, markets, and investments—A summary of the 2022 ISA World Solar Reports. Sol. Compass 2023, 6, 100045. [Google Scholar] [CrossRef]
- Soria, R.; Lucena, A.F.P.; Tomaschek, J.; Fichter, T.; Haasz, T.; Szklo, A.; Schaeffer, R.; Rochedo, P.; Fahl, U.; Kern, J.; et al. The role of CSP in Brazil: A multi-model analysis. AIP Conf. Proc. 2016, 1734, 110004. [Google Scholar]
- Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renné, D.; Sengupta, M.; Wald, L.; et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 2014, 110, 561–577. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F.; Ren, J.; Ren, G.; Shen, H.; Liu, G. Solar thermal Power Generation Technology Research. E3S Web Conf. 2019, 136, 02016. [Google Scholar] [CrossRef]
- Chien, J.C.L.; Lior, N. Concentrating Solar thermal Power as a Viable Alternative in China’s Electricity Supply. Energy Policy 2011, 39, 7622–7636. [Google Scholar] [CrossRef]
- Lovegrove, K.; Stein, W. Concentrating Solar Power Technology: Principles, Developments and Applications; Woodhead Publushing: Sawston, UK, 2012. [Google Scholar] [CrossRef]
- Singh, G. Solar power generation by PV (photovoltaic) technology: A review. Energy 2013, 53, 1–13. [Google Scholar] [CrossRef]
- Pelay, U.; Luo, L.; Fan, Y.; Stitou, D.; Rood, M. Thermal Energy Storage Systems for Concentrated Solar Power Plants. Renew. Sustain. Energy Rev. 2017, 79, 82–100. [Google Scholar] [CrossRef]
- Hussain, A.; Arif, S.M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sustain. Energy Rev. 2017, 71, 12–28. [Google Scholar] [CrossRef]
- Calderón, A.; Barreneche, C.; Prieto, C.; Segarra, M.; Fernández, A.I. Concentrating Solar Power Technologies: A Bibliometric Study of Past, Present and Future Trends in Concentrating Solar Power Research. Front. Mech. Eng. 2021, 7, 682592. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and Authors keywords: A case study of aherence research. J. Assoc. Inf. Sci. Technol. 2015, 67, 967–972. [Google Scholar] [CrossRef]
- Social Network Analysis and Visualization, White Paper, Cambridge Intelligence. Available online: https://cambridge-intelligence.com/keylines-faqs-social-network-analysis/ (accessed on 2 January 2020).
- Ren, L.-Z.; Yu, X.-X.; Zhang, Y.-Z. Cost-benefit evolution for concentrated solar power in China. J. Clean. Prod. 2018, 190, 471–482. [Google Scholar] [CrossRef]
- Hang, Q.; Jun, Z.; Xiao, Y.; Junkui, C. Prospect of concentrating solar power in China—The sustainable future. Renew. Sustain. Energy Rev. 2008, 12, 2505–2514. [Google Scholar] [CrossRef]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Weinstein, L.A.; Loomis, J.; Bhatia, B.; Bierman, D.M.; Wang, E.N.; Chen, G. Concentrating Solar Power. Chem. Rev. 2015, 115, 12797–12838. [Google Scholar] [CrossRef]
- Fuqiang, W.; Ziming, C.; Jianyu, T.; Yuan, Y.; Yong, S.; Linhua, L. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1314–1328. [Google Scholar] [CrossRef]
- Khan, J.; Arsalan, M.H. Solar power technologies for sustainable electricity generation—A review. Renew. Sustain. Energy Rev. 2016, 55, 414–425. [Google Scholar] [CrossRef]
- Hernández-Moro, J.; Martínez-Duart, J. Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renew. Sustain. Energy Rev. 2013, 20, 119–132. [Google Scholar] [CrossRef]
- Carrillo, A.J.; González-Aguilar, J.; Romero, M.; Coronado, J.M. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chem. Rev. 2019, 119, 4777–4816. [Google Scholar] [CrossRef] [PubMed]
- Padilla, R.V.; Too, Y.C.S.; Benito, R.; Stein, W. Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers. Appl. Energy 2015, 148, 348–365. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ghazvini, M.; Sadeghzadeh, M.; Alhuyi Nazari, M.; Kumar, R.; Naeimi, A.; Ming, T. Solar power technology for electricity generation: A critical review. Energy Sci. Eng. 2018, 6, 340–361. [Google Scholar] [CrossRef]
- Chacartegui, R.; Alovisio, A.; Ortiz, C.; Valverde, J.; Verda, V.; Becerra, J. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle. Appl. Energy 2016, 173, 589–605. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G.; D’alessandro, F.; Scrucca, F. Life cycle assessment of electricity production from renewable energies: Review and results harmonization. Renew. Sustain. Energy Rev. 2015, 42, 1113–1122. [Google Scholar] [CrossRef]
- Gils, H.C.; Scholz, Y.; Pregger, T.; de Tena, D.L.; Heide, D. Integrated modelling of variable renewable energy-based power supply in Europe. Energy 2017, 123, 173–188. [Google Scholar] [CrossRef]
- Al Garni, H.; Kassem, A.; Awasthi, A.; Komljenovic, D.; Al-Haddad, K. A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustain. Energy Technol. Assess. 2016, 16, 137–150. [Google Scholar] [CrossRef]
- Zhu, G.; Wendelin, T.; Wagner, M.J.; Kutscher, C. History, current state, and future of linear Fresnel concentrating solar collectors. Sol. Energy 2014, 103, 639–652. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Sharma, V.; Mathur, J. Energy and exergy analyses of various typical solar energy applications: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 1576–1601. [Google Scholar] [CrossRef]
- Pacio, J.; Wetzel, T. Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Sol. Energy 2013, 93, 11–22. [Google Scholar] [CrossRef]
- Du, E. The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. IEEE Trans. Power Syst. 2018, 33, 6630–6641. [Google Scholar] [CrossRef]
- Behar, O.; Khellaf, A.; Mohammedi, K. A novel parabolic trough solar collector model—Validation with experimental data and comparison to Engineering Equation Solver (EES). Energy Convers. Manag. 2015, 106, 268–281. [Google Scholar] [CrossRef]
- Dominković, D.; Bačeković, I.; Ćosić, B.; Krajačić, G.; Pukšec, T.; Duić, N.; Markovska, N. Zero carbon energy system of South East Europe in 2050. Appl. Energy 2016, 184, 1517–1528. [Google Scholar] [CrossRef]
- Aly, A.; Jensen, S.S.; Pedersen, A.B. Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew. Energy 2017, 113, 159–175. [Google Scholar] [CrossRef]
- Buscemi, A.; Guarino, S.; Ciulla, G.; Brano, V.L. A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance. Appl. Energy 2021, 303, 117681. [Google Scholar] [CrossRef]
- Machinda, G.T.; Arscott, R.; Chowdhury, S.P.; Kibaara, S. Concentrating solar thermal power technologies: A review. In Proceedings of the 2011 Annual IEEE India Conference, Hyderabad, India, 16–18 December 2011; pp. 1–6. [Google Scholar]
- Zhang, H.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated solar power plants: Review and design methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Islam, M.T.; Huda, N.; Abdullah, A.B.; Saidur, R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renew. Sustain. Energy Rev. 2018, 91, 987–1018. [Google Scholar] [CrossRef]
- Trieb, F. Global potential of concentrating solar power. In Proceedings of the SolarPACES Conferences, Berlin, Germany, 15–18 September 2009. [Google Scholar]
- Van Sark, W.; Corona, B. Concentrating Solar Power—Chapter 12. In Technological Learning in the Transition to a Low-Carbon Energy System; Junginger, M., Louwen, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 221–231. ISBN 9780128187623. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory. Concentrating Solar Power Projects n.d. Available online: https://solarpaces.nrel.gov/ (accessed on 2 January 2020).
- Mancini, T.; Heller, P.; Butler, B.; Osborn, B.; Schiel, W.; Goldberg, V.; Buck, R.; Diver, R.; Andraka, C.; Moreno, J. Dish-stirling systems: An overview of development and status. J. Sol. Energy Eng. 2003, 125, 135–151. [Google Scholar] [CrossRef]
- Guarino, S.; Buscemi, A.; Ciulla, G.; Bonomolo, M.; Brano, V.L. A dish-stirling solar concentrator coupled to a seasonal thermal energy storage system in the southern mediterranean basin: A cogenerative layout hypothesis. Energy Convers. Manag. 2020, 222, 113228. [Google Scholar] [CrossRef]
- Gu, L.; Li, Y.; Zhong, S.; Shen, R.; Zheng, R.; Yang, D.; Zhao, J.; Li, H. Theoretical and experimental study on the heat collection of solar dish system based on adjustable receiver. Energy Convers. Manag. 2023, 291, 117250. [Google Scholar] [CrossRef]
- Buscemi, A.; Brano, V.L.; Chiaruzzi, C.; Ciulla, G.; Kalogeri, C. A validated energy model of a solar dish-Stirling system considering the cleanliness of mirrors. Appl. Energy 2020, 260, 114378. [Google Scholar] [CrossRef]
- Musi, R.; Grange, B.; Sgouridis, S.; Guedez, R.; Armstrong, P.; Calvet, N.; Slocum, A. Techno-Economic Analysis of Concentrated Solar Power Plants in Terms of Levelized Cost of Electricity. In AIP Conference Proceedings, Proceeding of the SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems, Abu Dhabi, United Arab Emirates, 11–14 October 2016; AIP Publishing: College Park, MD, USA, 2017; Volume 1850, p. 160018. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Chen, Y.-L.; Thomson, J.D. Levelized cost of energy modeling for concentrated solar power projects: A China study. Energy 2017, 120, 117–127. [Google Scholar] [CrossRef]
- Chad, A.; Kesseli, D.; Turchi, C. Technoeconomic Cost Analysis of NREL Concentrating Solar Power Gen3 Liquid Pathway: Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5500-77852. 2021. Available online: https://www.nrel.gov/docs/fy22osti/77852.pdf (accessed on 2 January 2020).
- Enjavi-Arsanjani, M.; Hirbodi, K.; Yaghoubi, M. Solar Energy Potential and Performance Assessment of CSP Plants in Different Areas of Iran. Energy Procedia 2015, 69, 2039–2048. [Google Scholar] [CrossRef]
- Corona, B.; Ruiz, D.; San Miguel, G. Life Cycle Assessment of a HYSOL Concentrated Solar Power Plant: Analyzing the Effect of Geographic Location. Energies 2016, 9, 413. [Google Scholar] [CrossRef]
- Spyridonidou, S.; Vagiona, D.G. A systematic review of site-selection procedures of PV and CSP technologies. Energy Rep. 2023, 9, 2947–2979. [Google Scholar] [CrossRef]
- Corona, B.; Miguel, G.S. Environmental analysis of a Concentrated Solar Power (CSP) plant hybridised with different fossil and renewable fuels. Fuel 2015, 145, 63–69. [Google Scholar] [CrossRef]
- Ju, X.; Xu, C.; Hu, Y.; Han, X.; Wei, G.; Du, X. A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems. Sol. Energy Mater. Sol. Cells 2017, 161, 305–327. [Google Scholar] [CrossRef]
- Powell, K.M.; Rashid, K.; Ellingwood, K.; Tuttle, J.; Iverson, B.D. Hybrid concentrated solar thermal power systems: A review. Renew. Sustain. Energy Rev. 2017, 80, 215–237. [Google Scholar] [CrossRef]
- Gasa, G.; Lopez-Roman, A.; Prieto, C.; Cabeza, L.F. Life Cycle Assessment (LCA) of a Concentrating Solar Power (CSP) Plant in Tower Configuration with and without Thermal Energy Storage (TES). Sustainability 2021, 13, 3672. [Google Scholar] [CrossRef]
- Palacios, A.; Barreneche, C.; Navarro, M.; Ding, Y. Thermal energy storage technologies for concentrated solar power—A review from a materials perspective. Renew. Energy 2020, 156, 1244–1265. [Google Scholar] [CrossRef]
- Alnaimat, F.; Rashid, Y. Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions. Energies 2019, 12, 4164. [Google Scholar] [CrossRef]
- Cannone, S.F.; Lanzini, A.; Stendardo, S. An Innovative Calcium Looping Process as Energy Storage System Integrated With a Solar-Powered Supercritical CO2 Brayton Cycle. Front. Sustain. 2021, 2, 740105. [Google Scholar] [CrossRef]
- Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E. Comparative Analysis of Concentrating Solar Power and Photovoltaic Technologies: Technical and Environmental Evaluations. Appl. Energy 2013, 102, 765–784. [Google Scholar] [CrossRef]
- Alami, A.H.; Olabi, A.; Mdallal, A.; Rezk, A.; Radwan, A.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Concentrating solar power (CSP) technologies: Status and analysis. Int. J. Thermofluids 2023, 18, 100340. [Google Scholar] [CrossRef]
- Chaanaoui, M.; Vaudreuil, S.; Bounahmidi, T. Benchmark of Concentrating Solar Power Plants: Historical, Current and Future Technical and Economic Development. Procedia Comput. Sci. 2016, 83, 782–789. [Google Scholar] [CrossRef]
- Mohammadi, K.; Saghafifar, M.; Ellingwood, K.; Powell, K. Hybrid concentrated solar power (CSP)-desalination systems: A review. Desalination 2019, 468, 114083. [Google Scholar] [CrossRef]
- Abouaziza, F.; Issam, D.; Hedi, D. Concentrating solar power (CSP)-desalination systems: A review. Int. J.Chem. Mater. Environ. Res. (IJCMER) 2022, 8, 12–20. [Google Scholar]
- Shalaby, S.; Hammad, F.A.; Zayed, M.E. Current progress in integrated solar desalination systems: Prospects from coupling configurations to energy conversion and desalination processes. Process. Saf. Environ. Prot. 2023, 178, 494–510. [Google Scholar] [CrossRef]
- Boudries, R. Techno-economic study of hydrogen production using CSP technology. Int. J. Hydrogen Energy 2018, 43, 3406–3417. [Google Scholar] [CrossRef]
- Rosenstiel, A.; Monnerie, N.; Dersch, J.; Roeb, M.; Pitz-Paal, R.; Sattler, C. Electrochemical Hydrogen Production Powered by PV/CSP Hybrid Power Plants: A Modelling Approach for Cost Optimal System Design. Energies 2021, 14, 3437. [Google Scholar] [CrossRef]
- ISO 14040:2021; International Standards Organization Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2021.
- UNI EN ISO 14044:2021; Environmental Management—Life Cycle Assessment—Re-Quirements and Guidelines. International Standards Organization: Geneva, Switzerland, 2021.
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Kuenlin, A.; Augsburger, G.; Gerber, L.; Maréchal, F. Life Cycle Assessment and Environomic Optimization of Concentrating Solar Thermal Power Plants. In Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS2013), Guilin, China, 16–19 July 2013. [Google Scholar]
- Corona, B.; Miguel, G.S.; Cerrajero, E. Life Cycle Assessment of Concentrated Solar Power (CSP) and the Influence of Hybridising with Natural Gas. Int. J. Life Cycle Assess. 2014, 19, 1264–1275. [Google Scholar] [CrossRef]
- Miguel, G.S.; Corona, B. Hybridizing Concentrated Solar Power (CSP) with Biogas and Biomethane as an Alternative to Natural Gas: Analysis of Environmental Perfor-mance Using LCA. Renew. Energy 2014, 66, 580–587. [Google Scholar] [CrossRef]
- Burkhardt, J.J.; Heath, G.A.; Turchi, C.S. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and the Impacts of Key Design Alternatives. Environ. Sci. Technol. 2011, 45, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, J.J.; Heath, G.; Cohen, E. Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization. J. Ind. Ecol. 2012, 16, S93–S109. [Google Scholar] [CrossRef]
- Whitaker, M.B.; Heath, G.A.; Burkhardt, J.J.; Turchi, C.S. Life Cycle Assessment of a Power Tower Concentrating Solar Plant and the Impacts of Key Design Alternatives. Environ. Sci. Technol. 2013, 47, 5896–5903. [Google Scholar] [CrossRef]
- Piemonte, V.; De Falco, M.; Tarquini, P.; Giaconia, A. Life Cycle Assessment of a High Temperature Molten Salt Concentrated Solar Power Plant. Sol. Energy 2011, 85, 1101–1108. [Google Scholar] [CrossRef]
- Ko, N.; Lorenz, M.; Horn, R.; Krieg, H.; Baumann, M. Sustainability Assessment of Concentrated Solar Power (CSP) Tower Plants—Integrating LCA, LCC and LCWE in One Framework. Procedia CIRP 2018, 69, 395–400. [Google Scholar] [CrossRef]
- Mahlangu, N.; Thopil, G.A. Analysis of External Costs of a Parabolic Trough Concentrated Solar Power Plant. J. Clean. Prod. 2018, 195, 32–43. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Wang, H.; Tu, Q.; Wang, X. Integrated Hybrid Life Cycle Assessment and Contribution Analysis for CO2 Emission and Energy Consumption of a Concentrated Solar Power Plant in China. Energy 2019, 174, 310–322. [Google Scholar] [CrossRef]
- Norwood, Z.; Kammen, D. Life Cycle Analysis of Distributed Concentrating Solar Combined Heat and Power: Economics, Global Warming Potential and Water. Environ. Res. Lett. 2012, 7, 044016. [Google Scholar] [CrossRef]
- Klein, S.J.; Rubin, E.S. Life Cycle Assessment of Greenhouse Gas Emissions, Water and Land Use for Concentrated Solar Power Plants with Different Energy Backup Systems. Energy Policy 2013, 63, 935–950. [Google Scholar] [CrossRef]
- Ehtiwesh, I.A.; Coelho, M.C.; Sousa, A.C. Exergetic and Environmental Life Cycle Assessment Analysis of Concentrated Solar Power Plants. Renew. Renew. Sustain. Energy Rev. 2016, 56, 145–155. [Google Scholar] [CrossRef]
- Adeoye, J.T.; Amha, Y.M.; Poghosyan, V.H.; Torchyan, K.; Arafat, H.A. Comparative LCA of Two Thermal Energy Storage Systems for Shams1 Concentrated Solar Power Plant: Molten Salt vs. Concrete. J. Clean Energy Technol. 2014, 2, 274–281. [Google Scholar] [CrossRef]
- Cucumo, M.; Ferraro, V.; Marinelli, V.; Cucumo, S.; Cucumo, D. Lca Analysis of a Solar Concentration System for the Micro-Chp and Comparison with a Pv Plant. Int. J. Heat Technol. 2012, 30, 63–68. [Google Scholar]
- Moosavian, S.F.; Borzuei, D.; Ahmadi, A. Energy, Exergy, Environmental and Economic Analysis of the Parabolic Solar Collector with Life Cycle Assessment for Different Climate Condi-tions. Renew. Energy 2020, 165, 301–320. [Google Scholar] [CrossRef]
- Kommalapati, R.; Kadiyala, A.; Shahriar, T.; Huque, Z. Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems. Energies 2017, 10, 350. [Google Scholar] [CrossRef]
- Lamnatou, C.; Chemisana, D. Concentrating Solar Systems: Life Cycle Assessment (LCA) and Environmental Issues. Renew. Sustain. Energy Rev. 2017, 78, 916–932. [Google Scholar] [CrossRef]
- Caldés, N.; Lechón, Y. Socio-Economic and Environmental Assessment of Concentrating Solar Power Systems. In Concentrating Solar Power Technology; Woodhead Publishing: Sawston, UK, 2021; ISBN 9780128199701. [Google Scholar]
- Guillén-Lambea, S.; Carvalho, M. A Critical Review of the Greenhouse Gas Emissions Associated with Parabolic Trough Concentrating Solar Power Plants. J. Clean. Prod. 2021, 289, 125774. [Google Scholar] [CrossRef]
- Bâra, A.; Oprea, S.-V.; Băroiu, A.-C. Forecasting the Spot Market Electricity Price with a Long Short-Term Memory Model Architecture in a Disruptive Economic and Geopolitical Context. Int. J. Comput. Intell. Syst. 2023, 16, 130. [Google Scholar] [CrossRef]
Application | N | Energy | Engineering | Environmental Science | Mathematics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Field Source | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||
Renewable and sustainable energy reviews | 48 | x | x | x | x | |||||||||||
Solar energy | 45 | x | x | |||||||||||||
Energies | 43 | x | x | x | x | x | x | |||||||||
Applied energy | 38 | x | x | x | x | x | ||||||||||
Renewable energy | 33 | x | ||||||||||||||
TOT | 207 |
Author | Year | Title | Area of Authors’ Interest |
---|---|---|---|
CABEZA LF | 2022 | Key challenges for high temperature thermal energy storage in concrete—first steps towards a novel storage design | ES coupled with concentrating solar power (CSP) plants, thermal energy storage application. |
2021 | A framework for sustainable evaluation of thermal energy storage in circular economy | ||
2019 | Thermal energy storage (tes) with phase change materials (pcm) in solar power plants (esp)—concept and plant performance | ||
2018 | Process integration of thermal energy storage systems—evaluation methodology and case studies | ||
2018 | Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: lessons learnt and recommendations for its design, start-up and operation | ||
2017 | Materials selection for thermal energy storage systems in parabolic trough collector solar facilities using high chloride content nitrate salts | ||
2017 | Thermochemical energy storage by consecutive reactions for higher efficient concentrated solar power plants (esp): proof of concept | ||
2016 | Corrosion testing device for in-situ corrosion characterization in operational molten salts storage tanks: a516 gr70 carbon steel performance under molten salts com exposure | ||
2016 | Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants | ||
2015 | Key performance indicators in thermal energy storage: survey and assessment | ||
LIX | 2023 | Sensitivity analysis and exergoeconomic optimization of an improved he–CO2 cascade Brayton cycle for concentrated solar power | Technical and economic techniques applied to hybrid CHP plants in order to increase the diffusion |
2023 | Operation optimization for integrated energy system based on hybrid csp-chp considering power-to-gas technology and carbon capture system | ||
2022 | Carrying capacity of water resources for renewable energy development in arid regions in northwest China: a case study of golmud, Qinghai | ||
2022 | Day-ahead economic dispatch of renewable energy system considering wind and photovoltaic predicted output | ||
2022 | Joint optimal scheduling of renewable energy regional power grid with energy storage system and concentrated solar power plant | ||
2021 | Study of China’s optimal concentrated solar power development path to 2050 | ||
2017 | Dynamic simulation of two-tank indirect thermal energy storage system with molten salt | ||
MAZ | 2022 | On-sun testing of a high-temperature solar receiver’s flux distribution | CSP and thermal storage coupling |
2022 | Distributionally robust optimal dispatching of chp microgrid considering concentrating solar power and uncertainty | ||
2020 | Thermal analysis of insulation design for a thermal energy storage silo containment for long-duration electricity storage | ||
2020 | Design analysis of a particle-based thermal energy storage system for concentrating solar power or grid energy storage | ||
2018 | Predictive performance modelling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage | ||
2017 | A general method to analyse the thermal performance of multi-cavity concentrating solar power receivers | ||
2016 | Simulations of heat transfer to solid particles flowing through an array of heated tubes | ||
2014 | Computational analysis of a pipe flow distributor for a thermocline based thermal energy storage system | ||
WAGNER MJ | 2023 | Real-time dispatch optimization for concentrating solar power with thermal energy storage Fa | The calcium-looping (Cal) process, based on the reversible carbonation/calcination of CaO, is a promising technology for thermochemical energy storage (TCES) plants. |
2022 | Dispatch optimization of a concentrating solar power system under uncertain solar irradiance and energy | ||
2022 | Demonstrating solar pilot’s python application programmable interface through heliostat optimal aimpoint strategy use case | ||
2020 | Dispatch optimization of concentrating solar power with utility-scale PV | ||
2018 | Optimizing dispatch for a concentrated solar power tower | ||
2017 | Optimized dispatch in a first principles concentrating solar power production model | ||
2014 | History, current state, and future of linear Fresnel concentrating solar collectors | ||
VALVERDE JM | 2021 | Sealing up the calcium-looping process for CO2 capture and energy storage | The calcium-looping (CaL) process, based on the reversible carbonation/calcination of CaO, is a promising technology for thermochemical energy storage (TCES) in concentrated solar power (CSP)plants. |
2020 | Cross effect between temperature and consolidation on the flow behaviour of granular materials in thermal energy storage systems | ||
2018 | Low-cost ca-based composites synthesized by bio template method for thermochemical energy storage of concentrated solar power | ||
2017 | Large-scale storage of concentrated solar power from industrial waste | ||
2017 | Power cycles integration in concentrated solar power plants with energy storage based on calcium looping | ||
2016 | Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle | ||
2016 | On the multicycle activity of natural limestone/dolomite for thermochemical energy storage of concentrated solar power | ||
HAMILTON WT | 2023 | Parametric analysis on optimized design of hybrid solar power plants | Implementation of optimization models with economical dispatch and energy forecasting over a 48 h horizon at hourly fidelity |
2023 | Real-time dispatch optimization for concentrating solar power with thermal energy storage | ||
2018 | Optimizing dispatch for a concentrated solar power tower | ||
2017 | Optimized dispatch in a first principles concentrating solar power production model | ||
BORETTIA | 2022 | The perspective of enhanced geothermal energy integration with concentrated solar power and thermal energy storage | Hybrid power plants (wind and solar photovoltaic with external energy storage by batteries). couple with concentrated solar power (CSP). |
2022 | Opportunities of renewable energy supply to Neom city | ||
2021 | High-temperature molten-salt thermal energy storage and advanced ultra-supercritical power cycles | ||
2021 | Solar photovoltaic and batteries have unaffordable environmental and economic costs | ||
2021 | Integration of solar thermal and photovoltaic, wind, and battery energy storage through ai in Neom city | ||
CIOCCOLANTI L | 2020 | Fuzzy logic energy management strategy of a multiple latent heat thermal storage in a small-scale concentrated solar power plant | Models of hybrid small scale solar organic Rankine cycle energy systems, thermochemical energy storages |
2020 | Numerical investigation of pipelines modelling in small-scale concentrated solar combined heat and power plants | ||
2019 | Influence of the incident radiation on the energy performance of two small-scale solar organic Rankine cycle trigenerative systems: a simulation analysis | ||
2019 | Environmental and energy assessment of a small-scale solar organic Rankine cycle trigeneration system based on compound parabolic collectors | ||
2019 | Modelling system integration of a micro solar organic Rankine cycle plant into a residential building | ||
2018 | Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant | ||
CHACARTEGUIR | 2022 | Analysis of an energy storage system using reversible calcium hydroxide in fluidised-bed reactors | Thermochemical energy storage system for concentrated solar power plants, calcium looping process, reversible carbonation/calcination of calcium oxide for thermochemical energy storage. |
2017 | Power cycles integration in concentrated solar power plants with energy storage based on calcium looping | ||
2016 | Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle |
Cluster | Node | Betweenness | Closeness | PageRank |
---|---|---|---|---|
1 | renewable energy | 354.4927656 | 0.015151515 | 0.14360313 |
concentrating solar power | 182.3747351 | 0.013513514 | 0.087192981 | |
solar energy | 173.7682989 | 0.01369863 | 0.101877714 | |
Csp | 37.40266906 | 0.011764706 | 0.041277411 | |
energy storage | 8.813930079 | 0.011904762 | 0.034086178 | |
renewable energy sources | 9.178665218 | 0.010638298 | 0.017047431 | |
Desalination | 1.040226116 | 0.011627907 | 0.017193388 | |
Photovoltaics | 0.208716012 | 0.010989011 | 0.014816378 | |
Biomass | 0 | 0.010752688 | 0.01064847 | |
Simulation | 0.985691451 | 0.010526316 | 0.013940863 | |
Electricity | 0 | 0.010752688 | 0.012752987 | |
life cycle assessment | 0.208716012 | 0.010989011 | 0.013790641 | |
Hydrogen | 0 | 0.01010101 | 0.007511897 | |
thermal storage | 0 | 0.010752688 | 0.009670608 | |
wind energy | 0 | 0.008849558 | 0.011664041 | |
Sustainability | 0 | 0.009433962 | 0.007530082 | |
climate change | 0 | 0.009259259 | 0.006486301 | |
concentrated solar energy | 0 | 0.009259259 | 0.005460564 | |
levelized cost of electricity | 0 | 0.00862069 | 0.005557324 | |
molten salt | 0 | 0.00862069 | 0.007705557 | |
multi-objective optimization | 0 | 0.008695652 | 0.005470902 | |
organic rankine cycle | 0 | 0.00990099 | 0.008553281 | |
2 | Csp | 46.46317007 | 0.010416667 | 0.0204756 |
Storage | 0 | 0.007246377 | 0.006573502 | |
Electricity | 0.525388791 | 0.008928571 | 0.008721735 | |
3 | Concentrated solar power | 280.5123996 | 0.014084507 | 0.12726207 |
Thermal energy storage | 99.39724547 | 0.012048193 | 0.057883011 | |
Parabolic trough collector | 42.15653701 | 0.010309278 | 0.017273351 | |
Parabolic trough | 0.208716012 | 0.011363636 | 0.014951596 | |
Solar power | 0 | 0.008 | 0.005595782 | |
Concentrating solar power (csp) | 0 | 0.008 | 0.005595782 | |
Photovoltaic | 0.208716012 | 0.009803922 | 0.01168031 | |
molten salts | 0 | 0.009433962 | 0.009823469 | |
heat transfer fluid | 0 | 0.008849558 | 0.006470584 | |
4 | thermochemical energy storage | 4.537254589 | 0.00990099 | 0.015338478 |
calcium looping | 0.666666667 | 0.009345794 | 0.014944089 | |
co2 capture | 1.021112334 | 0.010204082 | 0.011746056 | |
5 | concentrated solar power (csp) | 4.105656247 | 0.01010101 | 0.014806095 |
thermal energy storage (tes) | 0.506412535 | 0.009009009 | 0.0110435 |
Region | Frequency |
---|---|
China | 180 |
USA | 174 |
Spain | 160 |
Italy | 91 |
Germany | 84 |
India | 72 |
Australia | 56 |
UK | 51 |
Iran | 38 |
Saudi Arabia | 31 |
South Africa | 27 |
Egypt | 26 |
Chile | 25 |
United Arab Emirates | 25 |
Algeria | 22 |
France | 21 |
Malayasia | 20 |
Denmark | 18 |
Austria | 17 |
Brazil | 16 |
Canada | 16 |
Pakistan | 16 |
Portugal | 16 |
Morocco | 15 |
Turkey | 14 |
From | To | |
---|---|---|
China | United Kingdom | 10 |
China | USA | 10 |
Spain | Germany | 6 |
Spain | Italy | 6 |
Austria | Switzerland | 5 |
China | Italy | 5 |
China | Australia | 4 |
Iran | Denmark | 4 |
South Africa | New Zealand | 4 |
Australia | Saudi Arabia | 3 |
Australia | United Kingdom | 3 |
Brazil | Ecuador | 3 |
China | Denmark | 3 |
China | Egypt | 3 |
Germany | Austria | 3 |
Germany | Morocco | 3 |
India | Iran | 3 |
Italy | Germany | 3 |
Spain | Chile | 3 |
United Kingdom | United Arab Emirates | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferruzzi, G.; Delcea, C.; Barberi, A.; Di Dio, V.; Di Somma, M.; Catrini, P.; Guarino, S.; Rossi, F.; Parisi, M.L.; Sinicropi, A.; et al. Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies 2023, 16, 8082. https://doi.org/10.3390/en16248082
Ferruzzi G, Delcea C, Barberi A, Di Dio V, Di Somma M, Catrini P, Guarino S, Rossi F, Parisi ML, Sinicropi A, et al. Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies. 2023; 16(24):8082. https://doi.org/10.3390/en16248082
Chicago/Turabian StyleFerruzzi, Gabriella, Camelia Delcea, Antonino Barberi, Vincenzo Di Dio, Marialaura Di Somma, Pietro Catrini, Stefania Guarino, Federico Rossi, Maria Laura Parisi, Adalgisa Sinicropi, and et al. 2023. "Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives" Energies 16, no. 24: 8082. https://doi.org/10.3390/en16248082
APA StyleFerruzzi, G., Delcea, C., Barberi, A., Di Dio, V., Di Somma, M., Catrini, P., Guarino, S., Rossi, F., Parisi, M. L., Sinicropi, A., & Longo, S. (2023). Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies, 16(24), 8082. https://doi.org/10.3390/en16248082