The Role of Biogas Potential in Building the Energy Independence of the Three Seas Initiative Countries
Abstract
:1. Introduction
- The Three Seas Initiative (3SI) countries show great diversity both in terms of production potential and the forecasted increase in biogas production.
- The biogas production potential of the Three Seas Initiative (3SI) countries indicates significant opportunities to ensure energy security for these countries.
2. Materials and Methods
2.1. Biogas Potential
2.2. Cluster Analysis
- agglomerative—at first, each object is a one-element cluster, and then pairs of clusters are merged according to a fixed metric;
- deglomerative—at first, all objects form a single cluster, and then the clusters are subdivided into smaller and more homogeneous ones.
2.3. ARIMA
- —parameters,
- —regressors,
- —error.
- —parameters,
- —regressors,
- —error.
3. Results
3.1. Analysis of the Energy Profile of the Three Seas Initiative
3.2. Biogas Potential
3.3. Biogas Production Forecasts
- Bulgaria—needed over EUR 33 billion for advancing the Green Deal objectives [92].
- Croatia—intends to spend EUR 22.5 billion on 12 activities for energy transition for the period from 2021–2030 [93].
- Czech Republic—reaching the RES target set in the NECP by 2030 will require an investment of CZK 327.5 billion [92].
- Poland—the value of investment outlays until 2030 was estimated in PEP2040 at EUR 53 billion, additionally taking into account the changing market environment, these outlays may still increase to EUR 135 billion [94].
- Hungary—The estimated total investment needs based on this NECP amount to roughly EUR 44.5 billion (by 2030) [92].
- Latvia—The NECP allocates approximately EUR 550 million for increasing the share of RES in district heating and connecting new clients to more efficient networks; EUR 60 million will fund projects in low temperature heating systems and waste heat recovery; EUR 225 million will be spent on modernising heating systems, combining RES uptake and efficiency measures; EUR 267 million will support the modernisation of local and individual heating systems [92].
- Romania—the NECP need financial support amounting to EUR 22.6 billion to achieve the climate target [92].
- Slovenia—estimates that between 2021 and 2030 approximately EUR 19.2 billion are needed for energy-related investments. When transport infrastructure and sustainable mobility are also taken into consideration, the necessary total investment amounts to EUR 28 billion [95].
- Estonia—the implementation of NECP 2030 in the energy sector amounts to EUR 347 million, EUR 589 million in transport, EUR 1.046 billion for the renovation of building stock and EUR 278.5 million in agriculture [96].
- Lithuania—the implementation of the PPM scenario will cost about EUR 14 billion [97].
- Austria—overall investments for the entire period up to 2030 in the expansion of electricity generated from renewable energy is estimated at EUR 20~27 billion [98].
- Slovakia—National Action Plan for Renewable Energy, Government Resolution 677/2010 EUR 1.483 billion per year [99].
4. Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kofler, B.; Netzer, N. (Eds.) Towards a Global Energy Transformation Study; Friedrich Ebert Stiftung Germanwatch: Bonn, Germany, 2014; pp. 1–67. [Google Scholar]
- Trattner, A.; Klell, M.; Radner, F. Sustainable hydrogen society—Vision, findings and development of a hydrogen economy using the example of Austria. Int. J. Hydrogen Energy 2022, 47, 2059–2079. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J. Clean. Prod. 2022, 345, 131076. [Google Scholar] [CrossRef]
- Arıoğlu Akan, M.Ö.; Selam, A.A.; Fırat, S.U.; Er Kara, M.; Özel, S. A Comparative Analysis of Renewable Energy Use and Policies: Global and Turkish Perspectives. Sustainability 2015, 7, 16379–16407. [Google Scholar] [CrossRef] [Green Version]
- Dahlke, S.; Sterling, J.; Meehan, C. Policy and Market Drivers for Advancing Clean Energy. In Advances in Clean Energy Technologies; Academic Press: Cambridge, MA, USA, 2021; pp. 451–485, Chapter 2. [Google Scholar] [CrossRef]
- DNV. Energy Transition Outlook: Energy Crisis Reinforcing Two Speed Energy Transition in Short Term. 2022. Available online: https://www.dnv.com/energy-transition-outlook/index.html (accessed on 12 September 2022).
- Moore, C. European Electricity Review 2022. Ember. 2022. Available online: https://ember-climate.org (accessed on 13 September 2022).
- EEA. Share of Energy Consumption from Renewable Sources in Europe. 2022. Available online: https://www.eea.europa.eu (accessed on 19 September 2022).
- Tan, W. What ’transition’? Renewable Energy Is Growing, but Overall Energy Demand Is Growing Faster. CNBC. 2021. Available online: https://www.cnbc.com/2021/11/04/gap-between-renewable-energy-and-power-demand-oil-gas-coal.html (accessed on 20 September 2022).
- Zell-Ziegler, C.; Thema, J.; Best, B.; Wiede, F.; Lage, J.; Schmidt, A.; Toulouse, E.; Stagl, S. Enough? The role of sufficiency in European energy and climate plans. Energy Policy 2021, 157, 112483. [Google Scholar] [CrossRef]
- Salvia, M.; Olazabal, M.; Fokaides, P.A.; Tardieu, L.; Reckien, D. Climate mitigation in the Mediterranean Europe: An assessment of regional and city-level plans. J. Environ. Manag. 2021, 295, 113146. [Google Scholar] [CrossRef]
- Otto, A.; Kern, K.; Haupt, W.; Eckersley, P.; Thieken, A.H. Ranking local climate policy: Assessing the mitigation and adaptation activities of 104 German cities. Clim. Chang. 2021, 167, 5. [Google Scholar] [CrossRef]
- Pietrzak, M.B.; Olczyk, M.; Kuc-Czarnecka, M.E. Assessment of the Feasibility of Energy Transformation Processes in European Union Member States. Energies 2022, 15, 661. [Google Scholar] [CrossRef]
- Komisarz Ue ds. Energii na Ekg Unia musi Przyspieszyc Zielona Transformacje. Available online: https://www.pap.pl/mediaroom/1171005%2Ckomisarz-ue-ds-energii-na-ekg-unia-musi-przyspieszyc-zielona-transformacje.html (accessed on 25 September 2022).
- Extance, A.; Pinchbeck, A. Moving from fossil fuels to renewable energy. R. Soc. Chem. 2022. Available online: https://edu.rsc.org/feature/moving-from-fossil-fuels-to-renewable-energy/4015752.article (accessed on 20 September 2022).
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Hunt, J.D.; Pouya, S. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Nerlinger, M.; Utz, S. The impac of the Russia-Ukraine conflict on the green energy transition—A capital market perspective. Swiss Financ. Inst. Res. Pap. 2022, 8, 22–49. [Google Scholar] [CrossRef]
- Kuzemko, C.; Blondeel, M.; Dupont, C.; Brisbois, M.C. Russia’s war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Res. Soc. Sci. 2022, 93, 102842. [Google Scholar] [CrossRef]
- Salimi, M.; Amidpour, M. The Impact of Energy Transition on the Geopolitical Importance of Oil-Exporting Countries. World 2022, 3, 607–618. [Google Scholar] [CrossRef]
- Zhang, N.J. How the War in Ukraine Affects the Fight against Climate Change. 2022. Available online: https://katoikos.world/analysis (accessed on 23 September 2022).
- Mathis, W.; Wade, W. Clean-Energy Stocks Surge as War Spurs Push Away from Russia. 2022. Available online: https://www.bloomberg.com (accessed on 26 September 2022).
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- EC 2022. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. REPowerEU: Joint European Action for More Affordable, Secure and Sustainable Energy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A108%3AFIN (accessed on 28 September 2022).
- Sturm, C. Between a rock and a hard place: European energy policy and complexity in the wake of the Ukraine war. J. Ind. Bus. Econ. 2022, 49, 835–878. [Google Scholar] [CrossRef]
- Kucharska, A. Transformacja Energetyczna. Wyzwania Dla Polski Wobec DośWiadczeń Krajów Europy Zachodniej; PWN: Warsaw, Poland, 2021; p. 281. [Google Scholar]
- Hribar, N.; Šimić, G.; Vukadinović, S.; Šprajc, P. Decision-making in sustainable energy transition in Southeastern Europe: Probabilistic network-based model. Energy Sustain. Soc. 2021, 11, 39. [Google Scholar] [CrossRef]
- EC 2018 The Three Seas Initiative Summit: European Commission Investments in Connectivity Projects. Romania. Available online: https://3seas.eu/about/past-summits/bucharest-summit-2018 (accessed on 28 September 2022).
- Dubrovnik Summit 2016: The Joint Statement on the Three Seas Initiative (The Dubrovnik Statement). Available online: https://3seas.eu/about/past-summits/dubrovnik-summit-2016 (accessed on 28 September 2022).
- Thomann, P.-E. The Three Seas Initiative, a New Project at the Heart of European and Global Geopolitical Rivalries. Yearb. Inst. Cent. East. Eur. 2019, 17, 31–63. [Google Scholar] [CrossRef]
- Orzelska-Stączek, A. The Trilateral Initiative in the light of the theory of realism. Political aspects of a new form of cooperation between twelve states. Int. Aff. 2019, 1, 131–155. [Google Scholar]
- Soroka, G.; Stępniewski, T. The Three Seas Initiative: Geopolitical Determinants and Polish Interests. Yearb. Inst. Cent. East. Eur. 2019, 17, 15–29. [Google Scholar] [CrossRef]
- Ari, A.; Bartolini, D.; Boranova, V.; Di Bella, G.; Dybczak, K.; Topalova, P. Infrastructure in Central, Eastern, and Southeastern Europe: Benchmarking, Macroeconomic Impact, and Policy Issues. Dep. Pap. 2020, 11, 19–56. [Google Scholar]
- Cierpiał-Wolan, M.; Ślusarz, G.; Oleński, J. European Economic Megaregion Intermarium and the Socio-Economic Transformation of the Countries of the Three Seas Initiativein 2012–2019; Wydawnictwo Uniwersytetu Rzeszowskiego: Rzeszów, Poland, 2022; p. 176. ISBN 978-83-8277-063-6. [Google Scholar]
- Nowak, A.Z. Perspectives on innovation, competitiveness and growth of the Polish economy in the context of energy transition. In Transformacja Energetyczna i Klimatyczna-Wybrane Dylematy I Rekomendacje; Nowak, A.Z., Kurtyka, M., Tchorek, G., Ruszel, M., Sosnowski, J., Goryńska, A., Miłoszewicz, A., Eds.; Dom Wydawniczy Elipsa: Warsaw, Poland, 2021. [Google Scholar]
- Elie, L.; Granier, C.; Rigot, S. The different types of renewable energy finance: A bibliometric analysis. Energy Econ. 2021, 93, 104997. [Google Scholar] [CrossRef]
- TOGETAIR. European Green Order in Practice. Innovative Biogas Plant One of the New Projects of the National Research and Development Centre. The Energy of the Future. Polish Multimedia Climate Report. 2020. Available online: https://raport.togetair.eu (accessed on 25 September 2022).
- EIA. Renewable Energy Explained. Independent Statistic & Analysis. 2022. Available online: www.eia.gov/energyexplained (accessed on 26 September 2022).
- Hilda, L.; Lubis, R.; Replita. Biogas: Renewable Energy. IOP Conference Series. Mater. Sci. Eng. 2021, 1156, 012013. [Google Scholar] [CrossRef]
- Dahlgren, S. Biogas-based fuels as renewable energy in the transport sector: An overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas. Biofuels 2022, 13, 587–599. [Google Scholar] [CrossRef]
- Moussu, N. Europe Rediscovers Biogas in Search for Energy Independence. Special Report Gas Decarbonisation. 2022. Available online: www.euractiv.com (accessed on 27 September 2022).
- Kaltschmitt, M.; Hartmann, H. Biogaserzeugung und-Nutzung Energie Aus Biomass; Springer: Berlin/Heidelberg, Germany, 2001; pp. 641–694. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 22 September 2022).
- Statistics Austria. Available online: https://www.statistik.at/web_en/statistics/index.html (accessed on 23 September 2022).
- National Statistical Institute of the Republic of Bulgaria. Available online: https://www.nsi.bg/en (accessed on 24 September 2022).
- Croatian Bureau of Statistics (DZS). Available online: https://dzs.gov.hr/ (accessed on 25 September 2022).
- Czech Statistical Office (CZSO). Available online: https://www.czso.cz/csu/czso/home (accessed on 26 September 2022).
- Statistics Estonia. Available online: https://www.stat.ee/en (accessed on 27 September 2022).
- Statistics Lithuania. Available online: https://www.stat.gov.lt/home (accessed on 28 September 2022).
- Central Statistical Bureau of Latvia. Available online: https://stat.gov.lv/en (accessed on 30 September 2022).
- National Institute of Statistics (INS). Available online: https://insse.ro/cms/en (accessed on 1 October 2022).
- Statistical Office of the Slovak Republic. Available online: https://slovak.statistics.sk (accessed on 3 October 2022).
- Statistical Office of the Republic of Slovenia (SURS). Available online: https://www.stat.si/StatWeb/en (accessed on 4 October 2022).
- Statistics Poland. Available online: https://stat.gov.pl/en/ (accessed on 10 October 2022).
- Hungarian Central Statistical Office (KSH). Available online: https://www.ksh.hu/?lang=en (accessed on 10 October 2022).
- Walczak, J.; Krawczyk, W.; Szewczyk, A.; Mazur, D.; Pająk, T.; Radecki, P. Estimation of Production Volume and Unit Nitrogen Content of Natural Fertilizers Generated in Different Livestock Housing Systems in Poland; Instytut Zootechniki Państwowy Instytut Badawczy: Kraków, Poland, 2012; pp. 9–11. [Google Scholar]
- Manual on Fertilizer Statistics. Available online: https://www.fao.org/fileadmin/templates/ess/ess_test_folder/Publications/ManualFertilizers.pdf (accessed on 1 November 2022).
- Burkart, M.R.; Stoner, J.D. Stonera Nitrogen in the Environment: Sources, Problems and Management; Elsevier: Amsterdam, The Netherlands, 2001; pp. 123–145. [Google Scholar] [CrossRef]
- BIO Intelligence Service, amec, European Commission (DG Environment) Collection and Analysis of Data for the Control of Emissions from the Spreading of Manure’. Available online: https://kotkas.envir.ee (accessed on 24 October 2022).
- Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC107189 (accessed on 1 November 2022).
- Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Available online: https://econpapers.repec.org/paper/iptiptwpa/jrc118627.htm (accessed on 1 November 2022).
- Bujakowski, W.; Barbacki, A.; Grzybek, A.; Hołojuch, G.; Pająk, L.; Skoczek, A.; Skrzypczak, M.; Skrzypczak, S. Development of a Method of Programming and Modelling Systems for the Use of Renewable Energy Sources in Non-industrial Areas of the Silesian Voivodship, Together with an Implementation Programme for Selected Areas of the Voivodship; I: Methodology of Development; Institute of Mineral and Energy Economy of the Polish Academy of Sciences: Kraków, Poland; Katowice, Poland, 2005; pp. 19–20. [Google Scholar]
- Ignatowicz, K.; Filipczak, G.; Dybek, B.; Wałowski, G. Biogas Production Depending on the Substrate Used: A Review and Evaluation Study—European Examples. Energies 2023, 16, 798. [Google Scholar] [CrossRef]
- Generation of Waste by Waste Category, Hazardousness and Nace Rev. 2 Activity. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/table?lang=en (accessed on 1 November 2022).
- ACR+, Municipal Bio-Waste: Current Situation and Trends in the EU and Med Countries. Available online: https://www.acrplus.org (accessed on 10 October 2022).
- Comparison of Models for Predicting Landfflt Methane Recovery. Available online: https://www.nrel.gov/docs/legosti/fy97/26041.pdf (accessed on 1 November 2022).
- Kołodziejak, G. Mozliwości Wykorzystania Potencjału Energetycznego Biogazu Powstaj Acego w Trakcie Procesu Oczyszczania Ścieków. Analiza Opłacalności Proponowanych Rozwiązań. Naft. Gaz 2012, 12, 1036–1043. Available online: http://archiwum.inig.pl/INST/nafta-gaz/nafta-gaz/Nafta-Gaz-2012-12-14.pdf (accessed on 1 November 2022).
- Zepter, J.M.; Engelhardt, J.; Gabderakhmanova, T.; Marinelli, M. Empirical Validation of a Biogas Plant Simulation Model and Analysis of Biogas Upgrading Potentials. Energies 2021, 14, 2424. [Google Scholar] [CrossRef]
- Statistical Review of World Energy, the Excel Data. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/downloads.html (accessed on 1 November 2022).
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. The comparison of dendrograms by objective methods. Taxon 1962, 2, 34–39. [Google Scholar] [CrossRef]
- Lee, C.M.; Ko, C.N. Short-term load forecasting using lifting scheme and ARIMA models. Expert Syst. Appl. 2011, 38, 5902–5911. [Google Scholar] [CrossRef]
- Asteriou, D.I.; Hall, S.G. ARIMA Models and the Box-Jenkins Methodology. In Applied Econometrics, 2nd ed.; Palgrave MacMillan: London, UK, 2011; pp. 265–286. [Google Scholar]
- Mahia, F.; Dey, A.R.; Masud, M.A.; Mahmud, M.S. Forecasting Electricity Consumption using ARIMA Model. In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25 December 2019. [Google Scholar] [CrossRef]
- Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Jahanianfard, D.; Mostafaie, A.; Kamali, M. An Auto Regressive Inte-grated Moving Average (ARIMA) Model for prediction of energy consumption by household sector in Euro area. AIMS Energy 2019, 7, 151–164. [Google Scholar] [CrossRef]
- Changa, Y.; Choi, Y.; Kim, C.S.; Miller, J.M.; Park, J.Y. Forecasting regional long-run energy demand: A functional coefficient panel approach. Energy Econ. 2021, 96, 105117. [Google Scholar] [CrossRef]
- De Andrade, L.C.M.; da Silva, I.N. Very Short-Term Load Forecasting Based on ARIMA Model and Intelligent Systems. In Proceedings of the 2009 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, 8–12 November 2009; pp. 1–6. [Google Scholar]
- Gordon, A.D. Classification, 2nd ed.; Chapman and Hall: Boca Raton, FL, USA, 1999. [Google Scholar]
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 14 September 2022).
- Service of the Republic of Poland. Available online: https://www.gov.pl/web/klimat/polityka-energetyczna-polski-do-2040-r-adopted-by-the-council-ministers (accessed on 24 July 2022).
- NUTS - Nomenclature of Territorial Units for Statistics: Background. Available online: https://ec.europa.eu/eurostat/web/nuts/background (accessed on 1 November 2022).
- Zużycie Paliw i Nośników Energii w 2020 Roku. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/zuzycie-paliw-i-nosnikow-energii-w-2020-roku,6,15.html (accessed on 26 October 2022).
- Supply, Transformation and Consumption of Renewables and Wastes. Available online: https://ec.europa.eu/eurostat/databrowser/view/nrg_cb_rw/default/table?lang=en (accessed on 11 October 2022).
- European Biogas Association. Available online: https://www.europeanbiogas.eu/wp-content/uploads/2021/01/EBA_StatisticalReport2020_abridged.pdf (accessed on 27 October 2022).
- Biomethane Map 2021. Available online: https://www.europeanbiogas.eu/biomethane-map-2021/ (accessed on 27 October 2022).
- Document 32009L0028. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0028 (accessed on 27 October 2022).
- Kuhar, M.; Jungwirth, T.; Vondrova, Z.; Davidova, K.; Belusa, D.; Väinsalu, P.; Makaroff, N.; Lavocat, Z.; Szymalski, W.; Alves, P.; et al. Funding Climate and Energy Transition in the EU: The Untapped Potential of Regional Funds: Assessment of the European Regional De-velopment and Cohesion Funds’ Investments in Energy Infrastructure 2014–2020; Climate Action Network Europe: Brussels, Belgium, 2020. [Google Scholar]
- Clean Energy Investment Trends, 1H 2020. Available online: https://data.bloomberglp.com/professional/sites/24/BNEF-Clean-Energy-Investment-Trends-1H-2020.pdf (accessed on 28 October 2022).
- Reducing Greenhouse Gas Emissions: Commission Adopts EU Methane Strategy as Part of European Green Deal. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1833 (accessed on 23 October 2022).
- After Ukraine–The Great Clean Energy Acceleration. Available online: https://about.bnef.com/blog/after-ukraine-the-great-clean-energy-acceleration/ (accessed on 25 October 2022).
- “Feniks” Rising from the Ashes. Available online: https://ec.europa.eu/regional_policy/en/newsroom/news/2021/05/18-05-2021-feniks-rising-from-the-ashes (accessed on 28 October 2022).
- EU Funds for a Green Recovery: Recommendations to Steer EU Regional and Recovery Funding towards Climate Neutrality. Available online: https://www.caneurope.org/content/uploads/2020/07/EU-FUNDS-FOR-A-GREEN-RECOVERY-report-_July-2020.pdf (accessed on 1 November 2022).
- Gelo, T.; Šimurina, N.; Šimurina, J. The Economic Impact of Investment in Renewables in Croatia by 2030. Energies 2021, 14, 8215. [Google Scholar] [CrossRef]
- Polska Ścieżka Transformacji Energetycznej. Available online: https://pkee.pl/wp-content/uploads/2022/10/PL_Raport_PKEE-2022.pdf (accessed on 1 November 2022).
- Assessment of the Final National Energy and Climate Plan of Slovenia. Available online: http://www.energetika-portal.si/fileadmin/dokumenti/publikacije/nepn/priporocila_ek/assessment_necp_sl.pdf (accessed on 1 November 2022).
- Estonia’s 2030 National Energy and Climate Plan (NECP 2030). Available online: https://faolex.fao.org/docs/pdf/est200007.pdf (accessed on 1 November 2022).
- National Energy and Climate Action Plan of the Republic of Lithuania for 2021–2030. Available online: https://energy.ec.europa.eu/system/files/2022-08/lt_final_necp_main_en.pdf (accessed on 1 November 2022).
- Integrated National Energy and Climate Plan for Austria 2021–2030. Available online: https://energy.ec.europa.eu/system/files/2020-03/at_final_necp_main_en_0.pdf (accessed on 1 November 2022).
- Integrated National Energy and Climate Plan for 2021 to 2030. Available online: https://energy.ec.europa.eu/system/files/2020-03/sk_final_necp_main_en_0.pdf (accessed on 1 November 2022).
- Download WEO Data: October 2022 Edition. Available online: https://www.imf.org/en/Publications/WEO/weo-database/2022/October (accessed on 26 October 2022).
- Levstek, T.; Rozman, C.A. Model for Finding a Suitable Location for a Micro Biogas Plant Using Gis Tools. Energies 2022, 15, 7522. [Google Scholar] [CrossRef]
- Comprehensive Assessment of the Potential for Efficient Heating and Cooling in Slovenia. Available online: https://energy.ec.europa.eu/system/files/2022-01/SI%20CA%202020%20en.pdf (accessed on 1 November 2022).
- Cîrstea, Ş.D.; Martiş, C.S.; Cîrstea, A.; Constantinescu-Dobra, A.; Fülöp, M.T. Current Situation and Future Perspectives of the Romanian Renewable Energy. Energies 2018, 11, 3289. [Google Scholar] [CrossRef] [Green Version]
- Projections for the Transition to 2030/2050 in the Target Regions. Available online: https://tracer-h2020.eu/wp-content/uploads/2021/06/TRACER-D61_Energy-Projections.pdf (accessed on 1 November 2022).
- Priority Projects. Available online: https://3seas.eu/about/progressreport (accessed on 1 November 2022).
- Nevzorova, T.; Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: A state-of-the-art review. Energy Strategy Rev. 2019, 26, 100414. [Google Scholar] [CrossRef]
- NIK o Barierach Rozwoju Odnawialnych Źródeł Energii. Available online: https://www.nik.gov.pl/aktualnosci/bariery-rozwoju-odnawialnych-zrodel-energii.html (accessed on 1 November 2022).
- Aceleanu, M.I.; Șerban, A.C.; Pociovălișteanu, D.M.; Dimian, G.C. Renewable energy: A way for a sustainable development in Romania. Energy Sources Part B Econ. Plan. Policy 2017, 12, 958–963. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Shabbir, S.M.; Siddiqi, A.; Wang, X. Current status and future prospects of renewable energy: A case study. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 42, 2698–2703. [Google Scholar] [CrossRef]
Country | Fossil Fuels Consumption [PJ] | Nuclear Consumption PJ | RES Consumption [PJ] | Primary Consumption [PJ] | RES/Primary Consumption [%] | Nuclear/Primary Consumption [%] | Gas/Primary Consumption [%] | Gas/Population [GJ/Person] |
---|---|---|---|---|---|---|---|---|
Austria | 889.76 | 0.0 | 533.48 | 1423.24 | 37.48 | 0.0 | 21.57 | 34.49 |
Bulgaria | 465.30 | 150.84 | 74.62 | 690.76 | 10.80 | 21.84 | 15.22 | 15.13 |
Croatia | 243.42 | 0.0 | 82.80 | 326.22 | 25.38 | 0.0 | 32.41 | 26.05 |
Czech Republic | 1196.91 | 272.57 | 106.49 | 1575.97 | 6.76 | 17.30 | 19.33 | 28.49 |
Estonia | 179.97 | 0.0 | 29.88 | 209.85 | 14,24 | 0.0 | 7.38 | 11.65 |
Hungary | 760.23 | 145.66 | 56.66 | 962.55 | 5.89 | 15.13 | 38.12 | 37.56 |
Latvia | 108.20 | 0.0 | 36.29 | 144.49 | 25.11 | 0.0 | 26.74 | 20.25 |
Lithuania | 221.40 | 0.0 | 25.56 | 246.96 | 10.35 | 0.0 | 34.41 | 30.41 |
Poland | 3765.81 | 0.0 | 274.59 | 4040.39 | 6.80 | 0.0 | 18.77 | 19.98 |
Romania | 973.77 | 104.03 | 233.75 | 1311.54 | 17.82 | 7.93 | 30.91 | 20.97 |
Slovakia | 436.33 | 140.12 | 68.24 | 644.69 | 10.58 | 21.73 | 26.55 | 31.36 |
Slovenia | 163.68 | 57.64 | 53.38 | 274.70 | 19.43 | 20.98 | 11.21 | 14.69 |
Country | Percentage Change in Biogas Production in 2030 vs. | Expected Date of Use | ||
---|---|---|---|---|
2021 Production Values | Highest Production Value of the Period 2010–2021 | 50% Biogas Potential | 100% Biogas Potential | |
Bulgaria | 96.1 | 93.3 | ~2060 yr. | after 2100 yr. |
Czech Republic | 32.4 | 26.3 | 2013 yr. | ~2035 yr. |
Estonia | 138.7 | 123.8 | ~2038 yr. | ~2060 yr. |
Croatia | 67.2 | 67.2 | ~2036 yr. | ~2060 yr. |
Latvia | 101.3 | 42.5 | ~2028 yr. | ~2043 yr. |
Lithuania | 55.3 | 55.3 | ~2070 yr. | after 2100 yr. |
Hungary | 79.8 | 56.4 | ~2060 yr. | after 2100 yr. |
Austria | 65.7 | −19.28 | ~2055 yr. | after 2100 yr. |
Poland | 70.3 | 64.7 | ~2070 yr. | after 2100 yr. |
Romania | 76.6 | 19.3 | after 2100 yr. | after 2100 yr. |
Slovenia | 46.7 | 2.5 | ~2024 yr. | ~2040 yr. |
Slovakia | 59.3 | 29.9 | ~2032 yr. | ~2060 yr. |
Country | 4 Regressors | 3 Regressors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AIC | AICc | Log Likelihood | σ2 | MAPE | AIC | AICc | Log Likelihood | σ2 | MAPE | |
Bulgaria | 164.19 | 174.19 | −77.09 | 3.894 | 20.08 | 170.97 | 173.97 | −82.48 | 4.014 | 22.98 |
Czech Republic | 225.24 | 235.24 | −107.62 | 5.927 | 14.05 | 225.12 | 230.84 | −108.56 | 6.002 | 17.37 |
Croatia | 150.48 | 156.19 | −71.24 | 3.692 | 27.28 | 148.61 | 151.61 | −71.31 | 3.709 | 29.02 |
Estonia | 143.98 | 153.98 | −66.99 | 3.634 | 16.69 | 131.83 | 138.5 | −61.91 | 3.654 | 18.11 |
Lithuania | 139.46 | 149.46 | −64.73 | 3.601 | 5.57 | 150.36 | 156.07 | −71.18 | 3.694 | 6.12 |
Hungary | 172.78 | 182.78 | −81.39 | 3.774 | 5.24 | 154.55 | 161.21 | −73.27 | 3.834 | 5.99 |
Austria | 220.93 | 226.64 | −106.46 | 5.864 | 17.17 | 191.48 | 194.9 | −92.74 | 5.991 | 18.53 |
Latvia | 171.66 | 177.37 | −81.83 | 3.851 | 5.83 | 170.07 | 173.07 | −82.04 | 3.899 | 6.21 |
Poland | 181.19 | 191.19 | −85.6 | 3.874 | 2.87 | 202.09 | 212.09 | −96.04 | 3.976 | 3.09 |
Romania | 144.61 | 154.61 | −67.3 | 3.604 | 5.61 | 143.34 | 149.05 | −67.67 | 3.684 | 6.05 |
Slovenia | 150.05 | 155.76 | −71.02 | 3.834 | 6.22 | 122.54 | 139.34 | −55.27 | 3.947 | 6.89 |
Slovakia | 82.89 | 98.09 | −36.45 | 1.362 | 8.89 | 97.37 | 103.08 | −39.68 | 1.971 | 9.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślusarz, G.; Twaróg, D.; Gołębiewska, B.; Cierpiał-Wolan, M.; Gołębiewski, J.; Plutecki, P. The Role of Biogas Potential in Building the Energy Independence of the Three Seas Initiative Countries. Energies 2023, 16, 1366. https://doi.org/10.3390/en16031366
Ślusarz G, Twaróg D, Gołębiewska B, Cierpiał-Wolan M, Gołębiewski J, Plutecki P. The Role of Biogas Potential in Building the Energy Independence of the Three Seas Initiative Countries. Energies. 2023; 16(3):1366. https://doi.org/10.3390/en16031366
Chicago/Turabian StyleŚlusarz, Grzegorz, Dariusz Twaróg, Barbara Gołębiewska, Marek Cierpiał-Wolan, Jarosław Gołębiewski, and Philipp Plutecki. 2023. "The Role of Biogas Potential in Building the Energy Independence of the Three Seas Initiative Countries" Energies 16, no. 3: 1366. https://doi.org/10.3390/en16031366
APA StyleŚlusarz, G., Twaróg, D., Gołębiewska, B., Cierpiał-Wolan, M., Gołębiewski, J., & Plutecki, P. (2023). The Role of Biogas Potential in Building the Energy Independence of the Three Seas Initiative Countries. Energies, 16(3), 1366. https://doi.org/10.3390/en16031366