Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drying Methods and Procedure
2.2. Specific Energy Consumption
2.3. Optimization Methods
2.4. Statistical Analysis
2.4.1. ANN Modelling
2.4.2. Global Sensitivity Analysis
2.4.3. Error Analysis
3. Results and Discussion
3.1. Optimization of Drying Conditions to Minimize SEC by RSM
3.2. ANN Model
3.2.1. The Exactness of the Models
3.2.2. Optimization of Drying Conditions to Minimize SEC by ANN
3.2.3. Global Sensitivity Analysis—Yoon’s Interpretation Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Plant of the Millennium, Caper (Capparis spinosa L.), chemical composition and medicinal uses. Bull. Natl. Res. Cent. 2021, 45, 131. [Google Scholar] [CrossRef]
- Ikromjonovich, A.Z.; Turgunovich, M.A. Factors affecting quality in the production of organic products from buds and fruits of capers (Capparis spinosa). Int. J. Sci. Res. 2022, 3, 311–319. [Google Scholar]
- Reyahi-Khoram, M.; Reyahi-Khoram, R. Early Feasibility Study on Capparis Production and Processing in Hamedan Province in Iran. J. Adv. Agric. Technol. 2018, 5, 313–317. [Google Scholar] [CrossRef]
- Hnin, K.K.; Zhang, M.; Mujumdar, A.S.; Zhu, Y. Emerging food drying technologies with energy-saving characteristics: A review. Dry. Technol. 2019, 37, 1465–1480. [Google Scholar] [CrossRef]
- Wilmsmeier, G.; Sanchez, R.J. The relevance of international transport costs on food prices: Endogenous and exogenous effects. Res. Transp. Econ. 2009, 25, 56–66. [Google Scholar] [CrossRef]
- Demir, H.; Cihan, E.; Demir, H. 3D simulation of transport phenomena of onion drying with moving boundary in a vacuum oven. J. Food Process. Eng. 2020, 43, 4. [Google Scholar] [CrossRef]
- Hürdoğan, E.; Çerçi, K.N.; Saydam, B.D.; Özalp, C. Experimental and modeling study of peanut drying in a solar dryer with a novel type of a drying chamber. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 5586–5609. [Google Scholar] [CrossRef]
- Çerçi, K.N.; Hürdoğan, E. Performance assessment of a heat pump assisted rotary desiccant dryer for low temperature peanut drying. Biosyst. Eng. 2022, 223, 1–17. [Google Scholar] [CrossRef]
- Gilandeh, Y.A.; Kaveh, M.; Jahanbakhshi, A. The effect of microwave and convective dryer with ultrasound pre-treatment on drying and quality properties of walnutKernel. J. Food Process. Preserv. 2019, 43, e14178. [Google Scholar] [CrossRef]
- Ghasemi, A.; Chayjan, R.A. Optimization of Pelleting and Infrared-Convection Drying Processes of Food and Agricultural Waste Using Response Surface Methodology (RSM). Waste Biomass Valorization 2019, 10, 1711–1729. [Google Scholar] [CrossRef]
- Golpour, I.; Kaveh, M.; Chayjan, R.A.; Guiné, R.P.F. Optimization of Infrared-convective Drying of White Mulberry Fruit Using Response Surface Methodology and Development of a Predictive Model through Artificial Neural Network. Int. J. Fruit Sci. 2020, 20, S1015–S1035. [Google Scholar] [CrossRef]
- Jarahizadeh, H.; Dinani, S.T. Influence of applied time and power of ultrasonic pretreatment on convective drying of potato slices. Food Sci. Biotechnol. 2019, 28, 365–376. [Google Scholar] [CrossRef]
- Süfer, Ö.; Sezer, S.; Demir, H. Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. J. Food Process. Preserv. 2017, 41, e13239. [Google Scholar] [CrossRef]
- EL-Mesery, H.S.; Abomohra, A.E.; Kang, C.U.; Cheon, J.K.; Basak, B.; Jeon, B.H. Evaluation of Infrared Radiation Combined with Hot Air Convection for Energy-Efficient Drying of Biomass. Energies 2019, 12, 2818. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Rzodkiewicz, W.; Dawidowski, M. Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process. Energies 2021, 14, 3270. [Google Scholar] [CrossRef]
- Demir, H.; Sezer, S.; Süfer, Ö. Soğan dilimlerinin kurutulması esnasında renk değişimine etki eden faktörlerin yanıt yüzey yöntemi ile belirlenmesi. GIDA 2017, 42, 731–742. [Google Scholar] [CrossRef]
- Sajjad, U.; Hussain, I.; Raza, W.; Sultan, M.; Alarifi, I.M.; Wang, C.-C. On the Critical Heat Flux Assessment of Micro- and Nanoscale Roughened Surfaces. Nanomaterials 2022, 12, 3256. [Google Scholar] [CrossRef]
- Rajković, D.; Marjanović Jeromela, A.; Pezo, L.; Lončar, B.; Grahovac, N.; Kondić Špika, A. Artificial neural network and random forest regression models for modelling fatty acid and tocopherol content in oil of winter rapeseed. J. Food Compos. Anal. 2023, 115, 105020. [Google Scholar] [CrossRef]
- Ma, H.; Ding, F.; Wang, Y. A novel multi-innovation gradient support vector machine regression method. ISA Trans. 2022, 130, 343–359. [Google Scholar] [CrossRef]
- Wang, C.; Peng, G.; De Baets, B. Embedding metric learning into an extreme learning machine for scene recognition. Expert Syst. Appl. 2022, 203, 117505. [Google Scholar] [CrossRef]
- Su, J.; Wang, Y.; Niu, X.; Shaa, S.; Yu, J. Prediction of ground surface settlement by shield tunneling using XGBoost and Bayesian Optimization. Eng. Appl. Artif. Intell. 2022, 114, 105020. [Google Scholar] [CrossRef]
- Jawad, M.; Ghulam-e, M.; Muhammad, A. Accurate estimation of tool wear levels during milling, drilling and turning operations by designing novel hyperparameter tuned models based on LightGBM and stacking. Measurement 2022, 190, 110722. [Google Scholar] [CrossRef]
- Dutta, J.; Roy, S. OccupancySense: Context-based indoor occupancy detection & prediction using CatBoost model. Appl. Soft Comput. 2022, 119, 108536. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A.S. Application of artificial neural networks (ANN) in drying technology: A comprehensive review. Dry. Technol. 2015, 33, 1397–1462. [Google Scholar] [CrossRef]
- Chasiotis, V.K.; Tzempelikos, D.A.; Filios, A.E.; Moustris, K.P. Artificial neural network modelling of moisture content evolution for convective drying of cylindrical quince slices. Comput. Electron. Agric. 2020, 172, 105074. [Google Scholar] [CrossRef]
- Fabani, M.P.; Capossio, J.P.; Román, M.C.; Zhu, W.; Rodriguez, R.; Mazza, G. Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process. J. Environ. Manag. 2021, 281, 111915. [Google Scholar] [CrossRef]
- Voća, N.; Pezo, L.; Jukić, Ž.; Lončar, B.; Šuput, D.; Krička, T. Estimation of the storage properties of rapeseeds using an artificial neural network. Ind. Crops Prod. 2022, 187, 115358. [Google Scholar] [CrossRef]
- Vojnov, B.; Jaćimović, G.; Šeremešić, S.; Pezo, L.; Lončar, B.; Krstić, Đ.; Vujić, S.; Ćupina, B. The Effects of Winter Cover Crops on Maize Yield and Crop Performance in Semiarid Conditions—Artificial Neural Network Approach. Agronomy 2022, 12, 2670. [Google Scholar] [CrossRef]
- Šovljanski, O.; Šeregelj, V.; Pezo, L.; Tumbas Šaponjac, V.; Vulić, J.; Cvanić, T.; Markov, S.; Ćetković, G.; Čanadanović-Brunet, J. Horned Melon Pulp, Peel, and Seed: New Insight into Phytochemical and Biological Properties. Antioxidants 2022, 11, 825. [Google Scholar] [CrossRef]
- Puntarić, E.; Pezo, L.; Zgorelec, Ž.; Gunjača, J.; Kučić Grgić, D.; Voća, N. Prediction of the Production of Separated Municipal Solid Waste by Artificial Neural Networks in Croatia and the European Union. Sustainability 2022, 14, 10133. [Google Scholar] [CrossRef]
- Rajković, D.; Marjanović Jeromela, A.; Pezo, L.; Lončar, B.; Zanetti, F.; Monti, A.; Kondić Špika, A. Yield and quality prediction of winter rapeseed—Artificial neural network and random forest models. Agronomy 2021, 12, 58. [Google Scholar] [CrossRef]
- Dimić, I.; Pezo, L.; Rakić, D.; Teslić, N.; Zeković, Z.; Pavlić, B. Supercritical Fluid Extraction Kinetics of Cherry Seed Oil: Kinetics Modeling and ANN Optimization. Foods 2021, 10, 1513. [Google Scholar] [CrossRef]
- Neto, J.G.; Ozorio, L.V.; de Abreu, T.C.C.; Dos Santos, B.F.; Pradelle, F. Modeling of biogas production from food, fruits and vegetables wastes using artificial neural network (ANN). Fuel 2021, 285, 119081. [Google Scholar] [CrossRef]
- Yoon, Y.; Swales, G.; Margavio, T.M. Comparison of Discriminant Analysis versus Artificial Neural Networks. J. Oper. Res. Soc. 2017, 44, 51–60. [Google Scholar] [CrossRef]
- Pestorić, M.; Sakač, M.; Pezo, L.; Škrobot, D.; Nedeljković, N.; Jovanov, P.; Filipčev, B.; Mandić, A. Physicochemical Changes of the Gluten-Free Rice-Buckwheat Cookies during Storage–Artificial Neural Network Model. Period. Polytech. Chem. Eng. 2019, 63, 609–617. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Z.; Yu, F.; Tao, Z. Ultrasound-assisted heat pump intermittent drying of adzuki bean seeds: Drying characteristics and parameter optimization. J. Food Process. Eng. 2020, 43, e13501. [Google Scholar] [CrossRef]
- Kaveh, M.; Taghinezhad, E.; Witrowa-Rajchert, D.; Imanian, K.; Khalife, E.; Nowacka, M. Use of ultrasound pre-treatment before microwave drying of kiwifruits—An optimization approach with response surface methodology. J. Food Process. Preserv. 2022, 46, e16714. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Khoshtaghaza, M.H.; Amirnejat, H. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy 2011, 36, 6433e6441. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.; Hussain, S.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial neural networks based optimization techniques: A review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Atikler, U.; Demir, H.; Tokatlı, F.; Tıhmınlıoğlu, F.; Balköse, D.; Ülkü, S. Optimisation of the effect of colemanite as a new synergistic agent in an intumescent system. Polym. Degrad. Stab. 2006, 91, 1563–1570. [Google Scholar] [CrossRef] [Green Version]
- Granato, D.; Ares, G. 2014 Mathematical and Statistical Methods in Food Science and Technology; John Wiley & Sons, Ltd. Print: Hoboken, NJ, USA, 2014; ISBN 9781118433683. [Google Scholar] [CrossRef]
- Kat, C.J.; Els, P.S. Validation metric based on relative error. Math. Comput. Model. Dyn. Syst. 2012, 18, 487–520. [Google Scholar] [CrossRef]
- Pezo, L.; Lončar, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Pezo, M.; Aćimović, M. Agricultural Parameters and Essential Oil Content Composition Prediction of Aniseed, Based on Growing Year, Locality and Fertilization Type—An Artificial Neural Network Approach. Life 2022, 12, 1722. [Google Scholar] [CrossRef] [PubMed]
Run No | Independent Variables | Response Variable | ||
---|---|---|---|---|
Drying Temperature (°C) (X1) | Ultrasonication Time (min) (X2) | Drying Method (X3) | SEC (MJ/g) | |
1 | 60 | 20 | RWD | 5.2 |
2 | 60 | 20 | VD | 5.9 |
3 | 60 | 40 | CD | 1.7 |
4 | 60 | 20 | RWD | 5.4 |
5 | 70 | 20 | RWD | 6.1 |
6 | 60 | 0 | RWD | 7.8 |
7 | 70 | 40 | CD | 1.4 |
8 | 60 | 20 | RWD | 3.8 |
9 | 60 | 0 | VD | 8.4 |
10 | 50 | 0 | VD | 13.7 |
11 | 50 | 20 | VD | 8.8 |
12 | 50 | 20 | CD | 2.0 |
13 | 60 | 20 | CD | 2.3 |
14 | 50 | 0 | CD | 3.3 |
15 | 60 | 20 | RWD | 5.6 |
16 | 70 | 40 | RWD | 4.5 |
17 | 70 | 0 | RWD | 6.2 |
18 | 50 | 40 | VD | 8.6 |
19 | 60 | 20 | VD | 6.4 |
20 | 50 | 40 | CD | 1.6 |
21 | 60 | 40 | VD | 4.6 |
22 | 60 | 20 | VD | 6.4 |
23 | 50 | 0 | RWD | 6.7 |
24 | 60 | 20 | VD | 8.7 |
25 | 70 | 40 | VD | 6.0 |
26 | 70 | 0 | CD | 3.3 |
27 | 60 | 20 | CD | 2.7 |
28 | 50 | 20 | RWD | 4.3 |
29 | 50 | 40 | RWD | 5.0 |
30 | 60 | 40 | RWD | 4.7 |
31 | 60 | 20 | VD | 6.9 |
32 | 60 | 0 | CD | 3.2 |
33 | 70 | 20 | CD | 1.8 |
34 | 60 | 20 | CD | 2.5 |
35 | 60 | 20 | RWD | 6.3 |
36 | 70 | 0 | VD | 6.2 |
37 | 70 | 20 | VD | 4.6 |
38 | 60 | 20 | CD | 2.7 |
39 | 60 | 20 | CD | 2.7 |
Source | SS | DF | MS | F | p |
---|---|---|---|---|---|
Model | 234.7 | 17 | 13.8 | 18.8 | <0.001 |
X1—drying temperature | 10.7 | 1 | 10.7 | 14.6 | 0.001 |
X2—ultrasonication time | 23.8 | 1 | 23.8 | 32.3 | <0.001 |
X3—drying method | 161.2 | 2 | 80.6 | 109.5 | <0.001 |
X1 × X2 | 1.8 | 1 | 1.8 | 2.5 | 0.129 |
X1 × X3 | 23.5 | 2 | 11.7 | 16.0 | <0.001 |
X2 × X3 | 1.4 | 2 | 0.7 | 0.9 | 0.409 |
X12 | 0.0 | 1 | 0.0 | 0.1 | 0.806 |
X22 | 2.4 | 1 | 2.4 | 3.3 | 0.084 |
X1 × X2 × X3 | 4.2 | 2 | 2.1 | 2.8 | 0.081 |
X12 × X3 | 3.1 | 2 | 1.6 | 2.1 | 0.144 |
X22 × X3 | 0.6 | 2 | 0.3 | 0.4 | 0.689 |
Residual | 15.5 | 21 | 0.7 | ||
Lack of Fit | 7.3 | 9 | 0.8 | 1.2 | 0.388 |
Pure Error | 8.2 | 12 | 0.7 | ||
Cor Total | 250.2 | 38 | |||
R2 = 0.938, Adjusted R2 = 0.888, Predicted R2 = 0.713 |
Network Name | Performance | Error | Training Algorithm | Error Function | Hidden Activation | Output Activation | ||||
---|---|---|---|---|---|---|---|---|---|---|
Train. | Test. | Valid. | Train. | Test. | Valid. | |||||
MLP 5-10-1 | 0.976 | 0.971 | 0.972 | 0.116 | 0.709 | 0.359 | BFGS 42 | SOS | Exponential | Identity |
Train | Test | Validation | |
---|---|---|---|
1.MLP 5-3-1 | 0.976 | 0.971 | 0.972 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
T | −3.381 | −0.627 | −1.471 | −3.081 | 0.330 | −0.465 | −1.424 | −0.671 | 0.143 | −1.357 |
t | 1.760 | −0.577 | −1.341 | 0.312 | 0.296 | 0.300 | 0.158 | 0.422 | −0.206 | 1.462 |
CD | −0.575 | 0.087 | −0.778 | 0.057 | −0.834 | −0.335 | −0.296 | 0.098 | −0.271 | −0.232 |
VD | 0.490 | 0.392 | −0.381 | 0.815 | 0.356 | 0.400 | −0.510 | 0.009 | −0.312 | 0.188 |
RWD | −0.039 | −0.328 | 1.113 | −1.218 | 0.559 | −0.089 | 0.420 | −0.255 | 0.539 | −0.094 |
bias | 0.007 | 0.107 | 0.056 | −0.292 | 0.103 | 0.097 | −0.306 | −0.087 | 0.006 | −0.131 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Bias | |
---|---|---|---|---|---|---|---|---|---|---|---|
SEC | 0.161 | 0.746 | 0.468 | −0.457 | 0.335 | −0.254 | −0.135 | 0.316 | −0.197 | −0.148 | −0.383 |
Model | χ2 | RMSE | MBE | MPE | R2 |
---|---|---|---|---|---|
ANN | 0.457 | 0.668 | −0.064 | 10.408 | 0.932 |
RWD | 0.501 | 0.680 | 0.000 | 10.430 | 0.587 |
CD | 0.036 | 0.183 | 0.000 | 6.862 | 0.916 |
VD | 0.751 | 0.833 | 0.000 | 9.088 | 0.870 |
Run No | Drying Temperature (°C) | Ultrasonication Time (min) | Drying Method | Actual SEC (MJ/g) | RSM Predicted SEC (MJ/g) | RSM Error (%) | ANN Predicted SEC (MJ/g) | ANN Error (%) |
---|---|---|---|---|---|---|---|---|
1 | 50 | 35.5 | RWD | 4.60 | 4.45 | 3.26 | 4.68 | 1.74 |
2 | 70 | 40 | CD | 1.45 | 1.34 | 7.59 | 1.52 | 2.07 |
3 | 70 | 24 | VD | 4.90 | 5.08 | 3.67 | 4.93 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, H.; Demir, H.; Lončar, B.; Pezo, L.; Brandić, I.; Voća, N.; Yilmaz, F. Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics. Energies 2023, 16, 1687. https://doi.org/10.3390/en16041687
Demir H, Demir H, Lončar B, Pezo L, Brandić I, Voća N, Yilmaz F. Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics. Energies. 2023; 16(4):1687. https://doi.org/10.3390/en16041687
Chicago/Turabian StyleDemir, Hasan, Hande Demir, Biljana Lončar, Lato Pezo, Ivan Brandić, Neven Voća, and Fatma Yilmaz. 2023. "Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics" Energies 16, no. 4: 1687. https://doi.org/10.3390/en16041687