A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks
Abstract
:1. Introduction
2. Comprehensive Review on Microgrid Control
2.1. Microgrid Control
2.1.1. Conventional Control
2.1.2. Unconventional Control
2.2. Microgrid Mode of Operation
2.2.1. Grid-Connected Mode
2.2.2. Standalone Mode
2.3. Microgrid Frameworks
- Peer-to-peer, which means that the operation of the microgrid is not dependent on the availability of a specific component, such as a master controller or a central storage system.
- Plug-and-play, which allows DG sources to be placed anywhere in the microgrid without having to change the protection scheme. This functionality makes it easier to install developing DG sources and lowers the chance of microgrid engineering failures.
2.4. Importance of Microgrids
- (i)
- Microgrids enable distributed generation and high penetration of renewable energy sources.
- (ii)
- Microgrids support adequate generation since they can manage internal loads and generation.
- (iii)
- (iv)
- Areas with microgrids will continue to receive regular power supplies during natural disasters, outages, etc.
- (v)
- If a microgrid can meet local demand, transmission and distribution losses in the power system are less expensive, and the cost of expanding transmission and distribution is also lowered.
- (vi)
- Because microgrids make use of ecofriendly renewable power generation techniques, they will aid in lowering CO2 emissions.
- (vii)
- It provides power to the main grid when the microgrid produces excess energy;
- (viii)
- Stability is altered by the microgrid.
- (ix)
- Compared to traditional power generation, the cost of energy produced by microgrids with distributed generating assistance is lower [46].
2.5. AC Microgrid Overview
2.5.1. Advantages of AC Microgrid
- (a)
- The use of high-efficiency transformers. For distribution purposes and for the nearby local loads, the voltage of AC microgrids can be increased and decreased using transformers, respectively.
- (b)
- Protection techniques for AC circuits are favorable due to periodic zero voltage crossings since switching circuit breakers extinguish the fault current arc at zero crossings.
- (c)
- Stable voltage can be achieved by independently managing reactive power.
- (d)
- In grid-tied mode, the AC microgrid will automatically disconnect if any fault conditions arise in the microgrid. Since the AC load receives a direct supply from the AC microgrid, any disturbances in the main grid will not affect it [50].
2.5.2. Disadvantages of AC Microgrid
- (a)
- To power DC loads such as battery charging, computers, DC fluorescent lights, etc., AC power must be converted into DC power. These conversions result in a decrease in efficiency.
- (b)
- The use of power electronic converters causes an introduction of harmonics introduced into the main grid.
- (c)
2.6. DC Microgrid Overview
2.6.1. Advantages of a DC Microgrid
- (a)
- The direct connection of a battery storage system to a power source for backup is possible. In times of peak load or in the absence of any distributed generators, a backup storage system will provide power.
- (b)
- Direct connecting lowers the need for several power conversions and boosts system effectiveness.
- (c)
- It enables easy connection of renewable energy sources.
- (d)
- Should there be a power outage in the AC main grid, the DC microgrid’s battery storage will routinely supply electricity to loads.
- (e)
- The running costs and power converter loss of a DC system can be kept to a minimum because all that is needed to connect to the AC main grid is a straightforward inverter unit.
2.6.2. Disadvantages of a DC Microgrid
- (a)
- Most load units in the current power system configuration demand AC power. Therefore, a DC-only distribution network is not practical.
- (b)
- Compared to an AC system, voltage transformation in a DC system is less systematic.
- (c)
2.7. Comparison of AC and DC Microgrid Conversion
2.8. Hybrid Microgrid
2.9. Energy Storage System
2.10. Faults and Protection in Microgrid
3. Artificial Intelligence (AI) Strategies
3.1. Advantages of Artificial Intelligence
3.2. Strategies of Artificial Intelligence to Support the Optimization of Hybrid Energy Systems
3.2.1. Genetic Algorithm
3.2.2. Particle Swarm Optimization
3.2.3. Artificial Neural Network
3.2.4. Fuzzy Logic
3.2.5. Artificial Bee Colony
4. Reviewed Applications of Artificial Intelligence (AI) Strategies in Microgrids for Optimization
4.1. Reviewed AI Optimization Strategies
4.1.1. Reviewed Optimization of GA
4.1.2. Reviewed Optimization of FL
4.1.3. Reviewed Optimization of ANN
- Voltage and frequency oscillations brought on by RES’s unreliable power generation.
- Disturbances in voltage and frequency brought on by load imbalance in systems that interface with the grid.
- PQ power transmission imbalances caused by the sources’ fluctuating load circumstances.
- The grid’s reflection of output surplus as reactive power, which happens when renewable energy systems are improperly planned.
- Connection issues that occur when RES are connected to the grid.
4.2. Reviewed Hybrid Microgrid Optimization Using Artificial Intelligence Strategies
4.2.1. Applications of Fuzzy and Ann in Voltage and Frequency Fluctuations
4.2.2. Applications of Fuzzy and Ann in Active Reactive Power Quality Control
5. Review of Applications of Artificial Intelligence (AI) Strategies under Fault Outbreaks in Microgrids
5.1. Energy Flow and Management under Faults
5.1.1. Centralized Controller
5.1.2. Decentralized Controller
6. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; De Vicuña, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2010, 58, 158–172. [Google Scholar] [CrossRef]
- Gabbar, H.A.; Labbi, Y.; Bower, L.; Pandya, D. Performance optimization of integrated gas and power within microgrids using hybrid PSO–PS algorithm. Int. J. Energy Res. 2016, 40, 971–982. [Google Scholar] [CrossRef]
- Maulik, A.; Das, D. Optimal operation of microgrid using four different optimization techniques. Sustain. Energy Technol. Assess. 2017, 21, 100–120. [Google Scholar] [CrossRef]
- Fadaee, M.; Radzi, M. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renew. Sustain. Energy Rev. 2012, 16, 3364–3369. [Google Scholar] [CrossRef]
- Dawoud, S.M.; Lin, X.; Okba, M.I. Hybrid renewable microgrid optimization techniques: A review. Renew. Sustain. Energy Rev. 2018, 82, 2039–2052. [Google Scholar] [CrossRef]
- Brosinsky, C.; Westermann, D.; Krebs, R. Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. [Google Scholar]
- Wang, J.; Ye, L.; Gao, R.X.; Li, C.; Zhang, L. Digital Twin for rotating machinery fault diagnosis in smart manufacturing. Int. J. Prod. Res. 2019, 57, 3920–3934. [Google Scholar] [CrossRef]
- Bazaz, S.M.; Lohtander, M.; Varis, J. 5-dimensional definition for a manufacturing digital twin. Procedia Manuf. 2019, 38, 1705–1712. [Google Scholar] [CrossRef]
- Goossens, P. Industry 4.0 and the Power of the Digital Twin. Retrieved 2017, 5, 2017. [Google Scholar]
- Fathima, A.H.; Palanisamy, K. Optimization in microgrids with hybrid energy systems—A review. Renew. Sustain. Energy Rev. 2015, 45, 431–446. [Google Scholar] [CrossRef]
- Lopez-Garcia, T.B.; Coronado-Mendoza, A.; Domínguez-Navarro, J.A. Artificial neural networks in microgrids: A review. Eng. Appl. Artif. Intell. 2020, 95, 103894. [Google Scholar] [CrossRef]
- O’Dwyer, E.; Pan, I.; Acha, S.; Shah, N. Smart energy systems for sustainable smart cities: Current developments, trends and future directions. Appl. Energy 2019, 237, 581–597. [Google Scholar] [CrossRef]
- Tayab, U.B.; Roslan, M.A.B.; Hwai, L.J.; Kashif, M. A review of droop control techniques for microgrid. Renew. Sustain. Energy Rev. 2017, 76, 717–727. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Salmasi, F.R. Robust optimal power management system for a hybrid AC/DC micro-grid. IEEE Trans. Sustain. Energy 2015, 6, 675–687. [Google Scholar] [CrossRef]
- Milczarek, A.; Malinowski, M.; Guerrero, J.M. Reactive power management in islanded microgrid—Proportional power sharing in hierarchical droop control. IEEE Trans. Smart Grid 2015, 6, 1631–1638. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Hug, G.; Kar, S.; Li, Z. Cooperative control of distributed energy storage systems in a microgrid. IEEE Trans. Smart Grid 2014, 6, 238–248. [Google Scholar] [CrossRef]
- Prado, F.; Minutolo, M.C.; Kristjanpoller, W. Forecasting based on an ensemble autoregressive moving average-adaptive neuro-fuzzy inference system–neural network-genetic algorithm framework. Energy 2020, 197, 117159. [Google Scholar] [CrossRef]
- Javaid, N.; Hafeez, G.; Iqbal, S.; Alrajeh, N.; Alabed, M.S.; Guizani, M. Energy efficient integration of renewable energy sources in the smart grid for demand side management. IEEE Access 2018, 6, 77077–77096. [Google Scholar] [CrossRef]
- Ramos, C.; Liu, C.-C. AI in power systems and energy markets. IEEE Intell. Syst. 2011, 26, 5–8. [Google Scholar] [CrossRef]
- Neves, D.; Pina, A.; Silva, C.A. Comparison of different demand response optimization goals on an isolated microgrid. Sustain. Energy Technol. Assess. 2018, 30, 209–215. [Google Scholar] [CrossRef]
- Ali, S.S.; Choi, B.J. State-of-the-art artificial intelligence techniques for distributed smart grids: A review. Electronics 2020, 9, 1030. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef]
- Zhang, F.; Mu, L. A fault detection method of microgrids with grid-connected inverter interfaced distributed generators based on the PQ control strategy. IEEE Trans. Smart Grid 2018, 10, 4816–4826. [Google Scholar] [CrossRef]
- Jing, L.; Son, D.-H.; Kang, S.-H.; Nam, S.-R. A novel protection method for single line-to-ground faults in ungrounded low-inertia microgrids. Energies 2016, 9, 459. [Google Scholar] [CrossRef]
- Ustun, T.S.; Ozansoy, C.; Zayegh, A. Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420. IEEE Trans. Power Syst. 2012, 27, 1560–1567. [Google Scholar] [CrossRef]
- Ustun, T.S.; Khan, R.H. Multiterminal hybrid protection of microgrids over wireless communications network. IEEE Trans. Smart Grid 2015, 6, 2493–2500. [Google Scholar] [CrossRef]
- Pedrasa, M.A.; Spooner, T. A survey of techniques used to control microgrid generation and storage during island operation. AUPEC2006 2006, 1, 15. [Google Scholar]
- Meliopoulos, A.S. Challenges in simulation and design of/spl mu/grids. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 02CH37309), New York, NY, USA, 7 August 2002; pp. 309–314. [Google Scholar]
- Xu, W.; Guo, L.; Liang, L. Mapping the academic landscape of the renewable energy field in electrical and electronic disciplines. Appl. Sci. 2020, 10, 2879. [Google Scholar] [CrossRef]
- Currie, R.; Ault, G.; Foote, C.; Burt, G.; McDonald, J. Fundamental research challenges for active management of distribution networks with high levels of renewable generation. In Proceedings of the 39th International Universities Power Engineering Conference, 2004. UPEC 2004, Bristol, UK, 6–8 September 2004; pp. 1024–1028. [Google Scholar]
- Boutsika, T.; Papathanassiou, S.; Drossos, N. Calculation of the fault level contribution of distributed generation according to IEC Standard 60909. In Proceedings of the CIGRE Symposium, Athens, Greece, 13–16 April 2005. [Google Scholar]
- Hartono, B.; Budiyanto, Y.; Setiabudy, R. Review of microgrid technology. In Proceedings of the 2013 International Conference on QiR, Yogyakarta, Indonesia, 25–28 June 2013; pp. 127–132. [Google Scholar]
- Beheshtaein, S.; Savaghebi, M.; Vasquez, J.C.; Guerrero, J.M. Protection of AC and DC microgrids: Challenges, solutions and future trends. In Proceedings of the IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 5253–5260. [Google Scholar]
- Tao, L.; Schwaegerl, C.; Narayanan, S.; Zhang, J.H. From laboratory Microgrid to real markets—Challenges and opportunities. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Republic of Korea, 30 May–3 June 2011; pp. 264–271. [Google Scholar]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Ambia, M.N.; Al-Durra, A.; Muyeen, S. Centralized power control strategy for AC-DC hybrid micro-grid system using multi-converter scheme. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 843–848. [Google Scholar]
- Govardhan, M.; Roy, R. Notice of violation of IEEE publication principles: A review on key issues of microgrid. In Proceedings of the ISGT2011-India, Kollam, India, 1–3 December 2011; pp. 322–327. [Google Scholar]
- Mazumder, S.K.; Tahir, M.; Acharya, K. Master–slave current-sharing control of a parallel DC–DC converter system over an RF communication interface. IEEE Trans. Ind. Electron. 2008, 55, 59–66. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, M.R.; Lehn, P.W. Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Deliv. 2005, 20, 248–257. [Google Scholar] [CrossRef]
- Piagi, P.; Lasseter, R.H. Autonomous control of microgrids. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; p. 8. [Google Scholar]
- Pogaku, N.; Prodanovic, M.; Green, T.C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 2007, 22, 613–625. [Google Scholar] [CrossRef]
- Pramanick, S.; Konar, N.; Dey, S.; Som, S.; Gayen, P. Study on Power Quality Phenomena of Grid-connected AC Micro-grid. In Proceedings of the 2021 Devices for Integrated Circuit (DevIC), Kalyani, India, 19–20 May 2021; pp. 350–354. [Google Scholar]
- Ustun, T.S.; Ozansoy, C.; Zayegh, A. Recent developments in microgrids and example cases around the world—A review. Renew. Sustain. Energy Rev. 2011, 15, 4030–4041. [Google Scholar] [CrossRef]
- Kaur, A.; Kaushal, J.; Basak, P. A review on microgrid central controller. Renew. Sustain. Energy Rev. 2016, 55, 338–345. [Google Scholar] [CrossRef]
- Jadav, K.A.; Karkar, H.M.; Trivedi, I. A Review of microgrid architectures and control strategy. J. Inst. Eng. Ser. B 2017, 98, 591–598. [Google Scholar] [CrossRef]
- Llaria, A.; Curea, O.; Jiménez, J.; Camblong, H. Survey on microgrids: Unplanned islanding and related inverter control techniques. Renew. Energy 2011, 36, 2052–2061. [Google Scholar] [CrossRef]
- Zhu, X.; Han, X.-Q.; Qin, W.-P.; Wang, P. Past, today and future development of micro-grids in China. Renew. Sustain. Energy Rev. 2015, 42, 1453–1463. [Google Scholar] [CrossRef]
- Patrao, I.; Figueres, E.; Garcerá, G.; González-Medina, R. Microgrid architectures for low voltage distributed generation. Renew. Sustain. Energy Rev. 2015, 43, 415–424. [Google Scholar] [CrossRef]
- Hatziargyriou, N. Microgrids: Architectures and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Dagar, A.; Gupta, P.; Niranjan, V. Microgrid protection: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111401. [Google Scholar] [CrossRef]
- Akbari, M.; Tafreshi, S.; Golkar, M. Voltage control of a hybrid ac/dc microgrid in stand-alone operation mode. In Proceedings of the ISGT2011-India, Kollam, India, 1–3 December 2011; pp. 363–367. [Google Scholar]
- Hammerstrom, D.J. AC versus DC distribution systemsdid we get it right? In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–5. [Google Scholar]
- Zhang, L.; Tai, N.; Huang, W.; Liu, J.; Wang, Y. A review on protection of DC microgrids. J. Mod. Power Syst. Clean Energy 2018, 6, 1113–1127. [Google Scholar] [CrossRef]
- Panbao, W.; Wei, W.; Dianguo, X.; Guihua, L.; Ming, L. An autonomous control scheme for DC micro-grid system. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1519–1523. [Google Scholar]
- Ding, F.; Loparo, K.A.; Wang, C. Modeling and simulation of grid-connected hybrid AC/DC microgrid. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Ter-Gazarian, A.; Kagan, N. Design model for electrical distribution systems considering renewable, conventional and energy storage units. IEE Proc. C 1992, 139, 499–504. [Google Scholar] [CrossRef]
- Anglani, N.; Muliere, G. Analyzing the impact of renewable energy technologies by means of optimal energy planning. In Proceedings of the 2010 9th International Conference on Environment and Electrical Engineering, Prague, Czech Republic, 16–19 May 2010; pp. 1–5. [Google Scholar]
- Mizani, S.; Yazdani, A. Design and operation of a remote microgrid. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 4299–4304. [Google Scholar]
- Borowy, B.S.; Salameh, Z.M. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system. IEEE Trans. Energy Convers. 1996, 11, 367–375. [Google Scholar] [CrossRef]
- Markvart, T. Sizing of hybrid photovoltaic-wind energy systems. Sol. Energy 1996, 57, 277–281. [Google Scholar] [CrossRef]
- Karaki, S.; Chedid, R.; Ramadan, R. Probabilistic performance assessment of autonomous solar-wind energy conversion systems. IEEE Trans. Energy Convers. 1999, 14, 766–772. [Google Scholar] [CrossRef]
- Chedid, R.; Saliba, Y. Optimization and control of autonomous renewable energy systems. Int. J. Energy Res. 1996, 20, 609–624. [Google Scholar] [CrossRef]
- Wang, C.; Nehrir, H.; Lin, F.; Zhao, J. From hybrid energy systems to microgrids: Hybridization techniques, configuration, and control. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–4. [Google Scholar]
- Liu, X.; Wang, P.; Loh, P.C. A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid 2011, 2, 278–286. [Google Scholar]
- Mohamed, A.; Elshaer, M.; Mohammed, O. Bi-directional AC-DC/DC-AC converter for power sharing of hybrid AC/DC systems. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- Zhang, J.; Guo, D.; Wang, F.; Zuo, Y.; Zhang, H. Control strategy of interlinking converter in hybrid AC/DC microgrid. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain, 20–23 October 2013; pp. 97–102. [Google Scholar]
- Park, S.-H.; Choi, J.-Y.; Won, D.-J. Cooperative control between the distributed energy resources in AC/DC hybrid microgrid. In Proceedings of the ISGT 2014, Washington, DC, USA, 19–22 February 2014; pp. 1–5. [Google Scholar]
- Meje, K.C.; Bokopane, L.; Kusakana, K. Microgrids control strategies: A survey of available literature. In Proceedings of the 2020 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kuching, Malaysia, 4–7 October 2020; pp. 167–173. [Google Scholar]
- Meza, J.L.C.; Yildirim, M.B.; Masud, A.S. A model for the multiperiod multiobjective power generation expansion problem. IEEE Trans. Power Syst. 2007, 22, 871–878. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Hasan, N.S.; Hassan, M.Y.; Majid, M.S.; Rahman, H.A. Review of storage schemes for wind energy systems. Renew. Sustain. Energy Rev. 2013, 21, 237–247. [Google Scholar] [CrossRef]
- Koohi-Kamali, S.; Tyagi, V.; Rahim, N.; Panwar, N.; Mokhlis, H. Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. Renew. Sustain. Energy Rev. 2013, 25, 135–165. [Google Scholar] [CrossRef]
- Boicea, V.A. Energy storage technologies: The past and the present. Proc. IEEE 2014, 102, 1777–1794. [Google Scholar] [CrossRef]
- Nair, N.-K.C.; Garimella, N. Battery energy storage systems: Assessment for small-scale renewable energy integration. Energy Build. 2010, 42, 2124–2130. [Google Scholar] [CrossRef]
- Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171. [Google Scholar] [CrossRef]
- Tan, X.; Li, Q.; Wang, H. Advances and trends of energy storage technology in microgrid. Int. J. Electr. Power Energy Syst. 2013, 44, 179–191. [Google Scholar] [CrossRef]
- Hill, C.A.; Such, M.C.; Chen, D.; Gonzalez, J.; Grady, W.M. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Soomro, A.; Amiryar, M.E.; Nankoo, D.; Pullen, K.R. Performance and loss analysis of squirrel cage induction machine based flywheel energy storage system. Appl. Sci. 2019, 9, 4537. [Google Scholar] [CrossRef]
- Brando, G.; Dannier, A.; Del Pizzo, A.; Di Noia, L.P.; Pisani, C. Grid connection of wave energy converter in heaving mode operation by supercapacitor storage technology. IET Renew. Power Gener. 2016, 10, 88–97. [Google Scholar] [CrossRef]
- Ribeiro, P.F.; Johnson, B.K.; Crow, M.L.; Arsoy, A.; Liu, Y. Energy storage systems for advanced power applications. Proc. IEEE 2001, 89, 1744–1756. [Google Scholar] [CrossRef]
- Saha, S.; Roy, T.; Mahmud, M.; Haque, M.; Islam, S. Sensor fault and cyber attack resilient operation of DC microgrids. Int. J. Electr. Power Energy Syst. 2018, 99, 540–554. [Google Scholar] [CrossRef]
- Patil, G.; Satarkar, M. Autonomous protection of low voltage DC microgrid. In Proceedings of the 2014 International Conference on Power, Automation and Communication (INPAC), Amravati, India, 6–8 October 2014; pp. 23–26. [Google Scholar]
- Tampubolon, M.; Lin, W.-C.; Lin, J.-Y.; Hsieh, Y.-C.; Chiu, H.-J.; Yamanaka, K.; Hojo, M. A study and implementation of three-level boost converter with MPPT for PV application. In Proceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, 3–7 June 2017; pp. 1143–1148. [Google Scholar]
- Ribeiro, E.; Cardoso, A.J.M.; Boccaletti, C. Fault-tolerant strategy for a photovoltaic DC--DC converter. IEEE Trans. Power Electron. 2012, 28, 3008–3018. [Google Scholar] [CrossRef]
- Mathur, S.; Modani, U.S. Smart City-a gateway for artificial intelligence in India. In Proceedings of the 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 5–6 March 2016; pp. 1–3. [Google Scholar]
- Kaushal, N.; Kaurav, R.P.S.; Sivathanu, B.; Kaushik, N. Artificial intelligence and HRM: Identifying future research Agenda using systematic literature review and bibliometric analysis. Manag. Rev. Q. 2021, 71, 1–39. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McAfee, A. Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity, and Irreversibly Transforming Employment and the Economy; Digital Frontier Press: Lexington, MA, USA, 2012. [Google Scholar]
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Xia, L.; Ma, Z.; Kokogiannakis, G.; Wang, Z.; Wang, S. A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors. Appl. Energy 2018, 214, 178–190. [Google Scholar] [CrossRef]
- Xia, L.; Ma, Z.; Kokogiannakis, G.; Wang, S.; Gong, X. A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors. Appl. Energy 2018, 228, 1399–1412. [Google Scholar] [CrossRef]
- Linares-Rodriguez, A.; Ruiz-Arias, J.A.; Pozo-Vazquez, D.; Tovar-Pescador, J. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy 2013, 61, 636–645. [Google Scholar] [CrossRef]
- Fan, W.; Kokogiannakis, G.; Ma, Z. A multi-objective design optimisation strategy for hybrid photovoltaic thermal collector (PVT)-solar air heater (SAH) systems with fins. Sol. Energy 2018, 163, 315–328. [Google Scholar] [CrossRef]
- Linares-Rodriguez, A.; Quesada-Ruiz, S.; Pozo-Vazquez, D.; Tovar-Pescador, J. An evolutionary artificial neural network ensemble model for estimating hourly direct normal irradiances from meteosat imagery. Energy 2015, 91, 264–273. [Google Scholar] [CrossRef]
- Kulaksız, A.A.; Akkaya, R. A genetic algorithm optimized ANN-based MPPT algorithm for a stand-alone PV system with induction motor drive. Sol. Energy 2012, 86, 2366–2375. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, W.; Lu, L.; Fang, Z. Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z.; Chengzhi, L. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Bilal, B.O.; Sambou, V.; Ndiaye, P.; Kébé, C.; Ndongo, M. Optimal design of a hybrid solar–wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). Renew. Energy 2010, 35, 2388–2390. [Google Scholar] [CrossRef]
- Koutroulis, E.; Kolokotsa, D.; Potirakis, A.; Kalaitzakis, K. Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol. Energy 2006, 80, 1072–1088. [Google Scholar] [CrossRef]
- Koutroulis, E.; Kolokotsa, D. Design optimization of desalination systems power-supplied by PV and W/G energy sources. Desalination 2010, 258, 171–181. [Google Scholar] [CrossRef]
- Lagorse, J.; Paire, D.; Miraoui, A. Hybrid stand-alone power supply using PEMFC, PV and battery-Modelling and optimization. In Proceedings of the 2009 International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009; pp. 135–140. [Google Scholar]
- Kalantar, M. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. Appl. Energy 2010, 87, 3051–3064. [Google Scholar] [CrossRef]
- Dufo-López, R.; Bernal-Agustín, J.L. Design and control strategies of PV-Diesel systems using genetic algorithms. Sol. Energy 2005, 79, 33–46. [Google Scholar] [CrossRef]
- Lagorse, J.; Paire, D.; Miraoui, A. Sizing optimization of a stand-alone street lighting system powered by a hybrid system using fuel cell, PV and battery. Renew. Energy 2009, 34, 683–691. [Google Scholar] [CrossRef]
- Zahraee, S.; Assadi, M.K.; Saidur, R. Application of artificial intelligence methods for hybrid energy system optimization. Renew. Sustain. Energy Rev. 2016, 66, 617–630. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, Z.; Blaabjerg, F. Optimisation of electrical system for offshore wind farms via genetic algorithm. IET Renew. Power Gener. 2009, 3, 205–216. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Polinder, H. Optimization of multibrid permanent-magnet wind generator systems. IEEE Trans. Energy Convers. 2009, 24, 82–92. [Google Scholar] [CrossRef]
- Rašuo, B.P.; Bengin, A.Č. Optimization of wind farm layout. FME Trans. 2010, 38, 107–114. [Google Scholar]
- Grady, S.; Hussaini, M.; Abdullah, M.M. Placement of wind turbines using genetic algorithms. Renew. Energy 2005, 30, 259–270. [Google Scholar] [CrossRef]
- Emami, A.; Noghreh, P. New approach on optimization in placement of wind turbines within wind farm by genetic algorithms. Renew. Energy 2010, 35, 1559–1564. [Google Scholar] [CrossRef]
- Li, Q.; Liu, D.; Fang, J.; Tam, C. Multi-level optimal design of buildings with active control under winds using genetic algorithms. J. Wind Eng. Ind. Aerodyn. 2000, 86, 65–86. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl. Energy 2004, 77, 383–405. [Google Scholar] [CrossRef]
- Sharma, N.; Bhat, I.; Grover, D. Optimization of a smooth flat plate solar air heater using stochastic iterative perturbation technique. Sol. Energy 2011, 85, 2331–2337. [Google Scholar]
- Zagrouba, M.; Sellami, A.; Bouaïcha, M.; Ksouri, M. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Sol. Energy 2010, 84, 860–866. [Google Scholar] [CrossRef]
- Pourmousavi, S.A.; Nehrir, M.H.; Colson, C.M.; Wang, C. Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization. IEEE Trans. Sustain. Energy 2010, 1, 193–201. [Google Scholar] [CrossRef]
- Hassan, A.; El-Saadawi, M.; Kandil, M.; Saeed, M. Modeling and optimization of a hybrid power system supplying RO water desalination plant considering CO2 emissions. Desalin. Water Treat. 2016, 57, 11972–11987. [Google Scholar] [CrossRef]
- Borhanazad, H.; Mekhilef, S.; Ganapathy, V.G.; Modiri-Delshad, M.; Mirtaheri, A. Optimization of micro-grid system using MOPSO. Renew. Energy 2014, 71, 295–306. [Google Scholar] [CrossRef]
- Li, H.; Eseye, A.T.; Zhang, J.; Zheng, D. Optimal energy management for industrial microgrids with high-penetration renewables. Prot. Control Mod. Power Syst. 2017, 2, 12. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, T.; Tan, X.; Wang, G.; Duan, L.; Shi, Q.; Ji, C.; Bai, Y.; Shen, X.; Meng, J. Environmental impact assessment of ground source heat pump system for heating and cooling: A case study in China. Int. J. Life Cycle Assess. 2022, 27, 395–408. [Google Scholar] [CrossRef]
- Premalatha, M.; Naveen, C. Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study. Renew. Sustain. Energy Rev. 2018, 91, 248–258. [Google Scholar]
- Chàvez-Ramirez, A.; Vallejo-Becerra, V.; Cruz, J.; Ornelas, R.; Orozco, G.; Munoz-Guerrero, R.; Arriaga, L. A hybrid power plant (Solar–Wind–Hydrogen) model based in artificial intelligence for a remote-housing application in Mexico. Int. J. Hydrog. Energy 2013, 38, 2641–2655. [Google Scholar] [CrossRef]
- Timma, L.; Blumberga, D. An algorithm for the selection of structure for artificial networks. Case study: Solar thermal energy systems. Energy Procedia 2015, 72, 135–141. [Google Scholar] [CrossRef]
- Fischer, S.; Frey, P.; Drück, H. A comparison between state-of-the-art and neural network modelling of solar collectors. Sol. Energy 2012, 86, 3268–3277. [Google Scholar] [CrossRef]
- Li, Z.; Rahman, S.M.; Vega, R.; Dong, B. A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting. Energies 2016, 9, 55. [Google Scholar] [CrossRef]
- Dursun, M.; Özden, S. An efficient improved photovoltaic irrigation system with artificial neural network based modeling of soil moisture distribution–A case study in Turkey. Comput. Electron. Agric. 2014, 102, 120–126. [Google Scholar] [CrossRef]
- Ding, M.; Wang, L.; Bi, R. An ANN-based approach for forecasting the power output of photovoltaic system. Procedia Environ. Sci. 2011, 11, 1308–1315. [Google Scholar] [CrossRef]
- Porrazzo, R.; Cipollina, A.; Galluzzo, M.; Micale, G. A neural network-based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Comput. Chem. Eng. 2013, 54, 79–96. [Google Scholar] [CrossRef]
- Swarup, M.P.; Kumar, A.P. Effective implementation of value engineering using artificial neural network aid of optimization techniques. Int. J. Air-Cond. Refrig. 2019, 27, 1950022. [Google Scholar] [CrossRef]
- Lu, N.; Qin, J.; Yang, K.; Sun, J. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy 2011, 36, 3179–3188. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petković, D.; Sudheer, C. A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644. [Google Scholar] [CrossRef]
- Rezk, H.; Hasaneen, E.-S. A new MATLAB/Simulink model of triple-junction solar cell and MPPT based on artificial neural networks for photovoltaic energy systems. Ain Shams Eng. J. 2015, 6, 873–881. [Google Scholar] [CrossRef]
- Mohanraj, M.; Jayaraj, S.; Muraleedharan, C. Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks. Appl. Energy 2009, 86, 1442–1449. [Google Scholar] [CrossRef]
- Almonacid, F.; Pérez-Higueras, P.; Fernández, E.F.; Hontoria, L. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Convers. Manag. 2014, 85, 389–398. [Google Scholar] [CrossRef]
- Chine, W.; Mellit, A.; Lughi, V.; Malek, A.; Sulligoi, G.; Pavan, A.M. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew. Energy 2016, 90, 501–512. [Google Scholar] [CrossRef]
- Leva, S.; Dolara, A.; Grimaccia, F.; Mussetta, M.; Ogliari, E. Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Math. Comput. Simul. 2017, 131, 88–100. [Google Scholar] [CrossRef]
- Garud, K.S.; Jayaraj, S.; Lee, M.Y. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. Int. J. Energy Res. 2021, 45, 6–35. [Google Scholar] [CrossRef]
- Ghani, F.; Fernandez, E.; Almonacid, F.; O’Donovan, T. The numerical computation of lumped parameter values using the multi-dimensional Newton-Raphson method for the characterisation of a multi-junction CPV module using the five-parameter approach. Sol. Energy 2017, 149, 302–313. [Google Scholar] [CrossRef]
- Dettori, S.; Iannino, V.; Colla, V.; Signorini, A. An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications. Appl. Energy 2018, 227, 655–664. [Google Scholar] [CrossRef]
- Vaz, A.; Elsinga, B.; Van Sark, W.; Brito, M. An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands. Renew. Energy 2016, 85, 631–641. [Google Scholar] [CrossRef]
- Mellit, A.; Eleuch, H.; Benghanem, M.; Elaoun, C.; Pavan, A.M. An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers. Manag. 2010, 51, 771–782. [Google Scholar] [CrossRef]
- Ramsami, P.; Oree, V. A hybrid method for forecasting the energy output of photovoltaic systems. Energy Convers. Manag. 2015, 95, 406–413. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Jhang, Y.-C.; Liang, R.-H. A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems. Sol. Energy 2016, 126, 53–63. [Google Scholar] [CrossRef]
- Danandeh, M. A new architecture of INC-fuzzy hybrid method for tracking maximum power point in PV cells. Sol. Energy 2018, 171, 692–703. [Google Scholar] [CrossRef]
- Kisi, O. Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference evapotranspiration. J. Hydrol. 2013, 504, 160–170. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M. ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system. Expert Syst. Appl. 2010, 37, 8134–8147. [Google Scholar] [CrossRef]
- Sharafati, A.; Khosravi, K.; Khosravinia, P.; Ahmed, K.; Salman, S.A.; Yaseen, Z.M.; Shahid, S. The potential of novel data mining models for global solar radiation prediction. Int. J. Environ. Sci. Technol. 2019, 16, 7147–7164. [Google Scholar] [CrossRef]
- Chaouachi, A.; Kamel, R.M.; Nagasaka, K. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system. Sol. Energy 2010, 84, 2219–2229. [Google Scholar] [CrossRef]
- Gupta, A.; Chauhan, Y.K.; Pachauri, R.K. A comparative investigation of maximum power point tracking methods for solar PV system. Sol. Energy 2016, 136, 236–253. [Google Scholar] [CrossRef]
- Hadjaissa, A.; Ameur, K.; Essounbouli, N. A GA-based optimization of a fuzzy-based MPPT controller for a photovoltaic pumping system, Case study for Laghouat, Algeria. IFAC-PapersOnLine 2016, 49, 692–697. [Google Scholar] [CrossRef]
- Ciabattoni, L.; Ferracuti, F.; Ippoliti, G.; Longhi, S. Artificial bee colonies based optimal sizing of microgrid components: A profit maximization approach. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 2036–2042. [Google Scholar]
- Zahmatkesh, H.; Al-Turjman, F. Fog computing for sustainable smart cities in the IoT era: Caching techniques and enabling technologies-an overview. Sustain. Cities Soc. 2020, 59, 102139. [Google Scholar] [CrossRef]
- Pan, J.; Jain, R.; Paul, S.; Vu, T.; Saifullah, A.; Sha, M. An internet of things framework for smart energy in buildings: Designs, prototype, and experiments. IEEE Internet Things J. 2015, 2, 527–537. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Li, W.; Su, Y.; Li, D.; Li, Y.; Hu, L.; Wang, P. Multi-physical fields of rotor windings with axial-radial ventilation system for 1100 MW nuclear half-speed turbine generator. Energy 2019, 188, 116092. [Google Scholar] [CrossRef]
- Ouahiba, T.; Fatima, B.; Thafath, H. Smart Buildings and Occupants Satisfaction: The Case of Cyber Park of Sidi Abdallâh and Some Residential Buildings in Algeria. In International Conference in Artificial Intelligence in Renewable Energetic Systems; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 3–14. [Google Scholar]
- Embury, O.; Merchant, C.J.; Filipiak, M.J. A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: Basis in radiative transfer. Remote Sens. Environ. 2012, 116, 32–46. [Google Scholar] [CrossRef]
- Aly, H.H. A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting. Energy 2020, 213, 118773. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T. A review on electrochemical double-layer capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Wei, N.; Li, C.; Peng, X.; Li, Y.; Zeng, F. Daily natural gas consumption forecasting via the application of a novel hybrid model. Appl. Energy 2019, 250, 358–368. [Google Scholar] [CrossRef]
- Jasiński, T. Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach. Energy 2020, 213, 118784. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Zhang, R.; Jiang, T.; Chen, H.; Li, G. Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings. Appl. Energy 2020, 258, 114021. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, W.; Li, Z.; Zeng, L.; Zhao, Y.; Zhang, R.; Tang, Y.; Wen, J. Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Appl. Energy 2020, 278, 115733. [Google Scholar] [CrossRef]
- Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy Rev. 2020, 130, 109899. [Google Scholar]
- Foresti, R.; Rossi, S.; Magnani, M.; Bianco, C.G.L.; Delmonte, N. Smart society and artificial intelligence: Big data scheduling and the global standard method applied to smart maintenance. Engineering 2020, 6, 835–846. [Google Scholar] [CrossRef]
- Ruhnau, O.; Hennig, P.; Madlener, R. Economic implications of forecasting electricity generation from variable renewable energy sources. Renew. Energy 2020, 161, 1318–1327. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, H.; Yan, B. A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain. Cities Soc. 2020, 55, 102052. [Google Scholar]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Joshi, S.; Gordon, A.; Holloway, L.; Chang, L. Selecting a high specific speed pump for low head hydro-electric power generation. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 603–606. [Google Scholar]
- Jifang, A.L.; Tianhao, B.T.; Jingang, C.H. A neural network control strategy for multi-energy common dc bus hybrid power supply. In Proceedings of the SPEEDAM 2010, Pisa, Italy, 14–16 June 2010; pp. 1827–1831. [Google Scholar]
- Tripathi, R.N.; Hanamoto, T. Two degrees of freedom dc voltage controller of grid interfaced PV system with optimized gains. Int. J. Electr. Power Energy Syst. 2017, 85, 87–96. [Google Scholar] [CrossRef]
- Fathy, A.; Kassem, A.M. Antlion optimizer-ANFIS load frequency control for multi-interconnected plants comprising photovoltaic and wind turbine. ISA Trans. 2019, 87, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Oo, A.T.; Stojcevski, A. Intelligent frequency regulation in the wind integrated control area. Comput. Electr. Eng. 2018, 72, 324–347. [Google Scholar] [CrossRef]
- Angalaeswari, S.; Jamuna, K. Design and implementation of a robust iterative learning controller for voltage and frequency stabilization of hybrid microgrids. Comput. Electr. Eng. 2020, 84, 106631. [Google Scholar] [CrossRef]
- Thao, N.G.M.; Uchida, K. A two-level control strategy with fuzzy logic for large-scale photovoltaic farms to support grid frequency regulation. Control Eng. Pract. 2017, 59, 77–99. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, F.; Liang, J.; Ding, L.; Liang, Z.; Wu, Q. Coordinated control strategy for the short-term frequency response of a DFIG-ES system based on wind speed zone classification and fuzzy logic control. Int. J. Electr. Power Energy Syst. 2019, 107, 363–378. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, F.; Liang, J.; Ding, L.; Wu, Q. An optimal control and sizing strategy for a coordinated WTG-ES system to provide frequency support. Int. J. Electr. Power Energy Syst. 2019, 113, 251–263. [Google Scholar] [CrossRef]
- Roselyn, J.P.; Ravi, A.; Devaraj, D.; Venkatesan, R.; Sadees, M.; Vijayakumar, K. Intelligent coordinated control for improved voltage and frequency regulation with smooth switchover operation in LV microgrid. Sustain. Energy Grids Netw. 2020, 22, 100356. [Google Scholar] [CrossRef]
- Yu, D.; Zhu, H.; Han, W.; Holburn, D. Dynamic multi agent-based management and load frequency control of PV/fuel cell/wind turbine/CHP in autonomous microgrid system. Energy 2019, 173, 554–568. [Google Scholar] [CrossRef]
- Yusof, N.A.; Abidin, N.Z.; Zailani, S.H.M.; Govindan, K.; Iranmanesh, M. Linking the environmental practice of construction firms and the environmental behaviour of practitioners in construction projects. J. Clean. Prod. 2016, 121, 64–71. [Google Scholar] [CrossRef]
- Kaushal, J.; Basak, P. Power quality control based on voltage sag/swell, unbalancing, frequency, THD and power factor using artificial neural network in PV integrated AC microgrid. Sustain. Energy Grids Netw. 2020, 23, 100365. [Google Scholar] [CrossRef]
- Chettibi, N.; Pavan, A.M.; Mellit, A.; Forsyth, A.; Todd, R. Real-time prediction of grid voltage and frequency using artificial neural networks: An experimental validation. Sustain. Energy Grids Netw. 2021, 27, 100502. [Google Scholar] [CrossRef]
- Das, S.R.; Ray, P.K.; Sahoo, A.K.; Singh, K.K.; Dhiman, G.; Singh, A. Artificial intelligence based grid connected inverters for power quality improvement in smart grid applications. Comput. Electr. Eng. 2021, 93, 107208. [Google Scholar] [CrossRef]
- Ouai, A.; Mokrani, L.; Machmoum, M.; Houari, A. Control and energy management of a large scale grid-connected PV system for power quality improvement. Sol. Energy 2018, 171, 893–906. [Google Scholar] [CrossRef]
- Hou, T.; Zhang, C.-Y.; Niu, H.-X. Quasi-Z source inverter control of PV grid-connected based on fuzzy PCI. J. Electron. Sci. Technol. 2021, 19, 100021. [Google Scholar] [CrossRef]
- de Carvalho, W.C.; Bataglioli, R.P.; Fernandes, R.A.; Coury, D.V. Fuzzy-based approach for power smoothing of a full-converter wind turbine generator using a supercapacitor energy storage. Electr. Power Syst. Res. 2020, 184, 106287. [Google Scholar] [CrossRef]
- Faroug, M.A.M.; Rao, D.N.; Samikannu, R.; Venkatachary, S.K.; Senthilnathan, K. Comparative analysis of controllers for stability enhancement for wind energy system with STATCOM in the grid connected environment. Renew. Energy 2020, 162, 2408–2442. [Google Scholar] [CrossRef]
- Roselyn, J.P.; Chandran, C.P.; Nithya, C.; Devaraj, D.; Venkatesan, R.; Gopal, V.; Madhura, S. Design and implementation of fuzzy logic based modified real-reactive power control of inverter for low voltage ride through enhancement in grid connected solar PV system. Control Eng. Pract. 2020, 101, 104494. [Google Scholar] [CrossRef]
- Babu, P.S.; Sundarabalan, C.; Balasundar, C.; Krishnan, T.S. Fuzzy logic based optimal tip speed ratio MPPT controller for grid connected WECS. Mater. Today Proc. 2021, 45, 2544–2550. [Google Scholar] [CrossRef]
- Yang, X.; Yue, H.; Ren, J. Fuzzy empirical mode decomposition for smoothing wind power with battery energy storage system. IFAC-PapersOnLine 2017, 50, 8769–8774. [Google Scholar] [CrossRef]
- Bernal, E.; Bueno-López, M.; Salazar-Caceres, F. Fuzzy-based reactive power control for smart PV inverters in LV distribution systems. IFAC-PapersOnLine 2017, 50, 7705–7710. [Google Scholar] [CrossRef]
- Ebrahimi, J.; Abedini, M.; Rezaei, M.M.; Nasri, M. Optimum design of a multi-form energy in the presence of electric vehicle charging station and renewable resources considering uncertainty. Sustain. Energy Grids Netw. 2020, 23, 100375. [Google Scholar] [CrossRef]
- Rezaie, H.; Kazemi-Rahbar, M.H. Enhancing voltage stability and LVRT capability of a wind-integrated power system using a fuzzy-based SVC. Eng. Sci. Technol. Int. J. 2019, 22, 827–839. [Google Scholar] [CrossRef]
- Ravinder, K.; Bansal, H.O. Investigations on shunt active power filter in a PV-wind-FC based hybrid renewable energy system to improve power quality using hardware-in-the-loop testing platform. Electr. Power Syst. Res. 2019, 177, 105957. [Google Scholar] [CrossRef]
- Douiri, M.R.; Essadki, A.; Cherkaoui, M. Neural networks for stable control of nonlinear DFIG in wind power systems. Procedia Comput. Sci. 2018, 127, 454–463. [Google Scholar] [CrossRef]
- Mordjaoui, M.; Haddad, S.; Medoued, A.; Laouafi, A. Electric load forecasting by using dynamic neural network. Int. J. Hydrog. Energy 2017, 42, 17655–17663. [Google Scholar] [CrossRef]
- Monteiro, R.V.; Guimarães, G.C.; Moura, F.A.; Albertini, M.R.; Albertini, M.K. Estimating photovoltaic power generation: Performance analysis of artificial neural networks, Support Vector Machine and Kalman filter. Electr. Power Syst. Res. 2017, 143, 643–656. [Google Scholar] [CrossRef]
- Saviozzi, M.; Massucco, S.; Silvestro, F. Implementation of advanced functionalities for Distribution Management Systems: Load forecasting and modeling through Artificial Neural Networks ensembles. Electr. Power Syst. Res. 2019, 167, 230–239. [Google Scholar] [CrossRef]
- Dhua, D.; Bandyopadhyay, S. Optimization of Generation Capacity at the Incoming Microgrid in an interconnected Microgrid System using ANN. In Proceedings of the 2014 International Conference on Advances in Green Energy (ICAGE), Thiruvananthapuram, India, 17–18 December 2014; pp. 88–93. [Google Scholar]
- Amoateng, D.O.; Al Hosani, M.; Elmoursi, M.S.; Turitsyn, K.; Kirtley, J.L. Adaptive voltage and frequency control of islanded multi-microgrids. IEEE Trans. Power Syst. 2017, 33, 4454–4465. [Google Scholar] [CrossRef]
- Gan, L.K.; Hussain, A.; Howey, D.A.; Kim, H.-M. Limitations in energy management systems: A case study for resilient interconnected microgrids. IEEE Trans. Smart Grid 2018, 10, 5675–5685. [Google Scholar] [CrossRef]
- MoghaddasTafreshi, S.; Hakimi, S. Optimal sizing of a stand-alone hybrid power system via particle swarm optimization (PSO). In Proceedings of the 2007 International Power Engineering Conference (IPEC 2007), Singapore, 3–6 December 2007; pp. 960–965. [Google Scholar]
- Alavi, S.A.; Ahmadian, A.; Aliakbar-Golkar, M. Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method. Energy Convers. Manag. 2015, 95, 314–325. [Google Scholar] [CrossRef]
- Panwar, L.K.; Konda, S.R.; Verma, A.; Panigrahi, B.K.; Kumar, R. Operation window constrained strategic energy management of microgrid with electric vehicle and distributed resources. IET Gener. Transm. Distrib. 2017, 11, 615–626. [Google Scholar] [CrossRef]
- Marzband, M.; Ghazimirsaeid, S.S.; Uppal, H.; Fernando, T. A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electr. Power Syst. Res. 2017, 143, 624–633. [Google Scholar] [CrossRef]
- Islam, M.M.; Nagrial, M.; Rizk, J.; Hellany, A. General aspects, islanding detection, and energy management in Microgrids: A review. Sustainability 2021, 13, 9301. [Google Scholar] [CrossRef]
- Li, Y.; Nejabatkhah, F. Overview of control, integration and energy management of microgrids. J. Mod. Power Syst. Clean Energy 2014, 2, 212–222. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Hatziargyriou, N.; Dimeas, A. Microgrids management. IEEE Power Energy Mag. 2008, 6, 54–65. [Google Scholar] [CrossRef]
- Olivares, D.E.; Cañizares, C.A.; Kazerani, M. A centralized energy management system for isolated microgrids. IEEE Trans. Smart Grid 2014, 5, 1864–1875. [Google Scholar] [CrossRef]
- Borazjani, P.; Wahab, N.I.A.; Hizam, H.B.; Soh, A.B.C. A review on microgrid control techniques. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20–23 May 2014; pp. 749–753. [Google Scholar]
- Palizban, O.; Kauhaniemi, K.; Guerrero, J.M. Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation. Renew. Sustain. Energy Rev. 2014, 36, 428–439. [Google Scholar] [CrossRef]
- Minchala-Avila, L.I.; Garza-Castañón, L.E.; Vargas-Martínez, A.; Zhang, Y. A review of optimal control techniques applied to the energy management and control of microgrids. Procedia Comput. Sci. 2015, 52, 780–787. [Google Scholar] [CrossRef]
- Dimeas, A.; Hatziargyriou, N. A MAS architecture for microgrids control. In Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, Arlington, VA, USA, 6–10 November 2005; p. 5. [Google Scholar]
- Olivares, D.E.; Cañizares, C.A.; Kazerani, M. A centralized optimal energy management system for microgrids. In Proceedings of the 2011 IEEE power and energy society general meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–6. [Google Scholar]
- Planas, E.; Gil-de-Muro, A.; Andreu, J.; Kortabarria, I.; de Alegría, I.M. General aspects, hierarchical controls and droop methods in microgrids: A review. Renew. Sustain. Energy Rev. 2013, 17, 147–159. [Google Scholar] [CrossRef]
- Singh, P.; Lather, J. Artificial neural network-based dynamic power management of a DC microgrid: A hardware-in-loop real-time verification. Int. J. Ambient Energy 2022, 43, 1730–1738. [Google Scholar] [CrossRef]
- Shokoohi, S.; Golshannavaz, S.; Khezri, R.; Bevrani, H. Intelligent secondary control in smart microgrids: An on-line approach for islanded operations. Optim. Eng. 2018, 19, 917–936. [Google Scholar] [CrossRef]
- Khooban, M.H.; Gheisarnejad, M. A novel deep reinforcement learning controller based type-II fuzzy system: Frequency regulation in microgrids. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 5, 689–699. [Google Scholar] [CrossRef]
- Vigneysh, T.; Kumarappan, N. Artificial neural network based droop-control technique for accurate power sharing in an islanded microgrid. Int. J. Comput. Intell. Syst. 2016, 9, 827–838. [Google Scholar] [CrossRef]
- Dong, W.; Li, S.; Fu, X. Artificial neural network control of a standalone DC microgrid. In Proceedings of the 2018 Clemson University Power Systems Conference (PSC), Charleston, SC, USA, 4–7 September 2018; pp. 1–5. [Google Scholar]
- Elsayed, M.; Erol-Kantarci, M.; Kantarci, B.; Wu, L.; Li, J. Low-latency communications for community resilience microgrids: A reinforcement learning approach. IEEE Trans. Smart Grid 2019, 11, 1091–1099. [Google Scholar] [CrossRef]
- Saadatmand, S.; Nia, M.S.S.; Shamsi, P.; Ferdowsi, M. Dual heuristic dynamic programing control of grid-connected synchronverters. In Proceedings of the 2019 North American Power Symposium (NAPS), Wichita, KS, USA, 13–15 October 2019; pp. 1–6. [Google Scholar]
- Kim, H.; Ahmad, A.; Hwang, J.; Baqa, H.; Le Gall, F.; Ortega, M.A.R.; Song, J. IoT-TaaS: Towards a prospective IoT testing framework. IEEE Access 2018, 6, 15480–15493. [Google Scholar] [CrossRef]
- Hassan, M.; Abido, M. Optimal autonomous control of an inverter-based microgrid using particle swarm optimization. In Proceedings of the 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2010; pp. 2247–2252. [Google Scholar]
- Al-Saedi, W.; Lachowicz, S.W.; Habibi, D.; Bass, O. Power quality enhancement in autonomous microgrid operation using particle swarm optimization. Int. J. Electr. Power Energy Syst. 2012, 42, 139–149. [Google Scholar] [CrossRef]
- García-Triviño, P.; Gil-Mena, A.J.; Llorens-Iborra, F.; García-Vázquez, C.A.; Fernández-Ramírez, L.M.; Jurado, F. Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system. Energy Convers. Manag. 2015, 91, 83–92. [Google Scholar] [CrossRef]
- Arzani, A.; Arunagirinathan, P.; Venayagamoorthy, G.K. Development of optimal PI controllers for a grid-tied photovoltaic inverter. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 1272–1279. [Google Scholar]
- Abdelsalam, A.A.; Gabbar, H.A.; Sharaf, A.M. Performance enhancement of hybrid AC/DC microgrid based D-FACTS. Int. J. Electr. Power Energy Syst. 2014, 63, 382–393. [Google Scholar] [CrossRef]
- Akbari, M.; Golkar, M.; Tafreshi, S. A PSO solution for improved voltage stability of a hybrid ac-dc microgrid. In Proceedings of the ISGT2011-India, Kollam, India, 1–3 December 2011; pp. 352–357. [Google Scholar]
Type of Microgrid | DC Load | AC Load |
---|---|---|
DC microgrid | Single conversion | Multiple conversions |
AC microgrid | Multiple conversions | Single conversion |
References | Applications |
---|---|
Zahmatkesh and Al-Turjman, 2020 [150] | IoT security and safety system in smart cities. |
Pan et al., 2015 [151] | Energy-saving with the use of smart home concept. |
Zhou et al., 2016 [152] | Smart energy management. |
Dawn et al., 2019 [153] | Improving wind turbine and unified power flow controller (UPFC) electrical stability. |
Ouahiba et al., 2018 [154] | Occupants’ satisfaction and smart buildings. |
Badiei et al., 2020 [155] | New solar technologies. |
Aly, 2020 [156] | Wind. |
Wang et al., 2020b [157] | Solar load. |
Wei et al., 2019 [158] | Gas. |
Jasiński, 2020; Bedi and Toshniwal, 2019 [159,160] | Electricity price forecasting. |
Erixno and Rahim, 2020; Kermadi and Berkouk, 2017 [161] | Photovoltaic generation maximal power point monitoring on a fuzzy logic basis. |
Shi et al., 2020 [162] | Grid stability and reliability. |
Antonopoulos et al., 2020 [163] | Demand forecast and demand side management. |
Foresti et al., 2020 [164] | Predictive maintenance. |
Ruhnau et al., 2020; Zhang and Yan, 2020; Wang et al., 2019 [165,166,167] | Renewable energy generation forecast. |
Ref | AI Technique | Objectives/Contributions | Method/Mode |
---|---|---|---|
[198] | ANN | Generation capacity optimization | Simulation |
[199] | ANN and cooperative control | Voltage and frequency regulation | Simulation |
[200] | Distributed ANN | Energy management system | Real-time experiment and simulation |
[168] | GA | Hybrid PV-wind and battery storage | Coded simulation |
[201] | PSO | Hybrid SPV and WTG; scattering and optimization | Simulation |
[5] | FL | Hybrid SPV and WTG; input–output data | Simulation |
[202] | PSO | Minimization of costs for various MGs, including RESs; expenses for operation, emissions, and MG dependability are minimized. | Islanded |
[203] | GA | Operating costs, discharge costs, and power exchange benefit are objectives in a multiobjective EMS design for the best performance of MG. | Both |
[204] | ABC | MG domestic operating costs are constrained by a two-layer control design that has received preliminary clearance. | Grid-connected |
Ref | AI Technique | Objectives | Control Strategy/DGs | Grid Connect (On/Off) |
---|---|---|---|---|
[215] | ANN | Power sharing; voltage regulation | Centralized | Off |
[216] | ANN | Voltage and frequency regulation | Centralized | Off |
[217] | ANN | Frequency regulation | Centralized | Off |
[218] | ANN | Power-sharing droop control | Centralized | Off |
[219] | ANN | Voltage stability; power sharing | Decentralized | Off |
[220] | SLFN | Communication delay | Decentralized | On |
[221] | ANN | Optimal control | Distributed | On |
[222] | ANN | Power quality | Distributed | On |
[223] | PSO | Regulation of voltage and frequency; enhancement of dynamic response | Distributed | Off |
[224] | PSO | Voltage and frequency control and compensation of reactive power | Distributed | Off |
[225] | PSO | Regulation of active and reactive power | Distributed/wind solar PV | On |
[226] | PSO | Transient response improvement | Distributed solar PV | On |
[227] | PSO | Harmonic modification and power factor enhancement | Distributed/wind-PV fuel cell, diesel | Both |
[228] | PSO | Voltage stability enhancement | Distributed/ wind-PV | Both |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulu, M.L.T.; Carpanen, R.P.; Tiako, R. A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks. Energies 2023, 16, 1786. https://doi.org/10.3390/en16041786
Zulu MLT, Carpanen RP, Tiako R. A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks. Energies. 2023; 16(4):1786. https://doi.org/10.3390/en16041786
Chicago/Turabian StyleZulu, Musawenkosi Lethumcebo Thanduxolo, Rudiren Pillay Carpanen, and Remy Tiako. 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks" Energies 16, no. 4: 1786. https://doi.org/10.3390/en16041786
APA StyleZulu, M. L. T., Carpanen, R. P., & Tiako, R. (2023). A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks. Energies, 16(4), 1786. https://doi.org/10.3390/en16041786