Novel Multi-Objective Optimal Design of a Shell-and-Tube Latent Heat Thermal Energy Storage Device
Abstract
:1. Introduction
2. Theoretical Model
3. Multi-Objective Optimisation
4. Results
5. Conclusions
- A simplified mathematical model of the LHTES has been employed: starting from the simplified model of a cylindrical shell-and-tube geometry, new constraints have been included to extend the heat exchange equations to the multitube system.
- The Design of the Experiment obtained thanks to the Pareto dominance relationship has provided an initial optimal solutions subset.
- The proposed optimisation procedure, starting from the initial optimal solutions subset has defined new solutions along the most promising directions in the design variables domain, yielding a significant improvement in the storage performances.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Subscript | |
c | Charge |
d | Discharge |
Initial | |
Final | |
w | Wall |
Solidus | |
Liquidus | |
i | Internal |
e | External |
Superscript | |
Mean | |
Greek letters | |
Density | |
Thermal diffusivity | |
Symbols | |
T | Temperature |
t | Time |
Q | Stored heat |
r | Tubes radius |
D | Device diameter |
H | Device height |
volume | |
Heat exchange area | |
Nusselt number | |
Stefan number | |
Prandtl number | |
Grashof number |
Abbreviations
LHTES | Latent heat thermal energy storage |
PCM | Phase change material |
CSP | Concentrated solar power |
PV | Photovoltaic |
HTF | Heat transfer fluid |
DoE | Design of Experiment |
References
- Marques, A.C.; Fuinhas, J.A. Is renewable energy effective in promoting growth? Energy Policy 2012, 46, 434–442. [Google Scholar] [CrossRef]
- Baz, K.; Cheng, J.; Xu, D.; Abbas, K.; Ali, I.; Ali, H.; Fang, C. Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique. Energy 2021, 226, 120357. [Google Scholar] [CrossRef]
- Hawes, R.; Nowlin, M.C. Climate science or politics? Disentangling the roles of citizen beliefs and support for energy in the United States. Energy Res. Soc. Sci. 2022, 85, 102419. [Google Scholar] [CrossRef]
- Dumont, O.; Frate, G.F.; Pillai, A.; Lecompte, S.; De paepe, M.; Lemort, V. Carnot battery technology: A state-of-the-art review. J. Energy Storage 2020, 32, 101756. [Google Scholar] [CrossRef]
- Liang, T.; Vecchi, A.; Knobloch, K.; Sciacovelli, A.; Engelbrecht, K.; Li, Y.; Ding, Y. Key components for Carnot Battery: Technology review, technical barriers and selection criteria. Renew. Sustain. Energy Rev. 2022, 163, 112478. [Google Scholar] [CrossRef]
- Koç, A.; Yağlı, H.; Bilgic, H.H.; Koç, Y.; Özdemir, A. Performance analysis of a novel organic fluid filled regenerative heat exchanger used heat recovery ventilation (OHeX-HRV) system. Sustain. Energy Technol. Assess. 2020, 41, 100787. [Google Scholar] [CrossRef]
- Fornarelli, F.; Camporeale, S.; Fortunato, B.; Torresi, M.; Oresta, P.; Magliocchetti, L.; Miliozzi, A.; Santo, G. CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Appl. Energy 2016, 164, 711–722. [Google Scholar] [CrossRef]
- Mourad, A.; Aissa, A.; Said, Z.; Younis, O.; Iqbal, M.; Alazzam, A. Recent advances on the applications of phase change materials for solar collectors, practical limitations, and challenges: A critical review. J. Energy Storage 2022, 49, 104186. [Google Scholar] [CrossRef]
- Crespo, A.; Barreneche, C.; Ibarra, M.; Platzer, W. Latent thermal energy storage for solar process heat applications at medium-high temperatures—A review. Solar Energy 2019, 192, 3–34. [Google Scholar] [CrossRef]
- Cárdenas, B.; León, N. High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renew. Sustain. Energy Rev. 2013, 27, 724–737. [Google Scholar] [CrossRef]
- Sodhi, G.S.; Vigneshwaran, K.; Muthukumar, P. Experimental investigations of high-temperature shell and multi-tube latent heat storage system. Appl. Therm. Eng. 2021, 198, 117491. [Google Scholar] [CrossRef]
- Fornarelli, F.; Camporeale, S.M.; Fortunato, B. Convective Effects in a Latent Heat Thermal Energy Storage. Heat Transf. Eng. 2019, 42, 1–22. [Google Scholar] [CrossRef]
- Fornarelli, F.; Ceglie, V.; Fortunato, B.; Camporeale, S.; Torresi, M.; Oresta, P.; Miliozzi, A. Numerical simulation of a complete charging-discharging phase of a shell and tube thermal energy storage with phase change material. Energy Procedia 2017, 126, 501–508. [Google Scholar] [CrossRef]
- Fornarelli, F.; Torresi, M.; Oresta, P.; Dambrosio, L.; Miliozzi, A.; Camporeale, S. Discharging shape influence on the performance of a latent heat thermal energy storage. AIP Conf. Proc. 2019, 2191, 020079. [Google Scholar] [CrossRef]
- Ge, R.; Li, Q.; Li, C.; Liu, Q. Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system. Renew. Energy 2022, 187, 829–843. [Google Scholar] [CrossRef]
- Pizzolato, A.; Sharma, A.; Ge, R.; Maute, K.; Verda, V.; Sciacovelli, A. Maximization of performance in multi-tube latent heat storage—Optimization of fins topology, effect of materials selection and flow arrangements. Energy 2020, 203, 114797. [Google Scholar] [CrossRef]
- Beyne, W.; Couvreur, K.; T’Jollyn, I.; Lecompte, S.; De Paepe, M. Estimating the state of charge in a latent thermal energy storage heat exchanger based on inlet/outlet and surface measurements. Appl. Therm. Eng. 2022, 201, 117806. [Google Scholar] [CrossRef]
- Peng, B.; Huang, G.; Wang, P.; Li, W.; Chang, W.; Ma, J.; Li, C. Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems. Energy 2019, 172, 580–591. [Google Scholar] [CrossRef]
- Trp, A.; Lenic, K.; Frankovic, B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl. Therm. Eng. 2006, 26, 1830–1839. [Google Scholar] [CrossRef]
- Kamkari, B.; Shokouhmand, H.; Bruno, F. Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int. J. Heat Mass Transf. 2014, 72, 186–200. [Google Scholar] [CrossRef]
- Couvreur, K.; Beyne, W.; Tassenoy, R.; Lecompte, S.; De Paepe, M. Characterization of a latent thermal energy storage heat exchanger using a charging time energy fraction method with a heat loss model. Appl. Therm. Eng. 2023, 219, 119526. [Google Scholar] [CrossRef]
- Tarragona, J. Experimental analysis of a latent thermal energy storage system enhanced with metal foam. J. Storage Mater. 2021, 41, 102860. [Google Scholar] [CrossRef]
- Duan, J.; Xiong, Y.; Yang, D. On the Melting Process of the Phase Change Material in Horizontal Rectangular Enclosures. Energies 2019, 12, 3100. [Google Scholar] [CrossRef]
- Diarce, G.; Campos-Celador; Sala, J.M.; García-Romero, A. A novel correlation for the direct determination of the discharging time of plate-based latent heat thermal energy storage systems. Appl. Therm. Eng. 2018, 129, 521–534. [Google Scholar] [CrossRef]
- Fornarelli, F.; Camporeale, S.; Fortunato, B. Simplified theoretical model to predict the melting time of a shell-and-tube LHTES. Appl. Therm. Eng. 2019, 153, 51–57. [Google Scholar] [CrossRef]
- Fornarelli, F.; Camporeale, S. Simplified prediction model of the discharging time of a shell-and-tube LHTES. Appl. Therm. Eng. 2020, 179, 115709. [Google Scholar] [CrossRef]
- Cebeci, T. Laminar-free-convective-heat transfer from the outer surface of a vertical circular cylinder. In Proceedings of the 5th International Heat Transfer Conference, Tokyo, Japan, 3–7 September 1974; Volume 3, pp. 15–19. [Google Scholar]
- Fornarelli, F.; Dambrosio, L. Multi-objective sensitivity analysis of shell-and-tube LHTES performance. E3S Web Conf. 2021, 312, 01006. [Google Scholar] [CrossRef]
- Periaux, J.; Gonzalez, L.; Lee, D. Evolutionary Optimization and Game Strategies for Advanced Multi-Disciplinary Design; Springer: Berlin/Heidelberg, Germany, 2015; Volume 75. [Google Scholar] [CrossRef]
- Caramia, M.; Dell’Olmo, P. Multi-Objective Management in Freight Logistics: Increasing Capacity, Service Level, Sustainability, and Safety with Optimization Algorithms; Springer: London, UK, 2020. [Google Scholar] [CrossRef]
- Dambrosio, L.; Fortunato, B.; Marco, T.; Camporeale, S.; Fornarelli, F. Performance optimization of a gas-steam combined power plant partially fed with syngas derived from pomace. Energy Procedia 2017, 126, 533–540. [Google Scholar] [CrossRef]
- Dambrosio, L.; Micera, R.; Fortunato, B.; Marco, T. Multi-Objective Optimization of a Combined Power Plant Fueled by Syngas Produced in a Downdraft Gasifier. Energy Procedia 2018, 148, 1050–1057. [Google Scholar] [CrossRef]
Properties | Values | |
---|---|---|
Density | ||
Thermal Expansion Coefficient | ||
Specific Heat | ||
Conductivity | ||
Dynamic Viscosity | ||
Solidus Temperature | ||
Liquidus Temperature | ||
Latent Heat |
Q [kJ] | [h] | [h] | m | [m] | |
---|---|---|---|---|---|
17 | |||||
19 | |||||
19 | |||||
17 | |||||
37 | |||||
19 | |||||
19 | |||||
5 | |||||
7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornarelli, F.; Dambrosio, L.; Camporeale, S.M.; Terlizzi, L. Novel Multi-Objective Optimal Design of a Shell-and-Tube Latent Heat Thermal Energy Storage Device. Energies 2023, 16, 1882. https://doi.org/10.3390/en16041882
Fornarelli F, Dambrosio L, Camporeale SM, Terlizzi L. Novel Multi-Objective Optimal Design of a Shell-and-Tube Latent Heat Thermal Energy Storage Device. Energies. 2023; 16(4):1882. https://doi.org/10.3390/en16041882
Chicago/Turabian StyleFornarelli, Francesco, Lorenzo Dambrosio, Sergio Mario Camporeale, and Luigi Terlizzi. 2023. "Novel Multi-Objective Optimal Design of a Shell-and-Tube Latent Heat Thermal Energy Storage Device" Energies 16, no. 4: 1882. https://doi.org/10.3390/en16041882
APA StyleFornarelli, F., Dambrosio, L., Camporeale, S. M., & Terlizzi, L. (2023). Novel Multi-Objective Optimal Design of a Shell-and-Tube Latent Heat Thermal Energy Storage Device. Energies, 16(4), 1882. https://doi.org/10.3390/en16041882