Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review
Abstract
:1. Introduction
2. Summary of Alternative Aviation Fuels and Current Status
2.1. Sustainable Aviation Fuels (SAFs)
2.1.1. Biofuels
Hydroprocessed Esters and Fatty Acids (HEFA)
Fischer–Tropsch Fuels (FT Fuels)
Alcohol-to-Jet (AtJ)
Direct Sugars to Hydrocarbons/Synthesized Iso-Paraffins (DSHC/SIP)
Others
2.1.2. Electrofuels (e-Fuels)
2.2. Hydrogen
2.3. Electrification (Hybrid or Full-Electric Aircrafts)
2.4. Market Overview and Technology Readiness Level (TRL)
3. Comparative Analysis and Insight
3.1. Techno-Economic Assessment (Literature Review)
3.2. Environmental Assessment (Literature Review)
3.3. Future Projections
4. Current Regulatory Framework and Policy Approaches for Sustainable Aviation Transport
4.1. Background
4.2. RED II: Current EU Energy Policy Framework
4.3. Other Existing International and EU Policy Actions for Sustainable Aviation
4.4. ReFuelEU Aviation Initiative
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IATA. Annual Review 2020. In Proceedings of the 76th Annual General Meeting, Amsterdam, The Netherlands, 23–24 November 2020. [Google Scholar]
- IATA. Annual Review 2021. In Proceedings of the 77th Annual General Meeting, Boston, MA, USA, 3–5 October 2021. [Google Scholar]
- IATA. Why SAF Is the Future of Aviation? IATA: Montreal, QB, Canada, 2020. [Google Scholar]
- ICAO. Impacts of Aviation NOx Emissions on Air Quality, Health, and Climate. In ICAO Environmental Report 2022; ICAO: Montreal, QB, Canada, 2022. [Google Scholar]
- Sahu, T.K.; Shukla, C.P.; Belgiorno, G.; Maurya, R.K. Alcohols as alternative fuels in compression ignition engines for sustainable transportation: A review. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 8736–8759. [Google Scholar] [CrossRef]
- Verhelst, S.; Turner, W.G.J.; Sileghem, L.; Vancoillie, J. Methanol as a fuel for internal combustion engines. Prog. Energy Combust. Sci. 2019, 70, 43–88. [Google Scholar] [CrossRef]
- IATA. Incentives Needed to Increase SAF Production; IATA: Montreal, QB, Canada, 2022. [Google Scholar]
- Sustainable Aviation Fuel Market; The Brainy Insights: Pune, India, 2022.
- Wang, M.; Dewil, R.; Maniatis, K.; Wheeldon, J.; Tan, T.; Baeyens, J.; Fang, Y. Biomass-derived aviation fuels: Challenges and perspective. Prog. Energy Combust. Sci. 2019, 74, 31–49. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johns. Matthey Technol. Rev. 2020, 64, 263–278. [Google Scholar] [CrossRef]
- Doliente, S.S.; Narayan, A.; Tapia, D.J.F.; Samsatli, J.N.; Zhao, Y.; Samsatli, S. Bio-aviation Fuel: A Comprehensive Review and Analysis of the Supply Chain Components. Front. Energy Res. 2020, 8, 110. [Google Scholar] [CrossRef]
- Holladay, J.; Abdullah, Z.; Heyne, J. Sustainable Aviation Fuel: Review of Technical Pathways; Medium: ED; OSTI: Oak Ridge, TN, USA, 2020; p. 81. [Google Scholar]
- Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation; World Economic Forum in Collaboration with McKinsey & Company: Davos, Switzerland, 2020.
- Baldino, C.; Berg, R.; Pavlenko, N.; Searle, S. Advanced alternative fuel pathways: Technology overview and status. Int. Counc. Clean Transp. 2019, 13, 1–31. [Google Scholar]
- European Commission. ReFuelEU Aviation Iniative: Sustainable Aviation Fuels and the Fit for 55 Package; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- IEA. Technology Roadmap—Biofuels for Transport—Analysis; IEA: Paris, France, 2011; Available online: https://iea.blob.core.windows.net/assets/0905b11e-53d4-417a-a061-453934009476/Biofuels_Roadmap_WEB.pdf (accessed on 21 December 2022).
- Kandaramath Hari, T.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- GE Reports. SAFety First: Sustainable Aviation Fuel Is Taking Off, and Gurhan Andac Is Helping to See It’s Done Right. 2022. Available online: https://blog.geaerospace.com/sustainability/safety-first-sustainable-aviation-fuel-is-taking-off-and-gurhan-andac-is-helping-to-see-its-done-right/ (accessed on 21 December 2022).
- Let’s Talk about Sustainable Aviation Fuel Safety; Neste MY Renewable Jet Fuel: Espoo, Finland, 2019.
- IATA. Sustainable Aviation Fuel: Technical Certification. In Fact Sheet 2; IATA: Montreal, QB, Canada, 2021. [Google Scholar]
- Kaźmierczak, U.; Dzięgielewski, W.; Kulczycki, A. Miscibility of Aviation Turbine Engine Fuels Containing Various Synthetic Components. Energies 2022, 15, 6187. [Google Scholar] [CrossRef]
- Mawhood, B.; Gazis, E.; de Jong, S.; Hoefnagels, R.; Slade, R. Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels Bioprod. Biorefining 2016, 10, 462–484. [Google Scholar] [CrossRef]
- Airbus. An A350 Fuelled by 100% SAF Just Took Off; Airbus: Toulouse, France, 2021. [Google Scholar]
- NESTE. NESTE MY Sustainable Aviation Fuel. Available online: https://www.neste.com/products/all-products/saf#3468d8a8 (accessed on 21 December 2022).
- Q8Aviation. Q8 Aviation Delivers the First Sustainable Fuel to Gatwick Airport; Q8Aviation: Woking, UK, 2021. [Google Scholar]
- Aegean Airlines. SAF Flights for AEGEAN from Athens International Airport Powered by Hellenic Petroleum and NESTE; Aegean: Athens, Greece, 2022. [Google Scholar]
- A Collaboration between British Airways and Velocys. Available online: https://www.altalto.com (accessed on 21 December 2022).
- Ail, S.S.; Dasappa, S. Biomass to liquid transportation fuel via Fischer Tropsch synthesis—Technology review and current scenario. Renew. Sustain. Energy Rev. 2016, 58, 267–286. [Google Scholar] [CrossRef]
- Virgin Atlantic and Lanzatech Celebrate as Revolutionary Sustainable Fuel Project Takes Flight. Available online: https://www.lanzatech.com/ (accessed on 21 December 2022).
- Gutiérrez-Antonio, C.; Gomez-Castro, F.I.; de Lira Flores, J.A.; Hernandez, S. A review on the production processes of renewable jet fuel. Renew. Sustain. Energy Rev. 2017, 79, 709–729. [Google Scholar] [CrossRef]
- Airways, B. British Airways Fuels its Future with Second Sustainable Aviation Fuel Partnership. 2021. Available online: https://mediacentre.britishairways.com/pressrelease/details/12796 (accessed on 21 December 2022).
- Knowles, B. Major airlines to purchase Gevo sustainable aviation fuel. Renewable Energy, 25 July 2022. Available online: https://sustainabilitymag.com/renewable-energy/major-airlines-to-purchase-gevo-sustainable-aviation-fuel (accessed on 21 December 2022).
- Lufthansa Confirms Leadership Position on Alternative Aviation Fuels. Available online: https://aireg.de/ (accessed on 21 December 2022).
- VDMA. Position Paper ReFuel EU Aviation; VDMA: Frankfurt am Main, Germany, 2020. [Google Scholar]
- International, C.R. The Shunli CO2-to-Methanol Plant: Commercial Scale Production in China. Available online: https://www.carbonrecycling.is/projects (accessed on 21 December 2022).
- Green Fuels Hamburg Plans SAF Production. Renewable Energy Magazine. 28 June 2022. Available online: https://www.renewableenergymagazine.com/biofuels/green-fuels-hamburg-plans-saf-production-20220628 (accessed on 21 December 2022).
- Fuel Cells and Hydrogen Joint Undertaking. Hydrogen-Powered Aviation—A Fact-Based Study of Hydrogen Technology, Economics, and Climate Impact by 2050. 2020. Available online: www.fch.europa.eu (accessed on 21 December 2022).
- Airbus Deutschland GmbH. Liquid Hydrogen Fuelled Aircraft—System Analysis; Final Technical Report; Airbus Deutschland GmbH: Hamburg, Germany , 2003. [Google Scholar]
- Zero-Emission Air Transport—First Flight of Four-Seat Passenger Aircraft HY4; H2Fly GmbH: Stuttgart, Germany, 2016.
- Bogaisky, J. Startups Bet Hydrogen Fuel Cells Are Ready for Takeoff in Aviation; Forbes Media: Jersey City, NJ, USA, 2019. [Google Scholar]
- Marta Yugo, A.S.-C. A Look into the Role of e-Fuels in the Transport System in Europe (2030–2050). 2019. Available online: https://www.concawe.eu/wp-content/uploads/E-fuels-article.pdf (accessed on 21 December 2022).
- Thomson, R. Electrically Propelled Aircraft Developments Exceed 200 for the First Time; Roland Berger GmbH: Munich, Germany, 2020. [Google Scholar]
- E-Fan X; A Giant Leap towards Zero-Emission Flight. 2020. Available online: https://www.airbus.com/innovation/zero-emission/electric-flight/e-fan-x.html (accessed on 21 December 2022).
- Howard, C.E. Boeing and NASA Unveil Lightweight, Ultra-Thin, More Aerodynamic Transonic Truss-Braced Wing Concept; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Flying Taxis Are Taking off to Whisk People around Cities; The Economist: London, UK, 2019.
- Lovering, Z. Step Inside Alpha Two; Acubed: Sunnyvale, CA, USA, 2019. [Google Scholar]
- Dzikiy, P. Lilium’s New All-Electric Five-Seater Air Taxi Prototype Completes Test Flight; Electrek: New York, NY, USA, 2019. [Google Scholar]
- Hawkins, A.J. Electric Air Taxi Startup Lilium Completes First Test of Its New Five-Seater Aircraft; The Verge, Vox Media: Washington, DC, USA, 2019. [Google Scholar]
- Bailey, J. An Introduction to the Bizarre Eviation Electric Aircraft; Simple Flying: London, UK, 2019. [Google Scholar]
- Thapa, N.; Ram, S.; Kumar, S.; Mehta, J. All electric aircraft: A reality on its way. Mater. Today Proc. 2021, 43, 175–182. [Google Scholar] [CrossRef]
- OXIS ENERGY. Set to Make Solid-State Lithium-Sulfur Cell Technology A Reality; OXIS ENERGY: Abingdon, UK, 2021. [Google Scholar]
- Martinez-Hernandez, E.; Ramirez-Verduzco, L.F.; Amezcua-Alieri, M.A.; Aburto, J. Process simulation and techno-economic analysis of bio-jet fuel and green diesel production—Minimum selling prices. Chem. Eng. Res. Des. 2019, 146, 60–70. [Google Scholar] [CrossRef]
- Diederichs, G.W.; Mandegari, M.A.; Farzad, S.; Görgens, J. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresour. Technol. 2016, 216, 331–339. [Google Scholar] [CrossRef]
- de Jong, S.; Hoefnagels, R.; Faaij, A.; Slade, R.; Mawhood, B.; Junginger, M. The feasibility of short-term production strategies for renewable jet fuels—A comprehensive techno-economic comparison. Biofuels Bioprod. Biorefining 2015, Advance Online Publication. [Google Scholar] [CrossRef]
- Neuling, U.; Kaltschmitt, M. Techno-economic and environmental analysis of aviation biofuels. Fuel Process. Technol. 2018, 171, 54–69. [Google Scholar] [CrossRef]
- Bann, S.J.; Malina, R.; Staples, M.D.; Suresh, P.; Pearlson, M.; Tyner, W.E.; Hileman, J.I.; Barrett, S. The costs of production of alternative jet fuel: A harmonized stochastic assessment. Bioresour. Technol. 2017, 227, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Milbrandt, A.; Zhang, Y.; Wang, W.C. Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnol. Biofuels 2017, 10, 261. [Google Scholar] [CrossRef]
- Pavlenko, N.; Searle, S.Y.; Christensen, A. The Cost of Supporting Alternative Jet Fuels in the European Union; International Council on Clean Transportation (ICCT): Washington, DC, USA, 2019. [Google Scholar]
- Zech, K.M.; Dietrich, S.; Reichmuth, M.; Weindorf, W.; Müller-Langer, F. Techno-economic assessment of a renewable bio-jet-fuel production using power-to-gas. Appl. Energy 2018, 231, 997–1006. [Google Scholar] [CrossRef]
- Shahriar, M.F.; Khanal, A. The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF). Fuel 2022, 325, 124905. [Google Scholar] [CrossRef]
- Wang, W.-C.; Liu, Y.-C.; Nugroho, R.A.A. Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis. Energy 2022, 239, 121970. [Google Scholar] [CrossRef]
- Atsonios, K.; Kougioumtzis, M.A.; Panopoulos, K.D.; Kakaras, E. Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. Appl. Energy 2015, 138, 346–366. [Google Scholar] [CrossRef]
- Fernanda Rojas Michaga, M.; Michailos, S.; Akram, M.; Cardozo, E.; Hughes, K.J.; Ingham, D.; Pourkashanian, M. Bioenergy with carbon capture and storage (BECCS) potential in jet fuel production from forestry residues: A combined Techno-Economic and Life Cycle Assessment approach. Energy Convers. Manag. 2022, 255, 115346. [Google Scholar] [CrossRef]
- Petersen, A.M.; Chireshe, F.; Gorgens, J.F.; Van Dyk, J. Flowsheet analysis of gasification-synthesis-refining for sustainable aviation fuel production from invasive alien plants. Energy 2022, 245, 123210. [Google Scholar] [CrossRef]
- Ng, K.S.; Farooq, D.; Yang, A. Global biorenewable development strategies for sustainable aviation fuel production. Renew. Sustain. Energy Rev. 2021, 150, 111502. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Jin, X.; Wang, F.; Shen, B. Synthetic strategies and performance of catalysts for pyrolytic production of alternative aviation fuels using non-edible lipids: A critical review. Appl. Catal. A Gen. 2022, 643, 118769. [Google Scholar] [CrossRef]
- Tanzil, A.H.; Zhang, X.; Wolcott, M.; Brandt, K.; Stöckle, C.; Murthy, G.; Garcia-Perez, M. Evaluation of dry corn ethanol bio-refinery concepts for the production of sustainable aviation fuel. Biomass Bioenergy 2021, 146, 105937. [Google Scholar] [CrossRef]
- Tao, L.; Markham, J.N.; Haq, Z.; Biddy, M.J. Techno-Economic Analysis for Upgrading the Biomass-Derived Ethanol-to-Jet Blendstocks. Green Chem. 2016, 19, 1082–1101. [Google Scholar] [CrossRef]
- Brandt, K.; Martinez Valencia, L.; Wolcott, M. Cumulative Impact of Federal and State Policy on Minimum Selling Price of Sustainable Aviation Fuel. Front. Energy Res. 2022, 10, 828789. [Google Scholar] [CrossRef]
- Capaz, R.; Guida, E.; Seabra, J.E.A.; Osseweijer, P.; Posada, J.A. Mitigating carbon emissions through sustainable aviation fuels: Costs and potential. Biofuels Bioprod. Biorefining 2020, 15, 502–524. [Google Scholar] [CrossRef]
- Grahn, M.; Malmgren, E.; Korberg, A.D.; Taljegard, M.; Anderson, J.E.; Brynolf, S.; Hansson, J.; Skov, I.R.; Wallington, T.J. Review of electrofuel feasibility—Cost and environmental impact. Prog. Energy 2022, 4, 032010. [Google Scholar] [CrossRef]
- Ash, N.; Davies, A.; Newton, C. Renewable Electricity Requirements to Decarbonise Transport in Europe: Investigating Supply-Side Constraints to Decarbonising the Transport Sector in the European Union to 2050. 2020. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/2020_Report_RES_to_decarbonise_transport_in_EU.pdf (accessed on 21 December 2021).
- Becattini, V.; Gabrielli, P.; Mazzotti, M. Role of Carbon Capture, Storage, and Utilization to Enable a Net-Zero-CO2-Emissions Aviation Sector. Ind. Eng. Chem. Res. 2021, 60, 6848–6862. [Google Scholar] [CrossRef]
- Zhou, Y.; Searle, S.Y.; Pavlenko, N. Current and Future Cost of e-Kerosene in the United States and Europe. 2022. Available online: https://theicct.org/publication/fuels-us-eu-cost-ekerosene-mar22/ (accessed on 21 December 2022).
- CO2—Every Kilogram Counts; ETH Zurich—Department of Mechanical and Process Engineering: Zürich, Switzerland, 2021.
- Isaacs, S.A.; Staples, M.D.; Allroggen, F.; Mallapragada, D.S.; Falter, C.P.; Barrett, S.R.H. Environmental and Economic Performance of Hybrid Power-to-Liquid and Biomass-to-Liquid Fuel Production in the United States. Environ. Sci. Technol. 2021, 55, 8247–8257. [Google Scholar] [CrossRef] [PubMed]
- Moritz Raab, D.R.-U.D. Presentation of Research Activities DLR—TT ESI-TEA. In Proceedings of the UBA/BDL Workshop ‘PtL in Air Transport’, Brussels, Belgium, 8 October 2019. [Google Scholar]
- Schmidt, P.; Batteiger, V.; Roth, A.; Weindorf, W.; Raksha, T. Power-to-Liquids as Renewable Fuel Option for Aviation: A Review. Chem. Ing. Tech. 2018, 90, 127–140. [Google Scholar] [CrossRef]
- Concawe. A Look into the Maximum Potential Availability and Demand for Low-Carbon Feedstocks/Fuels in Europe (2020–2050); Concawe: Brussels, Belgium, 2019. [Google Scholar]
- Badgett, A.; Newes, E.; Milbrandt, A. Economic analysis of wet waste-to-energy resources in the United States. Energy 2019, 176, 224–234. [Google Scholar] [CrossRef]
- Atsonios, K.; Panopoulos, K.D.; Kakaras, E. Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. Int. J. Hydrog. Energy 2016, 41, 2202–2214. [Google Scholar] [CrossRef]
- IATA. Jet Fuel Price Monitor. Available online: https://www.iata.org/en/publications/economics/fuel-monitor/ (accessed on 21 December 2022).
- Pavlenko, N.; Searle, S. Assessing the Sustainability Implications of Alternative Aviation Fuels; The International Council on Clean Transportation: Washington, DC, USA, 2021. [Google Scholar]
- ICAO. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels; ICAO: Montreal, QB, Canada, 2022. [Google Scholar]
- Capaz, R.S.; Seabra, J.E.A. Chapter 12—Life Cycle Assessment of Biojet Fuels. In Biofuels for Aviation; Chuck, C.J., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 279–294. [Google Scholar]
- De Jong, S.; Antonissen, K.; Hoefnagels, R.; Lonza, L.; Wang, M.; Faaij, A.; Junginger, M. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production. Biotechnol. Biofuels 2017, 10, 64. [Google Scholar] [CrossRef]
- Batteiger, V.; Schmidt, P.R.; Weindorf, W.; Ebner, K.; Habersetzer, A.; Moser, A.; Raksha, T. Power-to-Liquids—A scalable and Sustainable Fuel Supply Perspective for Aviation; Umweltbundesamt: Dessau, Germany, 2022. [Google Scholar]
- Soler, A.; Schmidt, P. E-Fuels: A Techno-Economic Assessment of EU Domestic Production and Imports towards 2050. In Proceedings of the 14 th Concawe Symposium, Virtual, 27–28 September 2021. [Google Scholar]
- Abreu, M.; Silva, L.; Ribeiro, B.; Ferreira, A.; Alves, L.; Paixao, S.M.; Gouveia, L.; Moura, P.; Carvalheiro, F.; Duarte, L.; et al. Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels&mdash: A Review. Energies 2022, 15, 4348. [Google Scholar] [CrossRef]
- Malins, C.; Searle, S.; Baral, A. A Guide for the Perplexed to the Indirect Effects of Biofuels Production; International Council on Clean Transportation: Washington, DC, USA, 2014. [Google Scholar]
- ATAG. WAYPOINT 2050; Balancing Growth in Connectivity with a Comprehensive Globar Air Transport Response to the Climate Emergency; ATAG: Geneva, Switzerland, 2020. [Google Scholar]
- KPMG. The Sky’s the Limit? KPMG: Dublin, Ireland, 2022. [Google Scholar]
- Dragone, G.; Kerssemakers, A.A.J.; Driessen, J.L.S.P.; Yamakawa, C.K.; Brumano, L.P.; Mussatto, S.I. Innovation and strategic orientations for the development of advanced biorefineries. Bioresour. Technol. 2020, 302, 122847. [Google Scholar] [CrossRef]
- ICF-ATAG. Fueling Net Zero—How the Aviation Industry Can Deploy Sufficient Sustainable Aviation Fuel to Meet Climate Ambitions; An ICF Report for ATAG Waypoint 2050; ICF-ATAG: Geneva, Switzerland, 2021. [Google Scholar]
- KFW-IPEXBank. Sustainable Aviaton Fuels—The (Climate) Saviour of Aviation? KFW-IPEXBank: Frankfurt am Main, Germany, 2021. [Google Scholar]
- PwC. Analysing the Future Cost of Green Hydrogen; PwC: London, UK, 2022. [Google Scholar]
- Bessoles, M. Increasing Sustainable Aviation Fuel Production with Feedstocks, in ICF. 2022. Available online: https://www.icf.com/insights/transportation/increasing-sustainable-aviation-fuel-production-feedstocks (accessed on 21 December 2022).
- O’malley, J.; Pavlenko, N.; Searle, S. Estimating Sustainable Aviation Fuel Feedstock Availability to Meet Growing European Union Demand; International Council on Clean Transportation: Berlin, Germany, 2021. [Google Scholar]
- Padella, M.; O’Connell, A.; Prussi, M. What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector. Appl. Sci. 2019, 9, 4523. [Google Scholar] [CrossRef]
- Malicier, V. SAF Demand on the Rise but Feedstock Availability a Concern: Industry Experts; S&P Global: New York, NY, USA, 2022. [Google Scholar]
- IRENA. MAKING THE BREAKTHROUGH—Green Hydrogen Policies and Technology Costs; IRENA: Abu Dhabi, United Arab Emitates, 2021. [Google Scholar]
- UNFCCC. What is the Kyoto Protocol? Available online: https://unfccc.int/kyoto_protocol (accessed on 21 December 2022).
- UNFCCC. Paris Agreement; UNFCCC: Bonn, Germany, 2016. [Google Scholar]
- Renewable Energy Directive, Directive (EU) 2018/2001, REDII; European Commission: Brussels, Belgium, 2018.
- Dusser, P. The European Energy Policy for 2020–2030 RED II: What future for vegetable oil as a source of bioenergy? OCL 2019, 26, 51. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Goumas, T. Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II. Appl. Energy 2019, 251, 113351. [Google Scholar] [CrossRef]
- Mayr, S.; Hollaus, B.; Madner, V. Palm oil, the RED II and WTO law: EU sustainable biofuel policy tangled up in green? Rev. Eur. Comp. Int. Environ. Law 2021, 30, 233–248. [Google Scholar] [CrossRef]
- SKYNRG. Policy Implications-RENEWABLE ENERGY DIRECTIVE II (RED II); SKYNRG: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Impact Assessment—Accompanying the Proposal for a Regulation of the European Parliament and of the Council on Ensuring a Level Playing Field for Sustainable Air Transport; European Commission: Brussels, Belgium, 2021.
- Searle, S. Alternative Transport Fuels Elements of the European Union’s “Fit for 55” Package; POLICY; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- ICAO. Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA); ICAO: Montreal, QB, Canada, 2020. [Google Scholar]
- EU Emissions Trading System (EU ETS). In Climate Action; European Commission: Brussels, Belgium, 2021.
- Pavlenko, N. An Assessment of the Policy Options for Driving Sustainable Aviation Fuels in the European Union; International Council on Clean Transportation (ICCT): Washington, DC, USA, 2021. [Google Scholar]
- Soone, J. ReFuelEU Aviation Initiative—Summary of the Commission Proposal and the Parliament’s Draft Committee Report; Brussels, Belgium, 2021. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2022)729457 (accessed on 21 December 2022).
SAFs | Fuel | Technology Readiness Level (TRL) | Highlights |
---|---|---|---|
Biofuels | HEFA | 9 | Commercial passenger jet flight test with 100% HEFA fuel [23] Projection for annual production of 1.5 million tons by the end of 2023 (Neste) [24] |
FT-fuels | 7–8 | Establishment of the first commercial Fischer–Tropsch BtL plant in the UK (Velocys) [27] | |
AtJ | 7–8 | First commercial flight with AtJ fuel [29] British Airways will purchase SAF from LanzaJet’s US plant from late 2022 [31] Oneworld Alliance members will utilize Gevo’s SAF for operations in California from 2027, for a five year-term [32] | |
DSHC/SIP | 5–7 (depending on the sugar type) | Commercial flight with 10% farnesane blend from Amyris/Total (2014) [33] | |
E-fuels | e-jet, e-methanol * | 5–8 (depending on the CO2 source) | World’s first 110 kt/year recycled carbon methanol production plant [35] ‘Green Fuels Hamburg’ [36] |
Route | Year | Feedstock | MJSP |
---|---|---|---|
HEFA | 2019 | Vegetable oil | 1.39 EUR/L [52] |
2016 | Vegetable oil | 1.84 EUR/L [53] | |
2015 | UCOs | 1.03 EUR/L [54] | |
2018 | Jatropha oil | 1.60 EUR/L | |
Palm oil | 0.81 EUR/L [55] | ||
2017 | UCOs | 0.94 EUR/L | |
Tallow | 1.10 EUR/L | ||
Soybean oil | 1.23 EUR/L [56] | ||
2017 | UCOs | 1.29 EUR/L [57] | |
2019 | UCOs | 0.88 EUR/L | |
Soybean oil | 1.09 EUR/L [58] | ||
2018 | Jatropha oil | 1.44 EUR/L | |
Palm oil | 1.04 EUR/L [59] | ||
FT | 2022 | Municipal solid waste | 1.55 EUR/L |
Agricultural residues | 2.01 EUR/L [60] | ||
2022 | Rice husk | 2.22 EUR/L [61] | |
2015 | Wood chips | 1.24 EUR/L [62] | |
2016 | Lignocellulose feedstock | 1.97 EUR/L [53] | |
2019 | Municipal solid waste | 1.34 EUR/L | |
Agricultural residues | 1.80 EUR/L [58] | ||
2022 | Forestry residues | 2.47 EUR/L [63] | |
2022 | Lignocellulose feedstock | 2.22 EUR/L [64] | |
2021 | Municipal solid waste | 1.55 EUR/L | |
Agricultural residues | 2.00 EUR/L | ||
Forestry residues | 1.82 EUR/L [65] | ||
2022 | Rice husk | 2.22 EUR/L | |
Pyrolysis bio-oil | 2.34 EUR/L [66] | ||
2021 | Corn stover | 3.64 EUR/L [67] | |
AtJ | 2016 | Corn grain (1-G ethanol) | 1.21 EUR/L |
Corn stover (2-G ethanol) | 1.71 EUR/L [68] | ||
2022 | Corn grain (1-G ethanol) | 0.90 EUR/L | |
Lignocellulose (2-G ethanol) | 2.30 EUR/L [69] | ||
2016 | Sugarcane (1-G ethanol) | 2.02 EUR/L | |
Lignocellulose (2-G ethanol) | 1.98 EUR/L | ||
Lignocellulose (2-G ethanol) | 2.75 EUR/L [53] | ||
2015 | Forestry residues (2-G ethanol) | 1.98 EUR/L | |
Wheat straw (2-G ethanol) | 2.72 EUR/L [54] | ||
2015 | Woody biomass (2-G mixed alcohols) | 1.28 EUR/L [62] | |
2020 | Sugarcane (1-G ethanol) | 1.27 EUR/L | |
Lignocellulose (2-G ethanol) | 1.71 EUR/L | ||
Steel off-gases (2-G ethanol) | 1.53 EUR/L [70] | ||
E-jet | 2022 | CO2 + H2 (FT route/Methanol route) | 2.10–2.30 EUR/L [71] |
2020 | CO2 + H2 (FT route/Methanol route) | 2.13 EUR/L [72] | |
2021 | CO2 + H2 (FT route) | 2.77–4.89 EUR/L [73] | |
2022 | CO2 + H2 (FT route) | 2.33–3.17 EUR/L [74] | |
2021 | CO2 + H2 (FT route/Methanol route) | 2.25–5.00 EUR/L [75] | |
2021 | CO2 + H2 (FT route) | 3.39 EUR/L [76] | |
2019 | CO2 + H2 (FT route/Methanol route) | 2.94 EUR/L [77] | |
2018 | CO2 + H2 (Methanol route) | 2.45–3.28 EUR/L | |
CO2 + H2 (FT route) | 2.60–3.37 EUR/L [78] |
HEFA * | FT | AtJ | E-Jet ** | |
---|---|---|---|---|
CAPEX range (%) | 22–40 | 54–81 | 45–75 | 5–20 |
OPEX range (%) | 8–10 | 12–21 | 2–14 | 5–15 |
Feedstock range (%) | 51–69 | 0–32 | 20–44 | 70–85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Detsios, N.; Theodoraki, S.; Maragoudaki, L.; Atsonios, K.; Grammelis, P.; Orfanoudakis, N.G. Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review. Energies 2023, 16, 1904. https://doi.org/10.3390/en16041904
Detsios N, Theodoraki S, Maragoudaki L, Atsonios K, Grammelis P, Orfanoudakis NG. Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review. Energies. 2023; 16(4):1904. https://doi.org/10.3390/en16041904
Chicago/Turabian StyleDetsios, Nikolaos, Stella Theodoraki, Leda Maragoudaki, Konstantinos Atsonios, Panagiotis Grammelis, and Nikolaos G. Orfanoudakis. 2023. "Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review" Energies 16, no. 4: 1904. https://doi.org/10.3390/en16041904
APA StyleDetsios, N., Theodoraki, S., Maragoudaki, L., Atsonios, K., Grammelis, P., & Orfanoudakis, N. G. (2023). Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review. Energies, 16(4), 1904. https://doi.org/10.3390/en16041904