Energy Resilience: A Cross-Economy Comparison
Abstract
:1. Introduction
2. Theoretical Framework and Literature Review
3. Research Methods, Data Sources, and Dimensions
3.1. Research Methods
3.2. Data Sources
3.3. Dimensions
3.3.1. Society
- Transparency
- Control of bribery and corruption
- Democracy index
- Lack of press freedom: the higher the score, the more serious the problem
3.3.2. Economy
- Per capita residential final energy use (PJ)
- Average total services/total final energy use
- Average manufacturing [ISIC 10–18; 20–32]/total final energy use (PJ)
- Per capita residential energy intensity (index 2000)
- Per capita services energy intensity (index 2000)
3.3.3. Environment
- Per capita residential final emissions (MtCO2)
- Per capita services final emissions (MtCO2)
- Per capita residential carbon intensity (index 2000)
4. Data Sources and Empirical Findings
4.1. Data Sources
4.2. Empirical Findings
5. Conclusions, Research Limitations, and Future Suggestions
5.1. Conclusions
5.2. Research Limitations and Future Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Economy | Score | Rank | Economy | Score | Rank |
---|---|---|---|---|---|
USA | 1.000 | 1 | Portugal | 1.000 | 1 |
Australia | 1.000 | 1 | Norway | 1.000 | 1 |
United Kingdom | 1.000 | 1 | Mexico | 1.000 | 1 |
Brazil | 1.000 | 1 | New Zealand | 1.000 | 1 |
Switzerland | 1.000 | 1 | South Korea | 0.848 | 18 |
Finland | 1.000 | 1 | Turkey | 0.800 | 19 |
France | 1.000 | 1 | Luxembourg | 0.768 | 20 |
Germany | 1.000 | 1 | Poland | 0.767 | 21 |
Greece | 1.000 | 1 | Italy | 0.751 | 22 |
Sweden | 1.000 | 1 | Belgium | 0.751 | 23 |
Ireland | 1.000 | 1 | Hungary | 0.657 | 24 |
Spain | 1.000 | 1 | Czech Republic | 0.632 | 25 |
Japan | 1.000 | 1 | Slovak Republic | 0.351 | 26 |
Economy\Sub-Dimension | Transparency | Control of Bribery and Corruption | Democracy | Lack of Press Freedom |
---|---|---|---|---|
Mexico | 1.000 | 1.000 | 1.000 | 1.000 |
USA | 1.000 | 1.000 | 1.000 | 1.000 |
France | 1.000 | 1.000 | 1.000 | 1.000 |
Greece | 1.000 | 1.000 | 1.000 | 1.000 |
Japan | 1.000 | 1.000 | 1.000 | 1.000 |
Ireland | 1.000 | 1.000 | 1.000 | 1.000 |
Brazil | 1.000 | 1.000 | 1.000 | 1.000 |
Sweden | 1.000 | 1.000 | 1.000 | 1.000 |
Finland | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 1.000 | 1.000 | 1.000 | 1.000 |
Norway | 1.000 | 1.000 | 1.000 | 1.000 |
United Kingdom | 1.000 | 1.000 | 1.000 | 1.000 |
Australia | 1.000 | 1.000 | 1.000 | 1.000 |
Switzerland | 1.000 | 1.000 | 1.000 | 1.000 |
New Zealand | 1.000 | 1.000 | 1.000 | 1.000 |
Spain | 1.000 | 1.000 | 1.000 | 1.000 |
Portugal | 1.000 | 1.000 | 1.000 | 1.000 |
South Korea | 0.946 | 0.824 | 1.000 | 1.000 |
Luxembourg | 0.821 | 0.946 | 0.976 | 0.687 |
Belgium | 0.584 | 0.878 | 0.827 | 0.875 |
Poland | 0.594 | 0.778 | 0.808 | 0.877 |
Italy | 0.618 | 0.461 | 0.909 | 1.000 |
Turkey | 0.799 | 1.000 | 0.549 | 0.606 |
Hungary | 0.676 | 0.360 | 0.791 | 0.716 |
Czech Republic | 0.537 | 0.368 | 0.838 | 0.476 |
Slovak Republic | 0.248 | 0.124 | 0.835 | 0.759 |
Economy\ Sub-Dimension | Residential Energy Use | Service Energy Use | Manufacturing Energy Use | Residential Energy Intensity | Service Energy Intensity |
---|---|---|---|---|---|
Japan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Spain | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
USA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Greece | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Ireland | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Brazil | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Sweden | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mexico | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Portugal | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Finland | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Norway | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
United Kingdom | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Australia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Switzerland | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
New Zealand | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Italy | 0.991 | 0.971 | 0.880 | 1.000 | 0.980 |
Turkey | 1.000 | 0.795 | 0.912 | 0.992 | 0.789 |
Poland | 0.863 | 0.990 | 0.729 | 0.872 | 1.000 |
Hungary | 0.682 | 1.000 | 1.000 | 0.682 | 1.000 |
Czech Republic | 0.554 | 0.996 | 1.000 | 0.556 | 1.000 |
Slovak Republic | 0.515 | 0.995 | 0.957 | 0.518 | 1.000 |
South Korea | 1.000 | 0.503 | 0.439 | 0.998 | 0.502 |
Belgium | 0.458 | 0.662 | 0.883 | 0.460 | 0.665 |
Luxembourg | 0.715 | 0.456 | 0.416 | 0.716 | 0.456 |
Economy\ Sub-Dimension | Per Capita Residential CO2 Emissions | Per capita Service Energy Use | Per Capita Residential Carbon Intensity |
---|---|---|---|
Greece | 1.000 | 1.000 | 1.000 |
France | 1.000 | 1.000 | 1.000 |
New Zealand | 1.000 | 1.000 | 1.000 |
Ireland | 1.000 | 1.000 | 1.000 |
Finland | 1.000 | 1.000 | 1.000 |
Germany | 1.000 | 1.000 | 1.000 |
Norway | 1.000 | 1.000 | 1.000 |
Australia | 1.000 | 1.000 | 1.000 |
USA | 1.000 | 1.000 | 1.000 |
Mexico | 1.000 | 1.000 | 1.000 |
United Kingdom | 1.000 | 1.000 | 1.000 |
Switzerland | 1.000 | 1.000 | 1.000 |
Brazil | 1.000 | 1.000 | 1.000 |
Sweden | 1.000 | 1.000 | 1.000 |
Japan | 1.000 | 1.000 | 1.000 |
Portugal | 1.000 | 1.000 | 1.000 |
Spain | 1.000 | 1.000 | 1.000 |
Italy | 0.880 | 1.000 | 1.000 |
Turkey | 0.912 | 0.920 | 0.809 |
Czech Republic | 1.000 | 0.939 | 0.315 |
Belgium | 0.883 | 1.000 | 0.317 |
South Korea | 0.439 | 1.000 | 0.705 |
Hungary | 1.000 | 0.309 | 0.762 |
Slovak Republic | 0.957 | 0.479 | 0.433 |
Poland | 0.729 | 0.474 | 0.602 |
Luxembourg | 0.416 | 0.052 | 0.560 |
References
- Vogel, J.; Steinberger, J.K.; O’Neill, D.W.; Lamb, W.F.; Krishnakumar, J. Socio-economic conditions for satisfying human needs at low energy use: An international analysis of social provisioning. Glob Environ. Chang. 2021, 69, 102287. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Principles and criteria for assessing urban energy resilience: A literature review. Renew. Sust. Energ. Rev. 2016, 60, 1654–1677. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2015.
- Gatto, A.; Drago, C. Measuring and modeling energy resilience. Ecol. Econ. 2020, 172, 106527. [Google Scholar] [CrossRef]
- Navracsics, T.; Sucha, V.; Wahlstroem, M.; Stigson, B.; Wijkman, A.; Lechner, S.; Masera, M.; Hubbard, N.; Bidoglio, G.; Fink-Hooijer, F.; et al. The Challenge of Resilience in a Globalised World. In Proceedings of the Annual Conference Building a Resilient Europe in a Globalised World, Brussels, Belgium, 30 September 2015. [Google Scholar]
- Lee, C.-T.; Hu, J.-L.; Kung, M.-H. Economic Resilience in the Early Stage of the COVID-19 Pandemic: An Across-Economy Comparison. Sustainability 2022, 14, 4609. [Google Scholar] [CrossRef]
- United Nations. SDG Indicators: Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development. Available online: https://unstats.un.org/sdgs/indicators/indicators-list/ (accessed on 15 January 2023).
- United Nations. Resolution Adopted by the General Assembly on 6 July 2017: Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; A/RES/71/313; United Nations: New York, NY, USA, 2017.
- Aldieri, L.; Gatto, A.; Vinci, C.P. Evaluation of energy resilience and adaptation policies: An energy efficiency analysis. Energy Policy 2021, 157, 112505. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C. When renewable energy, empowerment, and entrepreneurship connect: Measuring energy policy effectiveness in 230 countries. Energy Res. Soc. Sci. 2021, 78, 101977. [Google Scholar] [CrossRef]
- OECD. Member Countries. Available online: https://www.oecd.org/about/members-and-partners/ (accessed on 15 January 2023).
- IEA. Data and Statistics. Available online: https://www.iea.org/data-and-statistics/about (accessed on 15 January 2023).
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Pimm, S.L. The complexity and stability of ecosystems. Nature 1984, 307, 321–326. [Google Scholar] [CrossRef]
- Gatto, A.; Busato, F. Energy vulnerability around the world: The global energy vulnerability index (GEVI). J. Clean. Prod. 2020, 253, 118691. [Google Scholar] [CrossRef]
- Gatto, A.; Drago, C. A taxonomy of energy resilience. Energy Policy 2020, 136, 111007. [Google Scholar] [CrossRef]
- Tettey, U.Y.A.; Dodoo, A.; Gustavsson, L. Design strategies and measures to minimise operation energy use for passive houses under different climate scenarios. Energy Effic. 2019, 12, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Droutsa, K.G.; Kontoyiannidis, S.; Balaras, C.A.; Lykoudis, S.; Dascalaki, E.G.; Argiriou, A.A. Unveiling the existing condition and energy use in Hellenic school buildings. Energy Build. 2021, 247, 111150. [Google Scholar] [CrossRef]
- Oprea, F.; Onofrei, M.; Lupu, D.; Vintila, G.; Paraschiv, G. The Determinants of Economic Resilience. The Case of Eastern European Regions. Sustainability 2020, 12, 4228. [Google Scholar] [CrossRef]
- Hu, J.-L.; Chen, Y.-C.; Yang, Y.-P. The Development and Issues of Energy-ICT: A Review of Literature with Economic and Managerial Viewpoints. Energies 2022, 15, 594. [Google Scholar] [CrossRef]
- Giddings, B.; Hopwood, B.; O’Brien, G. Environment, economy and society: Fitting them together into sustainable development. Sustain. Dev. 2002, 10, 187–196. [Google Scholar] [CrossRef]
- Guan, X.; Zhu, X.; Liu, X. Carbon Emission, air and water pollution in coastal China: Financial and trade effects with application of CRS-SBM-DEA model. Alex. Eng. J. 2022, 61, 1469–1478. [Google Scholar] [CrossRef]
- Chang, P.-L.; Hwang, S.-N.; Cheng, W.-Y. Using data envelopment analysis to measure the achievement and change of regional development in Taiwan. J. Environ. Manag. 1995, 43, 49–66. [Google Scholar] [CrossRef]
- Shi, G.-M.; Bi, J.; Wang, J.-N. Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs. Energy Policy 2010, 38, 6172–6179. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Xu, T.; You, J.; Li, H.; Shao, L. Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review. Energies 2020, 13, 3548. [Google Scholar] [CrossRef]
- Long, X.; Wu, C.; Zhang, J.; Zhang, J. Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach. Renew. Sust. Energ. Rev. 2018, 82, 3962–3971. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; O’Donnell, C.J.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. XVII, 349. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Wei, C.; Ni, J.; Shen, M. Empirical Analysis of Provincial Energy Efficiency in China. China World Econ. 2009, 17, 88–103. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-L.; Chang, T.-P. Total-Factor Energy Efficiency and Its Extensions: Introduction, Computation and Application. In Data Envelopment Analysis: A Handbook of Empirical Studies and Applications; Zhu, J., Ed.; Springer US: Boston, MA, USA, 2016; pp. 45–69. [Google Scholar] [CrossRef]
- IMD. World Competitiveness Ranking. Available online: https://www.imd.org/centers/world-competitiveness-center/rankings/world-competitiveness/ (accessed on 15 January 2023).
- RSF. 2020 World Press Freedom Index: “Entering A Decisive Decade for Journalism, Exacerbated by Coronavirus”. Available online: https://rsf.org/en/2020-world-press-freedom-index-entering-decisive-decade-journalism-exacerbated-coronavirus (accessed on 15 January 2023).
- IEA. Energy Efficiency Indicators Highlights, June 2022—Revised ed.; International Energy Agency: Paris, France, 2022. Available online: https://www.iea.org/data-and-statistics/data-product/energy-efficiency-indicators-highlights (accessed on 15 January 2023).
- Cooke, P. Complex Adaptive Innovation Systems: Relatedness and Transversality in the Evolving Region; Routledge: Oxfordshire, UK, 2011. [Google Scholar] [CrossRef]
- Schwab, K. The Global Competitiveness Report 2019; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
- Fritzsch, R. Adaptive Efficiency during the Great Recession: An Analysis of the Institutional and Organizational Determinants of Crisis Resilience; Springer Gabler Wiesbaden: Wiesbaden, Germany, 2019. [Google Scholar] [CrossRef]
- Abbasabadi, N.; Ashayeri, M. Urban energy use modeling methods and tools: A review and an outlook. Build Environ. 2019, 161, 106270. [Google Scholar] [CrossRef]
- IEA. Energy Efficiency Indicators Database Documentation, June 2022 ed.; International Energy Agency: Paris, France, 2022. Available online: https://www.iea.org/data-and-statistics/data-product/energy-efficiency-indicators (accessed on 15 January 2023).
- World Bank. Population, Total, 2022/12/22 ed.; World Bank: Washington, DC, USA, 2022; Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 15 January 2023).
- Haughton, G. Environmental Justice and the Sustainable City. J. Plan Educ. Res. 1999, 18, 233–243. [Google Scholar] [CrossRef]
- Hardi, P.; Zdan, T. Assessing Sustainable Development: Principles in Practice; International Institute for Sustainable Development: Geneva, Switzerland, 1997. [Google Scholar]
Dimension | Sub-Dimension | Sub-Dimension Definition | Data Source |
---|---|---|---|
Society | Transparency | Transparency | IMD |
Control of bribery and corruption | Bribery and corruption | IMD | |
Democracy | Democracy index | IMD | |
Lack of press Freedom | Press freedom index | RSF | |
Economy | Residential energy use | Total residential final energy use (PJ) | IEA |
Per capita residential consumption | Total residential final energy use/Population | IEA/World Bank | |
Service energy use | Total services final energy use (PJ) | IEA | |
Per capita service energy use | Total service final energy us/DMU Population | IEA/World Bank | |
Manufacturing energy use | Total manufacturing (ISIC 10–18; 20–32) final energy use (PJ) | IEA | |
Per capita manufacturing energy use | Total manufacturing energy use/Population | IEA/World Bank | |
Residential energy intensity | Per capita residential intensity (index 2000) | IEA | |
Service energy intensity | Per capita services energy intensity (index 2000) | IEA | |
Environment | Total residential CO2 emissions | Total residential final CO2 emissions (MtCO2) | IEA |
Per capita residential CO2 emissions | Total residential final CO2 emissions/Population | IEA/World Bank | |
Total service energy use | Total services final emissions (MtCO2) | IEA | |
Per capita service energy use | Total services final emissions/Population | IEA/World Bank | |
Residential carbon intensity | Per capita residential carbon intensity (index 2000) | IEA |
Dimension/Indicator | Type of Index | Mean | Median | Maximum | Minimum | Std. Dev. |
---|---|---|---|---|---|---|
Society | ||||||
Transparency | Desirable | 4.944 | 4.919 | 7.898 | 1.522 | 1.841 |
Control of bribery and corruption | Desirable | 5.460 | 6.153 | 8.576 | 0.836 | 2.369 |
Democracy | Desirable | 7.972 | 8.015 | 9.870 | 4.090 | 1.254 |
Lack of press freedom | Undesirable | 21.666 | 22.795 | 50.020 | 7.840 | 10.861 |
Economy | ||||||
Residential energy use | Undesirable | 21.512 | 22.774 | 34.688 | 5.420 | 8.224 |
Service energy use | Undesirable | 12.688 | 11.986 | 32.819 | 1.259 | 6.985 |
Manufacturing energy use | Undesirable | 27.750 | 24.323 | 77.920 | 9.153 | 15.399 |
Residential energy intensity | Undesirable | 21.505 | 22.640 | 34.830 | 5.440 | 8.219 |
Service energy intensity | Undesirable | 12.689 | 11.990 | 32.790 | 1.260 | 6.992 |
Environment | ||||||
Per capita residential CO2 emissions | Undesirable | 27.750 | 24.323 | 77.920 | 9.153 | 15.399 |
Per capita service energy use | Undesirable | 3.662 | 0.940 | 52.330 | 0.026 | 10.093 |
Per capita residential carbon intensity | Undesirable | 1.157 | 1.060 | 2.730 | 0.090 | 0.672 |
Sub-Dimension | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Transparency | 1.000 | |||||||||||
2. Control of bribery and corruption | 0.851 | 1.000 | ||||||||||
3. Democracy | 0.772 | 0.699 | 1.000 | |||||||||
4. Lack of press freedom | −0.701 | −0.669 | −0.896 | 1.000 | ||||||||
5. Residential energy use | 0.498 | 0.501 | 0.479 | −0.577 | 1.000 | |||||||
6. Service energy use | 0.601 | 0.622 | 0.559 | −0.561 | 0.797 | 1.000 | ||||||
7. Manufacturing energy use | 0.458 | 0.460 | 0.462 | −0.526 | 0.515 | 0.620 | 1.000 | |||||
8. Residential energy intensity | 0.500 | 0.503 | 0.479 | −0.577 | 1.000 | 0.799 | 0.517 | 1.000 | ||||
9. Service energy intensity | 0.601 | 0.623 | 0.559 | −0.560 | 0.796 | 1.000 | 0.620 | 0.798 | 1.000 | |||
10. Per capita residential CO2 emissions | 0.458 | 0.460 | 0.462 | −0.526 | 0.515 | 0.620 | 1.000 | 0.517 | 0.620 | 1.000 | ||
11. Per capita service energy use | 0.253 | 0.231 | 0.221 | −0.221 | 0.372 | 0.643 | 0.216 | 0.371 | 0.642 | 0.216 | 1.000 | |
12. Per capita residential carbon intensity | 0.024 | 0.210 | 0.051 | −0.025 | 0.470 | 0.418 | 0.060 | 0.470 | 0.418 | 0.060 | 0.121 | 1.000 |
Rank | Economy | Rank | Economy | Rank | Economy |
---|---|---|---|---|---|
1 | USA | 1 | Sweden | 19 | South Korea |
1 | Australia | 1 | Ireland | 20 | Turkey |
1 | United Kingdom | 1 | Spain | 21 | Luxembourg |
1 | Brazil | 1 | Japan | 22 | Poland |
1 | Switzerland | 1 | Portugal | 23 | Italy |
1 | Finland | 1 | Norway | 24 | Belgium |
1 | France | 1 | Mexico | 25 | Hungary |
1 | Germany | 1 | New Zealand | 26 | Czech Republic |
1 | Greece | 18 | South Korea |
Country\Sub-Dimension | Transparency | Control of Bribery and Corruption | Democracy | Lack of Press Freedom | Residential Energy Use | Service Energy Use | Manufacturing Energy Use | Residential Energy Intensity | Service Energy Intensity | Per Capita Residential CO2 Emissions | Per Capita Service Energy Use | Per Capita Residential Carbon Intensity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Greece | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Finland | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
France | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Germany | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Ireland | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Sweden | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Norway | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Spain | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
United Kingdom | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Australia | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Portugal | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Switzerland | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Italy | 0.618 | 0.461 | 0.909 | 1.000 | 0.991 | 0.971 | 0.880 | 1.000 | 0.980 | 0.880 | 1.000 | 1.000 |
Turkey | 0.799 | 1.000 | 0.549 | 0.606 | 1.000 | 0.795 | 0.912 | 0.992 | 0.789 | 0.912 | 0.920 | 0.809 |
Poland | 0.594 | 0.778 | 0.808 | 0.877 | 0.863 | 0.990 | 0.729 | 0.872 | 1.000 | 0.729 | 0.474 | 0.602 |
Hungary | 0.676 | 0.360 | 0.791 | 0.716 | 0.682 | 1.000 | 1.000 | 0.682 | 1.000 | 1.000 | 0.309 | 0.762 |
Czech Republic | 0.537 | 0.368 | 0.838 | 0.476 | 0.554 | 0.996 | 1.000 | 0.556 | 1.000 | 1.000 | 0.939 | 0.315 |
Belgium | 0.584 | 0.878 | 0.827 | 0.875 | 0.458 | 0.662 | 0.883 | 0.460 | 0.665 | 0.883 | 1.000 | 0.317 |
Slovak Republic | 0.248 | 0.124 | 0.835 | 0.759 | 0.515 | 0.995 | 0.957 | 0.518 | 1.000 | 0.957 | 0.479 | 0.433 |
Luxembourg | 0.821 | 0.946 | 0.976 | 0.687 | 0.715 | 0.456 | 0.416 | 0.716 | 0.456 | 0.416 | 0.052 | 0.560 |
Country\Sub-Dimension | Transparency | Control of Bribery and Corruption | Democracy | Lack of Press Freedom | Residential Energy Use | Service Energy Use | Manufacturing Energy Use | Residential Energy Intensity | Service Energy Intensity | Per Capita Residential CO2 Emissions | Per Capita Service Energy Use | Per Capita Residential Carbon Intensity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Brazil | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Mexico | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
USA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Country\Sub-Dimension | Transparency | Control of Bribery and Corruption | Democracy | Lack of Press Freedom | Residential Energy Use | Service Energy Use | Manufacturing Energy Use | Residential Energy Intensity | Service Energy Intensity | Per Capita Residential CO2 Emissions | Per Capita Service Energy Use | Per Capita Residential Carbon Intensity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Japan | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
New Zealand | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
South Korea | 0.946 | 0.824 | 1.000 | 1.000 | 1.000 | 0.503 | 0.439 | 0.998 | 0.502 | 0.439 | 1.000 | 0.705 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-L.; Chang, T.-Y. Energy Resilience: A Cross-Economy Comparison. Energies 2023, 16, 2214. https://doi.org/10.3390/en16052214
Hu J-L, Chang T-Y. Energy Resilience: A Cross-Economy Comparison. Energies. 2023; 16(5):2214. https://doi.org/10.3390/en16052214
Chicago/Turabian StyleHu, Jin-Li, and Tien-Yu Chang. 2023. "Energy Resilience: A Cross-Economy Comparison" Energies 16, no. 5: 2214. https://doi.org/10.3390/en16052214
APA StyleHu, J. -L., & Chang, T. -Y. (2023). Energy Resilience: A Cross-Economy Comparison. Energies, 16(5), 2214. https://doi.org/10.3390/en16052214