Greenfield Investment as a Catalyst of Green Economic Growth
Abstract
:1. Introduction
2. Literature Review
2.1. Assessment of Green Economic Growth
2.2. Greenfield Investment and Green Economic Growth
3. Materials and Methods
3.1. Assessment of the Green Economic Growth
- Input variables (): labor force (L), gross capital formation (K), share of renewable energy in primary energy consumption (E);
- Output variable ( GDP per capita;
- Undesirable consequences from production in countries that should be minimized (: carbon dioxide emissions CO2:
- 1.
- High level (Green group)— , where is the average value of green economic growth and is the standard deviation.
- 2.
- Average level (Yellow group)—.
- 3.
- Low level (Red group)—.
3.2. Assessment of the Greenfield Investment Effect on the Green Economic Growth
3.3. Data and Source
4. Results
5. Discussion and Conclusions
- The EU countries should enhance the common green innovative projects which boost the sharing of the best knowledge and practices, and the development of the network of green investors. Moreover, it allows increase the openness of economy within circulation not only capital and resources but also knowledge and technologies.
- The EU commission should provide the obligatory response to publish non-financial statements at all levels (companies, local authorities, etc.). It will increase the transparency and accountability of the greenfield investment during the entire cycle.
- It should continue to provide the digitalization of state services which simplify the communication between green investors, business, and authorities during the realization of green projects. Moreover, it allows for a decline in corruption, and increased transparency and trust in the government.
- It should improve the legislation base for the circulation of green bonds, which attract new investors to the country. Consequently, it promotes the appropriate climate for developing green innovation projects which act as a catalyst for the green economic growth of the country.
- It should continue to intensify the fiscal incentives for green investors minimal loan rates, preferential taxation of green projects, etc.
- It should promote green education and implement targeted programs to promote green consciousness and awareness among green investors, businesses, local community, and government.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Green Deal. 2022. Available online: https://www.consilium.europa.eu/en/policies/green-deal/ (accessed on 20 October 2022).
- A European Green Deal. 2022. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 20 October 2022).
- Cojocaru, T.M.; Ionescu, G.H.; Firoiu, D.; Cismaș, L.M.; Oțil, M.D.; Toma, O. Reducing Inequalities within and among EU Countries—Assessing the Achievement of the 2030 Agenda for Sustainable Development Targets (SDG 10). Sustainability 2022, 14, 7706. [Google Scholar] [CrossRef]
- Czyżewski, B.; Matuszczak, A.; Polcyn, J.; Smędzik-Ambroży, K.; Staniszewski, J. Deadweight loss in environmental policy: The case of the European union member states. J. Clean. Prod. 2020, 260, 121064. [Google Scholar] [CrossRef]
- Czyżewski, B.; Polcyn, J.; Brelik, A. Political orientations, economic policies, and environmental quality: Multivalued treatment effects analysis with spatial spillovers in country districts of Poland. Environ. Sci. Policy 2022, 128, 1–13. [Google Scholar] [CrossRef]
- Bardy, R.; Rubens, A. Weighing Externalities of Economic Recovery Projects: An Alternative to Green Taxonomies that is Fairer and more Realistic. Bus. Ethics Leadersh. 2022, 6, 23–34. [Google Scholar] [CrossRef]
- Gavkalova, N.; Lola, Y.; Prokopovych, S.; Akimov, O.; Smalskys, V.; Akimova, L. Innovative Development of Renewable Energy During the Crisis Period and Its Impact on the Environment. Virtual Econ. 2022, 5, 65–77. [Google Scholar] [CrossRef]
- Schmidt-Traub, G.; Kroll, C.; Teksoz, K.; Durand-Delacre, D.; Sachs, J.D. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nat. Geosci. 2017, 10, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Inderst, G.; Kaminker, C.h.; Stewart, F. Defining and Measuring Green Investments: Implications for Institutional Investors Asset Allocations; OECD Working Papers on Finance, Insurance and Private Pensions, No.24; OECD Publishing: Paris, France, 2012; Available online: https://www.oecd.org/environment/WP_24_Defining_and_Measuring_Green_Investments.pdf (accessed on 10 December 2022).
- UNCTAD. World Investment Report. 2022. Available online: https://worldinvestmentreport.unctad.org (accessed on 10 December 2022).
- Feng, G.F.; Niu, P.; Wang, J.Z.; Liu, J. Capital market liberalization and green innovation for sustainability: Evidence from China. Econ. Anal. Policy 2022, 75, 610–623. [Google Scholar] [CrossRef]
- Calza, F.; Parmentola, A.; Tutore, I. Types of Green Innovations: Ways of Implementation in a Non-Green Industry. Sustainability 2017, 9, 1301. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Sui, H.; Jermsittiparsert, K.; Żukiewicz-Sobczak, W.; Sobczak, P. Trade Liberalization and Environmental Performance Index: Mediation Role of Climate Change Performance and Greenfield Investment. Sustainability 2021, 13, 9734. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management–An exploratory literature review. RD Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Saunila, M.; Ukko, J.; Rantala, T. Sustainability as a driver of green innovation investment and exploitation. J. Clean. Prod. 2018, 179, 631–641. [Google Scholar] [CrossRef]
- Huang, H.; Wang, F.; Song, M.; Balezentis, T.; Streimikiene, D. Green innovations for sustainable development of China: Analysis based on the nested spatial panel models. Technol. Soc. 2021, 65, 101593. [Google Scholar] [CrossRef]
- Castellani, D.; Marin, G.; Montresor, S.; Zanfei, A. Greenfield foreign direct investments and regional environmental technologies. Res. Policy 2022, 51, 104405. [Google Scholar] [CrossRef]
- Amendolagine, V.; Lema, R.; Rabellotti, R. Green foreign direct investments and the deepening of capabilities for sustainable innovation in multinationals: Insights from renewable energy. J. Clean. Prod. 2021, 310, 127381. [Google Scholar] [CrossRef]
- Adeel-Farooq, R.M.; Bakar, N.A.A.; Raji, J.O. Green field investment and environmental performance: A case of selected nine developing countries of Asia. Environ. Prog. Sustain. Energy 2018, 37, 1085–1092. [Google Scholar] [CrossRef]
- Neto, P.; Brandão, A.; Cerqueira, A. The impact of FDI, cross-border mergers and acquisitions, and greenfield investments on economic growth. IUP J. Bus. Strategy 2008, 1, 24–44. [Google Scholar]
- Bayar, Y. Greenfield and brownfield investments and economic growth: Evidence from central and Eastern European Union countries. Naše Gospod./Our Econ. 2017, 63, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Alon, I.; Bretas, V.P.; Sclip, A.; Paltrinieri, A. Greenfield FDI attractiveness index: A machine learning approach. Compet. Rev. Int. Bus. J. 2022, 37, 85–108. [Google Scholar] [CrossRef]
- Adamowicz, M. Green Deal, Green Growth and Green Economy as a Means of Support for Attaining the Sustainable Development Goals. Sustainability 2022, 14, 5901. [Google Scholar] [CrossRef]
- Rybalkin, O.; Lavrinenko, O.; Ignatjeva, S.; Danilevica, A. Introduction of EEPSE green economy index for the analysis of regional trends. Entrep. Sustain. Issues 2021, 9, 415–435. [Google Scholar] [CrossRef]
- Barbier, E.B. The green economy post Rio 20. Science 2013, 33, 887–888. [Google Scholar] [CrossRef] [PubMed]
- OECD. Green Growth Indicators 2017; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- Song, X.; Zhou, Y.; Jia, W. How do economic openness and R&D investment affect green economic growth?—Evidence from China. Resour. Conserv. Recycl. 2019, 146, 405–415. [Google Scholar] [CrossRef]
- Sohag, K.; Taşkın, F.D.; Malike, M.N. Green economic growth, cleaner energy and militarization: Evidence from Turkey. Resour. Policy 2019, 63, 101407. [Google Scholar] [CrossRef]
- Zeng, J.J.; Tong, W.S. How do energy policies affect the development of industrial green economy. China Popul. Environ. 2018, 28, 19–28. [Google Scholar]
- Kalantaripor, M.; Najafi Alamdarlo, H. Spatial Effects of Energy Consumption and Green GDP in Regional Agreements. Sustainability 2021, 13, 10078. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, Y.; Qian, P. The effect of innovation-driven strategy on green economic development in China—An empirical study of smart cities. Int. J. Environ. Res. Public Health 2020, 17, 1520. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, H.; Qin, Q.; Peng, Y. Market-oriented reforms and China’s green economic development: An empirical study based on stochastic frontier analysis. Emerg. Mark. Financ. Trade 2021, 57, 949–971. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Yu, Z.; Umar, M. A road map for environmental sustainability and green economic development: An empirical study. Environ. Sci. Pollut. Res. 2022, 29, 16082–16090. [Google Scholar] [CrossRef]
- Dizon, K.E.; Noroña, M.I. The effects of green economic development (GED) interventions on the intention of recycled paper-based producers to adopt sustainable business practices (SBP) in the Philippines. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Rome, Italy, 2–5 August 2021; pp. 2155–2166. [Google Scholar]
- Gao, X. Urban green economic development indicators based on spatial clustering algorithm and blockchain. J. Intell. Fuzzy Syst. 2021, 40, 7049–7060. [Google Scholar] [CrossRef]
- Guo, S.; Diao, Y. Spatial-temporal evolution and driving factors of coupling between urban spatial functional division and green economic development: Evidence from the Yangtze River economic belt. Front. Environ. Sci. 2022, 10, 2312. [Google Scholar] [CrossRef]
- Kuang, Y.; Lin, B. Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China. Resour. Policy 2022, 79, 102992. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Wang, H. Energy and CO2 emission performance in electricity generation: A nonradial directional distance function approach. Eur. J. Oper. Res. 2012, 221, 625–635. [Google Scholar] [CrossRef]
- Pan, L.; Yu, J.; Lin, L. The temporal and spatial pattern evolution of land-use carbon emissions in China coastal regions and its response to green economic development. Front. Environ. Sci. 2022, 10, 1654. [Google Scholar] [CrossRef]
- Peng, M.; Fan, J. Statistical evaluation of green economic development based on rough set calculation method. J. Phys. Conf. Ser. 2021, 1994, 012042. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Yang, S. Green economic development under the fiscal decentralization system: Evidence from China. Front. Environ. Sci. 2022, 10, 1437. [Google Scholar] [CrossRef]
- Ye, M.; Chen, W.; Guo, L.; Li, Y. “Green” economic development in China: Quantile regression evidence from the Yangtze River economic belt. Environ. Sci. Pollut. Res. 2022, 29, 60572–60583. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Y.; Huang, Z.; Wang, Y. How big data drives green economic development: Evidence from China. Front. Environ. Sci. 2022, 10, 2281. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Dzwigol, H.; Vakulenko, I.; Pimonenko, T. Integrative Smart Grids’ Assessment System. Energies 2022, 15, 545. [Google Scholar] [CrossRef]
- Miśkiewicz, R.; Matan, K.; Karnowski, J. The Role of Crypto Trading in the Economy, Renewable Energy Consumption and Ecological Degradation. Energies 2022, 15, 3805. [Google Scholar] [CrossRef]
- Miśkiewicz, R.; Rzepka, A.; Borowiecki, R.; Olesińki, Z. Energy Efficiency in the Industry 4.0 Era: Attributes of Teal Organizations. Energies 2021, 14, 6776. [Google Scholar] [CrossRef]
- Yang, W.; Chen, Q.; Guo, Q.; Huang, X. Toward sustainable development: How digitalization, technological innovation, and green economic development interact with each other. Int. J. Environ. Res. Public Health 2022, 19, 12273. [Google Scholar] [CrossRef]
- Miskiewicz, R. Clean and Affordable Energy within Sustainable Development Goals: The Role of Governance Digitalization. Energies 2022, 15, 9571. [Google Scholar] [CrossRef]
- Dźwigoł, H.; Wolniak, R. Controlling in the Management Process of a Chemical Industry Production Company. Przem. Chem. 2018, 97, 1114–1116. [Google Scholar] [CrossRef]
- Ingber, L. Quantum path-integral qPATHINT algorithm. Open Cybern. Syst. J. 2017, 11, 119–133. [Google Scholar] [CrossRef]
- Hezam, I.M.; Mishra, A.R.; Rani, P.; Saha, A.; Smarandache, F.; Pamucar, D. An integrated decision support framework using single-valued neutrosophic-MASWIP-COPRAS for sustainability assessment of bioenergy production technologies. Expert Syst. Appl. 2023, 211, 118674. [Google Scholar] [CrossRef]
- Miśkiewicz, R. The Impact of Innovation and Information Technology on Greenhouse Gas Emissions: A Case of the Visegrád Countries. J. Risk Financ. Manag. 2021, 14, 59. [Google Scholar] [CrossRef]
- Vanickova, R. Innovation corporate energy management: Efficiency of green investment. Mark. Manag. Innov. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Miskiewicz, R. Efficiency of electricity production technology from postprocess gas heat: Ecological, economic and social benefits. Energies 2020, 13, 6106. [Google Scholar] [CrossRef]
- Hussain, H.I.; Haseeb, M.; Kamarudin, F.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K. The role of globalization, economic growth and natural resources on the ecological footprint in Thailand: Evidence from nonlinear causal estimations. Processes 2021, 9, 1103. [Google Scholar] [CrossRef]
- Nawawi, M.; Samsudin, H.; Saputra, J.; Szczepańska-Woszczyna, K.; Kot, S. The Effect of Formal and Informal Regulations on Industrial Effluents and Firm Compliance Behavior in Malaysia. Prod. Eng. Arch. 2022, 28, 193–200. [Google Scholar] [CrossRef]
- Szczepańska-Woszczyna, K.; Gedvilaitė, D.; Nazarko, J.; Stasiukynas, A.; Rubina, A. Assessment of Economic Convergence among Countries in the European Union. Technol. Econ. Dev. Econ. 2022, 28, 1572–1588. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Sukhodolia, O.; Dzwigol, H.; Bobro, D.; Kotowicz, J. The systemic approach for estimating and strategizing energy security: The case of Ukraine. Energies 2021, 14, 2126. [Google Scholar] [CrossRef]
- Prokopenko, O.; Miśkiewicz, R. Perception of “green shipping” in the contemporary conditions. Entrep. Sustain. Issues 2020, 8, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Polcyn, J.; Us, Y.; Lyulyov, O.; Pimonenko, T.; Kwilinski, A. Factors Influencing the Renewable Energy Consumption in Selected European Countries. Energies 2022, 15, 108. [Google Scholar] [CrossRef]
- Melnychenko, O. Energy Losses Due to Imperfect Payment Infrastructure and Payment Instruments. Energies 2021, 14, 8213. [Google Scholar] [CrossRef]
- Kotowicz, J.; Węcel, D.; Kwilinski, A.; Brzęczek, M. Efficiency of the power-to-gas-to-liquid-to-power system based on green methanol. Appl. Energy 2022, 314, 118933. [Google Scholar] [CrossRef]
- Dźwigol, H.; Dźwigoł-Barosz, M.; Zhyvko, Z.; Miśkiewicz, R.; Pushak, H. Evaluation of the energy security as a component of national security of the country. J. Secur. Sustain. Issues 2019, 8, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Saługa, P.W.; Szczepańska-Woszczyna, K.; Miśkiewicz, R.; Chład, M. Cost of equity of coal-fired power generation projects in Poland: Its importance for the management of decision-making process. Energies 2020, 13, 4833. [Google Scholar] [CrossRef]
- Saługa, P.W.; Zamasz, K.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K.; Malec, M. Risk-adjusted discount rate and its components for onshore wind farms at the feasibility stage. Energies 2021, 14, 6840. [Google Scholar] [CrossRef]
- Kostyrko, R.; Kosova, T.; Kostyrko, L.; Zaitseva, L.; Melnychenko, O. Ukrainian Market of Electrical Energy: Reforming, Financing, Innovative Investment, Efficiency Analysis, and Audit. Energies 2021, 14, 5080. [Google Scholar] [CrossRef]
- Coban, H.H.; Lewicki, W.; Miśkiewicz, R.; Drożdż, W. The Economic Dimension of Using the Integration of Highway Sound Screens with Solar Panels in the Process of Generating Green Energy. Energies 2023, 16, 178. [Google Scholar] [CrossRef]
- Cyfert, S.; Chwiłkowska-Kubala, A.; Szumowski, W.; Miśkiewicz, R. The process of developing dynamic capabilities: The conceptualization attempt and the results of empirical studies. PLoS ONE 2021, 16, e0249724. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Kwilinski, A.; Grishnova, O.; Dzwigol, H. Social safety of society for developing countries to meet sustainable development standards: Indicators, level, strategic benchmarks (with calculations based on the case study of Ukraine). Sustainability 2020, 12, 8953. [Google Scholar] [CrossRef]
- Dzwigol, H. Research Methodology in Management Science: Triangulation. Virtual Econ. 2022, 5, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Dzwigol, H. Methodological and Empirical Platform of Triangulation in Strategic Management. Acad. Strateg. Manag. J. 2020, 19, 1–8. [Google Scholar]
- Us, Y.; Pimonenko, T.; Lyulyov, O.; Chen, Y.; Tambovceva, T. Promoting Green Brand of University in Social Media: Text Mining and Sentiment Analysis. Virtual Econ. 2022, 5, 24–42. [Google Scholar] [CrossRef] [PubMed]
- Miśkiewicz, R. The importance of knowledge transfer on the energy market. Polityka Energetyczna 2018, 21, 49–62. [Google Scholar] [CrossRef]
- Szczepańska-Woszczyna, K.; Gatnar, S. Key Competences of Research and Development Project Managers in High Technology Sector. Forum Sci. Oeconomia 2022, 10, 107–130. [Google Scholar] [CrossRef]
- Trzeciak, M.; Kopec, T.P.; Kwilinski, A. Constructs of Project Programme Management Supporting Open Innovation at the Strategic Level of the Organization. J. Open Innov. Technol. Mark. Complex. 2022, 8, 58. [Google Scholar] [CrossRef]
- Miśkiewicz, R. Knowledge and innovation 4.0 in today’s electromobility. In Sustainability, Technology and Innovation 4.0; Makieła, Z., Stuss, M.M., Borowiecki, R., Eds.; Routledge: London, UK, 2021; pp. 256–275. [Google Scholar]
- Dzwigol, H.; Aleinikova, O.; Umanska, Y.; Shmygol, N.; Pushak, Y. An Entrepreneurship Model for Assessing the Investment Attractiveness of Regions. J. Entrep. Educ. 2019, 22, 1–7. [Google Scholar]
- Tih, S.; Wong, K.-K.; Lynn, G.S.; Reilly, R.R. Prototyping, Customer Involvement, and Speed of Information Dissemination in New Product Success. J. Bus. Ind. Mark. 2016, 31, 437–448. [Google Scholar] [CrossRef]
- Kianpour, M.; Kowalski, S.J.; Øverby, H. Systematically Understanding Cybersecurity Economics: A Survey. Sustainability 2021, 13, 13677. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B. How do R&D inputs affect green economic development? evidence from China. Technol. Anal. Strateg. Manag. 2022, 34, 1353–1368. [Google Scholar] [CrossRef]
- Xia, L.; Liu, Y.; Tian, Y. Green finance strategies for mitigating GHG emissions in China: Public spending as a new determinant of green economic development. Front. Environ. Sci. 2022, 10, 1710. [Google Scholar] [CrossRef]
- Dzwigol, H.; Dzwigol-Barosz, M. Sustainable Development of the Company on the basis of Expert Assessment of the Investment Strategy. Acad. Strateg. Manag. J. 2020, 19, 1–7. [Google Scholar]
- Xie, F.; Liu, Y.; Guan, F.; Wang, N. How to coordinate the relationship between renewable energy consumption and green economic development: From the perspective of technological advancement. Environ. Sci. Eur. 2020, 32, 71. [Google Scholar] [CrossRef]
- Desalegn, G.; Tangl, A. Enhancing Green Finance for Inclusive Green Growth: A Systematic Approach. Sustainability 2022, 14, 7416. [Google Scholar] [CrossRef]
- Mo, Y.; Ullah, S.; Ozturk, I. Green investment and its influence on green growth in high polluted Asian economies: Do financial markets and institutions matter? Econ. Res. Ekon. Istraz. 2022, 35, 1–11. [Google Scholar] [CrossRef]
- Qian, X. Investment for green growth: An analysis of the CAI environmental provisions. J. World Invest. Trade 2022, 23, 628–650. [Google Scholar] [CrossRef]
- Drożdż, W.; Kinelski, G.; Czarnecka, M.; Wójcik-Jurkiewicz, M.; Maroušková, A.; Zych, G. Determinants of Decarbonization—How to Realize Sustainable and Low Carbon Cities? Energies 2021, 14, 2640. [Google Scholar] [CrossRef]
- Hu, A.; Zhou, S. Green development: Functional definition, mechanism analysis and development strategy. Zhongguo Renkou Ziyuan Yu Huan Jing/China Popul. Resour. Environ. 2014, 24, 14–20. [Google Scholar] [CrossRef]
- Chen, J.; Geng, Y.; Liu, R. Carbon emissions trading and corporate green investment: The perspective of external pressure and internal incentive. Bus. Strategy Environ. 2022. [Google Scholar] [CrossRef]
- Chygryn, O.; Bilan, Y.; Kwilinski, A. Stakeholders of Green Competitiveness: Innovative Approaches for Creating Communicative System. Mark. Manag. Innov. 2020, 3, 358–370. [Google Scholar] [CrossRef]
- Vaníčková, R.; Szczepańska-Woszczyna, K. Innovation of business and marketing plan of growth strategy and competitive advantage in exhibition industry. Pol. J. Manag. Stud. 2020, 21, 425–445. [Google Scholar] [CrossRef]
- Coban, H.H.; Lewicki, W.; Sendek-Matysiak, E.; Łosiewicz, Z.; Drożdż, W.; Miśkiewicz, R. Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System. Energies 2022, 15, 8218. [Google Scholar] [CrossRef]
- Done, I.; Chivu, L.; Andrei, J.; Matei, M. Using labor force and green investments in valuing the Romanian agriculture potential. J. Food Agric. Environ. 2012, 10, 737–741. [Google Scholar]
- Sun, H.; Wan, Y.; Zhang, L.; Zhou, Z. Evolutionary game of the green investment in a two-echelon supply chain under a government subsidy mechanism. J. Clean. Prod. 2019, 235, 1315–1326. [Google Scholar] [CrossRef]
- Chygryn, O.; Krasniak, V. Theoretical and applied aspects of the development of environmental investment in Ukraine. Mark. Manag. Innov. 2015, 3, 226–234. [Google Scholar]
- Wu, S.; Zhou, X.; Zhu, Q. Green credit and enterprise environmental and economic performance: The mediating role of eco-innovation. J. Clean. Prod. 2023, 382, 135248. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, Q. Renewable energy policy, green investment, and sustainability of energy firms. Renew. Energy 2022, 192, 118–133. [Google Scholar] [CrossRef]
- Zhu, X.; Du, J.; Boamah, K.B.; Long, X. Dynamic analysis of green investment decision of manufacturer. Environ. Sci. Pollut. Res. 2020, 27, 16998–17012. [Google Scholar] [CrossRef]
- Huang, H.; Mo, R.; Chen, X. New patterns in China’s regional green development: An interval Malmquist-Luenberger productivity analysis. Struct. Chang. Econ. Dyn. 2021, 58, 161–173. [Google Scholar] [CrossRef]
- Yang, D.G.; Yang, G.; Zhou, Z.T. Assessing the regional sustainability performance in China using the global Malmquist-Luenberger productivity index. Int. J. Energy Sect. Manag. 2020, 15, 820–854. [Google Scholar]
- Wang, K.L.; Pang, S.Q.; Ding, L.L.; Miao, Z. Combining the biennial Malmquist–Luenberger index and panel quantile regression to analyze the green total factor productivity of the industrial sector in China. Sci. Total Environ. 2020, 739, 140280. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Mehra, A.; Kumar, S. Dynamic metafrontier Malmquist–Luenberger productivity index in network DEA: An application to banking data. Comput. Econ. 2021, 59, 297–324. [Google Scholar] [CrossRef]
- Qu, Y.; Li, J.; Wang, S. Green total factor productivity measurement of industrial enterprises in Zhejiang Province, China: A DEA model with undesirable output approach. Energy Rep. 2022, 8, 307–317. [Google Scholar] [CrossRef]
- Letunovska, N.; Saher, L.; Vasylieva, T.; Lieonov, S. Dependence of Public Health on Energy Consumption: A Cross-Regional Analysis. E3S Web Conf. 2021, 250, 04014. [Google Scholar] [CrossRef]
- Kolosok, S.; Vasylieva, T.; Lyeonov, S. Machine Analysis of the UK Electrical Energy Initiatives Based on the e-Petitions to the UK Government and Parliament. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2021. Volume 2870, pp. 1562–1573. [Google Scholar]
- Rosokhata, A.; Minchenko, M.; Khomenko, L.; Chygryn, O. Renewable energy: A bibliometric analysis. E3S Web Conf. 2021, 250, 03002. [Google Scholar] [CrossRef]
- Mynenko, S.; Lyulyov, O. The Impact of Digitalization on the Transparency of Public Authorities. Bus. Ethics Leadersh. 2022, 6, 103–115. [Google Scholar] [CrossRef]
- Shkolnyk, I.O.; Melnyk, Y.; Mershchii, B. Assessment of institutional conditions of fiscal decentralization in Ukraine. Financ. Mark. Inst. Risks 2018, 2, 5–13. [Google Scholar] [CrossRef]
- Pavlyk, V. Assessment of green investment impact on the energy efficiency gap of the national economy. Financ. Mark. Inst. Risks 2020, 4, 117–123. [Google Scholar] [CrossRef]
- Ramli, M.; Boutayeba, F.; Nezai, A. Public Investment in Human Capital and Economic Growth in Algeria: An empirical study using ARDL approach. SocioEconomic Chall. 2022, 6, 55–66. [Google Scholar] [CrossRef]
- Donlagic, A.; Moskalenko, B.A. The Impact of FDI Inflow on The Environment: A Case of The Baltic-Black Sea Region Countries. SocioEconomic Chall. 2020, 4, 151–159. [Google Scholar] [CrossRef]
- World Data Bank. 2022. Available online: https://data.worldbank.org (accessed on 10 December 2022).
- Eurostat. 2022. Available online: https://ec.europa.eu/eurostat/en/ (accessed on 10 December 2022).
Variables | Symbols | Source | Obs. | Max | Min | Mean | Std. Dev. |
---|---|---|---|---|---|---|---|
Input parameters: | |||||||
Labor | L | World Data Bank [112] | 405 | 4.44 × 107 | 165,493 | 7,892,890 | 1.04 × 107 |
Capital | K | 405 | 8.41 × 1011 | 1.52 × 109 | 1.17 × 1011 | 1.82 × 1011 | |
A share of renewable energy in primary energy consumption | E | 405 | 242,094.8 | 0 | 28,102.99 | 41,039.27 | |
Output parameters: | |||||||
Gross Domestic product per capita | GDP | World Data Bank [112] | 405 | 123,678.7 | 4523.051 | 33,172.39 | 22,536.45 |
CO2 emissions | CO2 | Eurostat [113] | 405 | 814,410 | 1350 | 114,751.3 | 164,862 |
Influential factor: | |||||||
Greenfield investment | GI | UNCTAD [10] | 405 | 84,826 | 3 | 9216.23 | 15,693.69 |
Control variables: | |||||||
Economic openness | TO | World Data Bank [112] | 405 | 380.104 | 45.419 | 125.820 | 65.641 |
Effectiveness of government institutions | WGI | 405 | 1.889 | 0.087 | 1.036 | 0.488 |
Variables | Mean | CV | Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2006 | 2009 | 2012 | 2015 | 2018 | 2020 | ||||||
Austria | 0.999 | 0.984 | 0.987 | 0.972 | 1.013 | 0.981 | 1.000 | 1.012 | 0.01 | 0.03 | Green |
Belgium | 1.003 | 0.982 | 0.988 | 0.975 | 1.013 | 0.981 | 1.000 | 1.008 | 0.01 | 0.03 | Yellow |
Bulgaria | 1.003 | 0.999 | 0.998 | 0.996 | 1.005 | 0.999 | 1.002 | 0.980 | 0.00 | 0.09 | Red |
Croatia | 1.006 | 0.992 | 0.993 | 0.992 | 1.007 | 0.992 | 1.001 | 0.991 | 0.01 | 0.06 | Yellow |
Cyprus | 1.000 | 0.862 | 1.072 | 1.022 | 1.017 | 0.988 | 0.968 | 0.981 | 0.10 | 0.13 | Red |
Czech Republic | 1.009 | 0.985 | 0.990 | 0.991 | 1.012 | 0.991 | 1.002 | 1.004 | 0.01 | 0.04 | Yellow |
Denmark | 1.017 | 0.972 | 0.980 | 0.959 | 1.014 | 0.972 | 0.999 | 1.012 | 0.02 | 0.06 | Green |
Estonia | 1.012 | 0.977 | 0.998 | 0.980 | 1.013 | 0.988 | 1.003 | 1.006 | 0.01 | 0.13 | Yellow |
Finland | 1.017 | 0.979 | 0.982 | 0.978 | 1.013 | 1.000 | 1.001 | 1.012 | 0.02 | 0.04 | Green |
France | 1.006 | 0.983 | 0.988 | 0.975 | 1.010 | 0.993 | 1.000 | 1.010 | 0.01 | 0.03 | Yellow |
Germany | 1.007 | 0.982 | 0.989 | 0.973 | 1.011 | 0.996 | 1.002 | 1.013 | 0.01 | 0.02 | Green |
Greece | 1.010 | 0.989 | 0.986 | 0.983 | 1.005 | 0.988 | 0.998 | 0.968 | 0.01 | 0.11 | Red |
Hungary | 1.001 | 0.989 | 0.995 | 0.994 | 1.006 | 0.995 | 1.001 | 1.009 | 0.01 | 0.08 | Yellow |
Ireland | 0.984 | 0.899 | 0.990 | 1.051 | 0.977 | 0.820 | 0.985 | 0.979 | 0.06 | 0.15 | Yellow |
Italy | 1.006 | 0.983 | 0.986 | 0.980 | 1.008 | 0.987 | 0.999 | 0.995 | 0.01 | 0.03 | Yellow |
Latvia | 1.011 | 0.981 | 1.002 | 0.991 | 1.011 | 0.994 | 1.003 | 0.986 | 0.01 | 0.14 | Yellow |
Lithuania | 1.007 | 0.985 | 1.000 | 0.989 | 1.011 | 0.997 | 1.004 | 0.992 | 0.01 | 0.11 | Yellow |
Luxembourg | 1.046 | 0.979 | 0.965 | 0.957 | 1.038 | 0.972 | 0.994 | 1.002 | 0.03 | 0.03 | Yellow |
Malta | 1.020 | 1.000 | 0.974 | 0.742 | 0.995 | 0.974 | 0.994 | 0.999 | 0.08 | 0.06 | Red |
Netherlands | 1.010 | 0.978 | 0.982 | 0.971 | 1.014 | 0.982 | 1.001 | 1.012 | 0.02 | 0.08 | Green |
Poland | 1.005 | 0.989 | 0.996 | 0.993 | 1.007 | 0.997 | 1.002 | 0.995 | 0.01 | 0.07 | Yellow |
Portugal | 1.004 | 0.992 | 0.991 | 0.988 | 1.007 | 0.989 | 1.001 | 0.990 | 0.01 | 0.06 | Yellow |
Romania | 1.005 | 0.991 | 0.998 | 0.996 | 1.007 | 0.998 | 1.002 | 1.005 | 0.01 | 0.13 | Yellow |
Slovak Republic | 1.007 | 0.990 | 0.995 | 0.989 | 1.008 | 0.998 | 1.002 | 0.987 | 0.01 | 0.08 | Yellow |
Slovenia | 1.008 | 0.984 | 0.987 | 0.984 | 1.012 | 0.990 | 1.002 | 0.988 | 0.01 | 0.07 | Yellow |
Spain | 1.007 | 0.985 | 0.986 | 0.986 | 1.009 | 0.983 | 0.999 | 0.990 | 0.01 | 0.06 | Yellow |
Sweden | 1.010 | 0.966 | 0.989 | 0.971 | 1.002 | 0.994 | 1.001 | 1.019 | 0.02 | 0.04 | Green |
Variables | Levin–Lin–Chu | Im–Pesaran–Shin | Augmented Dickey–Fuller | Harris–Tzavalis | ||||
---|---|---|---|---|---|---|---|---|
Statistic | p Value | Statistic | p Value | Statistic | p Value | Statistic | p Value | |
At level | ||||||||
−14.269 | 0.000 | −7.258 | 0.000 | 216.587 | 0.000 | 0.182 | 0.000 | |
GI | −7.891 | 0.000 | −7.007 | 0.000 | 275.892 | 0.000 | 0.370 | 0.000 |
TO | −2.862 | 0.002 | −0.853 | 0.197 | 56.876 | 0.369 | 0.796 | 0.328 |
WGI | −1.627 | 0.052 | 0.223 | 0.588 | 49.078 | 0.664 | 0.811 | 0.478 |
At First difference | ||||||||
−18.938 | 0.000 | −10.181 | 0.000 | 489.103 | 0.000 | −0.259 | 0.000 | |
GI | −15.528 | 0.000 | −10.551 | 0.000 | 732.726 | 0.000 | −0.202 | 0.000 |
TO | −9.509 | 0.000 | −7.659 | 0.000 | 250.627 | 0.000 | −0.032 | 0.000 |
WGI | −6.845 | 0.000 | −9.026 | 0.000 | 421.071 | 0.000 | −0.128 | 0.000 |
Indicator | GI | TO | WGI | Mean VIF |
---|---|---|---|---|
VIF | 2.20 | 2.05 | 1.70 | 1.98 |
Variables | Total | Green | Yellow | Red | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | ||||||||||
Coef | Prob | Coef | Prob | Coef | Prob | Coef | Prob | Coef | Prob | Coef | Prob | Coef | Prob | Coef | Prob | ||
GI | 0.017 | 0.000 | 0.015 | 0.000 | 0.035 | 0.000 | 0.026 | 0.000 | 0.003 | 0.000 | 0.004 | 0.003 | 0.017 | 0.014 | 0.019 | 0.006 | |
TO | – | – | 0.180 | 0.000 | – | – | 0.148 | 0.000 | – | – | 0.071 | 0.000 | – | – | 0.178 | 0.000 | |
WGI | – | – | 0.002 | 0.828 | – | – | 0.116 | 0.014 | – | – | −0.009 | 0.167 | – | – | 0.021 | 0.498 | |
sigma_u | 0.871 | 0.000 | 0.085 | 0.000 | 0.667 | 0.002 | 0.032 | 0.002 | 1.020 | 0.000 | 0.634 | 0.000 | 0.888 | 0.005 | 0.103 | 0.022 | |
sigma_e | 0.031 | 0.000 | 0.033 | 0.000 | 0.016 | 0.000 | 0.015 | 0.000 | 0.032 | 0.000 | 0.020 | 0.000 | 0.060 | 0.000 | 0.061 | 0.000 | |
rho | 0.998 | 0.873 | 0.999 | 0.819 | 0.999 | 0.999 | 0.995 | 0.739 | |||||||||
Wald chi2 | 338.10 | 0.000 | 2702.05 | 0.000 | 5211.21 | 0.000 | 4728.29 | 0.000 | 35.55 | 0.000 | 4114.29 | 0.000 | 6.08 | 0.014 | 344.31 | 0.000 | |
LR test | 1476.40 | 0.000 | 414.63 | 0.000 | 209.90 | 0.000 | 99.42 | 0.000 | 1179.12 | 0.000 | 445.31 | 0.000 | 147.32 | 0.000 | 12.16 | 0.000 |
Variables | GI | TO | WGI | LR Chi2 | Group | ||||
---|---|---|---|---|---|---|---|---|---|
Coef | Prob | Coef | Prob | Coef | Prob | Coef | Prob | ||
Austria | 0.005 | 0.002 | 0.010 | 0.000 | 0.099 | 0.098 | 71295.280 | 0.000 | Green |
Belgium | 0.017 | 0.063 | 0.165 | 0.000 | 0.080 | 0.155 | 39220.780 | 0.000 | Yellow |
Bulgaria | −0.011 | 0.062 | 0.222 | 0.000 | 0.003 | 0.855 | 18817.31 | 0.000 | Red |
Croatia | 0.002 | 0.742 | 0.192 | 0.000 | −0.156 | 0.223 | 16634.88 | 0.000 | Yellow |
Cyprus | 0.017 | 0.603 | 0.174 | 0.005 | 0.111 | 0.485 | 603.88 | 0.000 | Red |
Czech Republic | 0.012 | 0.147 | 0.182 | 0.000 | −0.245 | 0.195 | 16207.23 | 0.000 | Yellow |
Denmark | 0.024 | 0.055 | 0.236 | 0.000 | 0.219 | 0.028 | 19680.29 | 0.000 | Green |
Estonia | 0.009 | 0.043 | 0.192 | 0.000 | −0.075 | 0.246 | 18422.69 | 0.000 | Yellow |
Finland | 0.002 | 0.817 | 0.243 | 0.000 | 0.058 | 0.087 | 29022.29 | 0.000 | Green |
France | 0.026 | 0.030 | 0.173 | 0.000 | 0.106 | 0.064 | 42010.36 | 0.000 | Yellow |
Germany | 0.043 | 0.004 | 0.113 | 0.005 | 0.067 | 0.070 | 31905.27 | 0.000 | Green |
Greece | 0.015 | 0.010 | 0.224 | 0.000 | 0.027 | 0.102 | 7924.02 | 0.000 | Red |
Hungary | 0.002 | 0.317 | 0.196 | 0.000 | 0.019 | 0.040 | 114576.77 | 0.000 | Yellow |
Ireland | −0.011 | 0.742 | 0.171 | 0.004 | 0.473 | 0.136 | 1348.89 | 0.000 | Yellow |
Italy | 0.027 | 0.001 | 0.200 | 0.000 | 0.113 | 0.010 | 62362.44 | 0.000 | Yellow |
Latvia | 0.012 | 0.045 | 0.191 | 0.000 | −0.107 | 0.152 | 14730.92 | 0.000 | Yellow |
Lithuania | 0.002 | 0.668 | 0.197 | 0.000 | −0.114 | 0.003 | 21083.59 | 0.000 | Yellow |
Luxembourg | −0.008 | 0.704 | 0.178 | 0.002 | 0.047 | 0.926 | 4095.12 | 0.000 | Yellow |
Malta | 0.033 | 0.012 | 0.145 | 0.000 | 0.248 | 0.104 | 1452.72 | 0.000 | Red |
Netherlands | 0.038 | 0.001 | 0.080 | 0.056 | 0.456 | 0.016 | 17727.70 | 0.000 | Green |
Poland | 0.020 | 0.185 | 0.189 | 0.000 | −0.015 | 0.706 | 7843.09 | 0.000 | Yellow |
Portugal | 0.019 | 0.002 | 0.197 | 0.000 | −0.077 | 0.321 | 21070.61 | 0.000 | Yellow |
Romania | 0.004 | 0.607 | 0.205 | 0.000 | 0.053 | 0.702 | 11252.12 | 0.000 | Yellow |
Slovak Republic | 0.005 | 0.027 | 0.201 | 0.000 | 0.171 | 0.000 | 55057.52 | 0.000 | Yellow |
Slovenia | 0.010 | 0.041 | 0.192 | 0.000 | 0.151 | 0.178 | 19712.07 | 0.000 | Yellow |
Spain | 0.039 | 0.000 | 0.151 | 0.000 | 0.080 | 0.310 | 41140.60 | 0.000 | Yellow |
Sweden | 0.011 | 0.007 | 0.180 | 0.000 | 0.076 | 0.024 | 20277.41 | 0.000 | Green |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Greenfield Investment as a Catalyst of Green Economic Growth. Energies 2023, 16, 2372. https://doi.org/10.3390/en16052372
Kwilinski A, Lyulyov O, Pimonenko T. Greenfield Investment as a Catalyst of Green Economic Growth. Energies. 2023; 16(5):2372. https://doi.org/10.3390/en16052372
Chicago/Turabian StyleKwilinski, Aleksy, Oleksii Lyulyov, and Tetyana Pimonenko. 2023. "Greenfield Investment as a Catalyst of Green Economic Growth" Energies 16, no. 5: 2372. https://doi.org/10.3390/en16052372
APA StyleKwilinski, A., Lyulyov, O., & Pimonenko, T. (2023). Greenfield Investment as a Catalyst of Green Economic Growth. Energies, 16(5), 2372. https://doi.org/10.3390/en16052372