Comparison of Pin Mill and Hammer Mill in the Fine Grinding of Sphagnum Moss
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Visual Appearance of Powder
3.2. Particle Size Dependence on Production Rate and Rotor Frequency
3.3. Particle Size vs. Energy Consumption
3.4. Width of Size Distribution (Span)
3.5. Bulk Density
3.6. Hausner Ratio
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karinkanta, P.; Ämmälä, A.; Illikainen, M.; Niinimäki, J. Fine Grinding of Wood—Overview from Wood Breakage to Applications. Biomass Bioenergy 2018, 113, 31–44. [Google Scholar] [CrossRef]
- Hansson, J.; Berndes, G.; Johnsson, F.; Kjärstad, J. Co-Firing Biomass with Coal for Electricity Generation—An Assessment of the Potential in EU27. Energy Policy 2009, 37, 1444–1455. [Google Scholar] [CrossRef]
- Dai, J.; Saayman, J.; Grace, J.R.; Ellis, N. Gasification of Woody Biomass. Annu. Rev. Chem. Biomol. Eng. 2015, 6, 77–99. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, M.; Jensen, P.D.; Hébert, J. Von Rittinger Theory Adapted to Wood Chip and Pellet Milling, in a Laboratory Scale Hammermill. Biomass Bioenergy 2013, 56, 70–81. [Google Scholar] [CrossRef]
- Wang, J.; Gao, J.; Brandt, K.L.; Wolcott, M.P. Energy Consumption of Two-Stage Fine Grinding of Douglas-Fir Wood. J. Wood Sci. 2018, 64, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Adapa, P.; Tabil, L.; Schoenau, G. Grinding Performance and Physical Properties of Non-Treated and Steam Exploded Barley, Canola, Oat and Wheat Straw. Biomass Bioenergy 2011, 35, 549–561. [Google Scholar] [CrossRef]
- Pachón-Morales, J.; Colin, J.; Casalinho, J.; Perré, P.; Puel, F. Flowability Characterization of Torrefied Biomass Powders: Static and Dynamic Testing. Biomass Bioenergy 2020, 138, 105608. [Google Scholar] [CrossRef]
- Fitzpatrick, J. Powder Properties in Food Production Systems. In Handbook of Food Powders; Elsevier: Amsterdam, The Netherlands, 2013; pp. 285–308. ISBN 978-0-85709-513-8. [Google Scholar]
- Kalman, H. Quantification of Mechanisms Governing the Angle of Repose, Angle of Tilting, and Hausner Ratio to Estimate the Flowability of Particulate Materials. Powder Technol. 2021, 382, 573–593. [Google Scholar] [CrossRef]
- Santomaso, A.; Lazzaro, P.; Canu, P. Powder Flowability and Density Ratios: The Impact of Granules Packing. Chem. Eng. Sci. 2003, 58, 2857–2874. [Google Scholar] [CrossRef]
- Xu, G.; Li, M.; Lu, P. Experimental Investigation on Flow Properties of Different Biomass and Torrefied Biomass Powders. Biomass Bioenergy 2019, 122, 63–75. [Google Scholar] [CrossRef]
- Tumuluru, J.; Heikkila, D. Biomass Grinding Process Optimization Using Response Surface Methodology and a Hybrid Genetic Algorithm. Bioengineering 2019, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ämmälä, A.; Pääkkönen, T.M.; Illikainen, M. Role of Screen Plate Design in the Performance of a Rotor Impact Mill in Fine Grinding of Biomass. Ind. Crops Prod. 2018, 122, 384–391. [Google Scholar] [CrossRef]
- Austin, L.G. A Preliminary Simulation Model for Fine Grinding in High Speed Hammer Mills. Powder Technol. 2004, 143–144, 240–252. [Google Scholar] [CrossRef]
- Mayer-Laigle, C.; Rajaonarivony, R.; Blanc, N.; Rouau, X. Comminution of Dry Lignocellulosic Biomass: Part II. Technologies, Improvement of Milling Performances, and Security Issues. Bioengineering 2018, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Lomovskiy, I.; Bychkov, A.; Lomovsky, O.; Skripkina, T. Mechanochemical and Size Reduction Machines for Biorefining. Molecules 2020, 25, 5345. [Google Scholar] [CrossRef]
- Meghwal, M.; Goswami, T.K. Comparative Study on Ambient and Cryogenic Grinding of Fenugreek and Black Pepper Seeds Using Rotor, Ball, Hammer and Pin Mill. Powder Technol. 2014, 267, 245–255. [Google Scholar] [CrossRef]
- Shashidhar, M.G.; Murthy, T.P.K.; Girish, K.G.; Manohar, B. Grinding of Coriander Seeds: Modeling of Particle Size Distribution and Energy Studies. Part. Sci. Technol. 2013, 31, 449–457. [Google Scholar] [CrossRef]
- Tangirala, S.; Charithkumar, K.; Goswami, T.K. Modeling of Size Reduction, Particle Size Analysis and Flow Characterisation of Spice Powders Ground in Hammer and Pin Mills. Int. J. Res. Eng. Technol. 2014, 3, 296–309. [Google Scholar] [CrossRef]
- Silvan, N. Sphagnum farming: A quick restoration for cut-away peatlands. In Peatlands International; International Peatland Society: Jyväskylä, Finland, 2010; pp. 24–25. [Google Scholar]
- Gaudig, G.; Fengler, F.; Krebs, M.; Prager, A.; Schulz, J.; Wichmann, S.; Joosten, H. Sphagnum Farming in Germany—A Review of Progress. Mires Peat 2014, 13, 1–11. [Google Scholar]
- Pouliot, R.; Hugron, S.; Rochefort, L. Sphagnum Farming: A Long-Term Study on Producing Peat Moss Biomass Sustainably. Ecol. Eng. 2015, 74, 135–147. [Google Scholar] [CrossRef]
- Ämmälä, A.; Piltonen, P. Sphagnum Moss as a Functional Reinforcement Agent in Castor Oil-Based Biopolyurethane Composites. Mires Peat 2019, 24, 1–11. [Google Scholar] [CrossRef]
- Deng, Y.; Dewil, R.; Appels, L.; Zhang, H.; Li, S.; Baeyens, J. The Need to Accurately Define and Measure the Properties of Particles. Standards 2021, 1, 19–38. [Google Scholar] [CrossRef]
- Naimi, L.J.; Sokhansanj, S.; Bi, X.; Lim, C.J.; Womac, A.R.; Lau, A.K.; Melin, S. Development of Size Reduction Equations for Calculating Energy Input for Grinding Lignocellulosic Particles. Appl. Eng. Agric. 2013, 29, 93–100. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Grinding Performance and Physical Properties of Wheat and Barley Straws, Corn Stover and Switchgrass. Biomass Bioenergy 2004, 27, 339–352. [Google Scholar] [CrossRef]
- Carson, L.; Pittenger, B. Bulk Properties of Powders. In Powder Metal Technologies and Applications; Eisen, W., Ferguson, B., German, R., Iacocca, R., Lee, P., Madan, D., Moyer, K., Sanderow, H., Trudel, Y., Eds.; ASM Handbook; ASM International: Russel Township, OH, USA, 1998; Volume 7, pp. 287–301. [Google Scholar]
- Tannous, K.; Lam, P.S.; Sokhansanj, S.; Grace, J.R. Physical Properties for Flow Characterization of Ground Biomass from Douglas Fir Wood. Part. Sci. Technol. 2013, 31, 291–300. [Google Scholar] [CrossRef]
- Saw, H.Y.; Davies, C.E.; Paterson, A.H.J.; Jones, J.R. Correlation between Powder Flow Properties Measured by Shear Testing and Hausner Ratio. Procedia Eng. 2015, 102, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, E.C.; Geldart, D. The Use of Bulk Density Measurements as Flowability Indicators. Powder Technol. 1999, 102, 151–165. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, G.; Xiao, W.; Han, L. Changes to the Physicochemical Characteristics of Wheat Straw by Mechanical Ultrafine Grinding. Cellulose 2014, 21, 3257–3268. [Google Scholar] [CrossRef]
- Koivuranta, E.; Hietala, M.; Ämmälä, A.; Oksman, K.; Illikainen, M. Improved Durability of Lignocellulose-Polypropylene Composites Manufactured Using Twin-Screw Extrusion. Compos. Part A Appl. Sci. Manuf. 2017, 101, 265–272. [Google Scholar] [CrossRef]
- Todorova, Z.; Wünsche, S.; Hintz, W. Improved Flowability of Ultrafine, Cohesive Glass Particles by Surface Modification Using Hydrophobic Silanes. In Particles in Contact; Antonyuk, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 631–662. ISBN 978-3-030-15898-9. [Google Scholar]
- Blümel, C.; Sachs, M.; Laumer, T.; Winzer, B.; Schmidt, J.; Schmidt, M.; Peukert, W.; Wirth, K.-E. Increasing Flowability and Bulk Density of PE-HD Powders by a Dry Particle Coating Process and Impact on LBM Processes. Rapid Prototyp. J. 2015, 21, 697–704. [Google Scholar] [CrossRef]
- Ämmälä, A. Fine Grinding of Sphagnum Moss with ZPS Rotor Impact Mill Integrated with ATP Air Classifier; University of Oulu: Oulu, Finland, 2018; Unpublished data. [Google Scholar]
- Gao, W.; Chen, F.; Wang, X.; Meng, Q. Recent Advances in Processing Food Powders by Using Superfine Grinding Techniques: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2222–2255. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, J.; He, Q.; Jian, H.; Zhang, Y.; Wang, J.; Sun, H. Physicochemical and Antioxidant Properties of Hard White Winter Wheat (Triticum Aestivm L.) Bran Superfine Powder Produced by Eccentric Vibratory Milling. Powder Technol. 2018, 325, 126–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ämmälä, A. Comparison of Pin Mill and Hammer Mill in the Fine Grinding of Sphagnum Moss. Energies 2023, 16, 2437. https://doi.org/10.3390/en16052437
Ämmälä A. Comparison of Pin Mill and Hammer Mill in the Fine Grinding of Sphagnum Moss. Energies. 2023; 16(5):2437. https://doi.org/10.3390/en16052437
Chicago/Turabian StyleÄmmälä, Ari. 2023. "Comparison of Pin Mill and Hammer Mill in the Fine Grinding of Sphagnum Moss" Energies 16, no. 5: 2437. https://doi.org/10.3390/en16052437
APA StyleÄmmälä, A. (2023). Comparison of Pin Mill and Hammer Mill in the Fine Grinding of Sphagnum Moss. Energies, 16(5), 2437. https://doi.org/10.3390/en16052437