Study on Nonlinear Dielectric Properties of Micro Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inorganic Insulating Powder
2.2. Measurement System and Conditions
2.3. Calculation of Apparent Relaxation Polarizability and Electrical Conductivity
3. Results and Discussion
3.1. Electrical Conductivity
3.1.1. Effect of Pressure on the Apparent Electrical Conductivity
3.1.2. Effect of Temperature on the Apparent Electrical Conductivity
3.2. Polarization Characteristics
3.2.1. Effects of Applied Pressure on the Apparent Relaxation Polarizability
3.2.2. Effects of Temperature on the Apparent Relaxation Polarizability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pilarska, A.A.; Klapiszewski, L.; Jesionowski, T. Recent development in the synthesis, modification and application of Mg(OH)(2) and MgO: A review. Powder Technol. 2017, 319, 373–407. [Google Scholar] [CrossRef]
- Soliman, E.S.; Abdul, E.; Ezz-Eldin, M.R.; Howayda, G.; Walaa, E.K. Modification of cable insulation characteristics using nanocomposites for the nuclear power plant. Nucl. Radiat. Saf. 2019, 3, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Liu, H.T.; Cheng, H.F. Microstructural and electrical properties of thick film resistors on oxide/oxide ceramic–matrix composites. Ceram. Int. 2015, 41, 3214–3219. [Google Scholar] [CrossRef]
- Kulawik, J.; Szwagierczak, D.; Gröger, B. Investigations of properties of ceramic materials with perovskite structure in chosen electronic applications. Bull. Pol. Acad. Sci. Tech. Sci. 2007, 55, 293–297. [Google Scholar]
- Kolesnik, L.L.; Zhuleva, T.S.; Predtechenskiy, P.O.; Hlaing, M.K.; Aung, Z.P. Processing of metallization technology aluminum oxide ceramics for electro-vacuum devices elements and power electronics devices. J. Phys. Conf. Ser. 2017, 872, 012018. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.F.; Li, J.T.; Wang, W.J.; Gao, W.W.; Bai, H. Isotropically ultrahigh thermal conductive polymer composites by assembling anisotropic boron nitride nanosheets into a biaxially oriented network. ACS Nano 2022, 16, 18959–18967. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, C.; Zhang, Z.X.; Xiao, K. Anti-thermal aging properties of low-density polyethylene-based nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1003–1013. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wen, H.; Chen, X.Y.; Wu, Y.J.; Xiao, S. Study on the Thermal and Dielectric Properties of SrTiO3/Epoxy Nanocomposites. Energies 2017, 10, 692. [Google Scholar] [CrossRef] [Green Version]
- Vishal, M.; Kumar, A.P. Dynamic mechanical analysis of PVC/TiO2 nanocomposites. Adv. Compos. Hybrid Mater. 2018, 1, 741–747. [Google Scholar] [CrossRef]
- Wang, Y.N.; Zhang, S.; Sun, Y.Y.; Yang, X.W.; Liu, C. Effect of nano-MgO doping in XLPE on charge transport and electric field distribution in composite insulation of HVDC cable joint. Energies 2022, 15, 6948. [Google Scholar] [CrossRef]
- Yamanoi, Y.; Tanaka, K.H.; Saito, Y.; Yahata, K.; Kato, K.; Ito, S.; Sinozuka, N.; Tsukada, S. Development of Radiation-Resistant Magnet Coils for High-IntensityBeam Lines: Part 11-completely inorganic insulated coils. IEEE Trans. Magn. 1996, 32, 2147–2150. [Google Scholar] [CrossRef]
- Peltonen, J.; Murtomaa, M.; Robinson, K.; Salonen, J. The electrical resistivity and relative permittivity of binary powder mixtures. Powder Technol. 2018, 325, 228–233. [Google Scholar] [CrossRef]
- Shafaay, A.S.; Ahmed, M.A.; Yahia, I.S.; El-Dek, S.I. Resistivity and magnetization bimodal improvement in Ni ferrite nanoparticles by Mg substitution. J. Aust. Ceram. Soc. 2021, 57, 719–729. [Google Scholar] [CrossRef]
- Keizo, U. Processing science for ceramics based on analysis of packing structure of powder. J. Soc. Powder Technol. Jpn. 2013, 50, 108–120. [Google Scholar] [CrossRef]
- Shah, U.V.; Karde, V.; Ghoroi, C.; Heng, J.Y.Y. Influence of particle properties on powder bulk behaviour and processability. Int. J. Pharm. 2017, 518, 138–154. [Google Scholar] [CrossRef]
- Bouanga, C.V.; Savoie, S.; Couderc, H.; Fréchette, M.F.; David, E. The dielectric permittivity of ceramic powders used in composite polymers. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 16–19 October 2011; pp. 714–717. [Google Scholar] [CrossRef]
- Goossens, K.; van Biesen, L.; Boven, A.; Castelain, P. Theoretical and experimental analysis of the dielectric properties of powders. In Proceedings of the Sixth International Conference on Dielectric Materials, Measurements and Applications, Manchester, UK, 7–10 September 1992; pp. 73–76. [Google Scholar]
- Batsanov, S.S. On the size-effect in the dielectric permittivity of solids. J. Phys. Chem. Solids 2016, 91, 90–92. [Google Scholar] [CrossRef]
- Trapp, J.; Kieback, B. Fundamental principles of spark plasma sintering of metals: Part I—Joule heating controlled by the evolution of powder resistivity and local current densities. Powder Metall. 2019, 62, 297–306. [Google Scholar] [CrossRef]
- Montes, J.; Cuevas, F.; Ternero, F.; Astacio, R.; Caballero, E.; Cintas, R. A Method to Determine the Electrical Resistance of a Metallic Powder Mass under Compression. Metals 2017, 7, 479. [Google Scholar] [CrossRef] [Green Version]
- Hedden, M.; Francis, N.; Haraldsen, J.T.; Ahmed, T.; Constantin, C. Thermoelectric Properties of Nano-MesoMicro β-MnO2 Powders as a Function of Electrical Resistance. Nanoscale Res. Lett. 2015, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Guo, W.; Sun, Y.; Li, Z.; Han, Y. Abnormal Time-Domain Current Spectrum of Inorganic Insulating Powder under DC Voltage. Energies 2022, 15, 8227. [Google Scholar] [CrossRef]
- Chalashkanov, N.M.; Dodd, S.J.; Dissado, L.A.; Fothergill, J.C. Re-examination of the dielectric spectra of epoxy resins: Bulk charge transport and interfacial polarization peaks. IEEE Trans. Dielectr. Electr. Insul. 2014, 3, 1330–1341. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Liang, X.; Dissado, L.A.; Dodd, S.J.; Chalashkanov, N.M. Dielectric Response of Filled High Temperature Vulcanized Silicone Rubber. IEEE Trans. Dielect Electr.. Insul. 2016, 23, 3683–3695. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Revisiting the Curie-Von Schweidler law for dielectric relaxation and derivation of distribution function for relaxation rates as zipf’s power law and manifestation of fractional differential equation for capacitor. J. Mod. Phys. 2017, 8, 1988–2012. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.L.; Zhang, G.J.; Xu, H.; Peng, H.D.; Wang, S.-Q.; Dong, M. Novel characteristic parameters for oil-paper insulation assessment from differential time-domain spectroscopy based on polarization and depolarization current measurement. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1918–1928. [Google Scholar] [CrossRef]
- Suo, C.Y.; Li, Z.H.; Sun, Y.L.; Han, Y.S. Application of l1 trend filtering technology on the current time domain spectroscopy of dielectrics. Electronics 2019, 8, 1046. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Li, Z.H.; Han, Y.S.; Zhang, X. Quantitative Investigation of the Nonlinear Polarization in Epoxy/SiC Nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 66–73. [Google Scholar] [CrossRef]
- Haque, N.; Dalai, S.; Chatterjee, B.; Chakravorti, S. Study on charge de-trapping and dipolar relaxation properties of epoxy resin from discharging current measurements. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3811–3820. [Google Scholar] [CrossRef]
- Farahani, M.; Borsi, H.; Gockenbach, E. Dielectric response studies on insulating system of high voltage rotating machines. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 383–393. [Google Scholar] [CrossRef]
- Li, Z.H.; Suo, C.Y.; Chen, Y.; Guo, W.Y.; Zheng, H.; Han, Y.S.; Sun, Y.L. Method for Measuring Principle of steady State Relaxation Polarizability and Electric Field Characteristic in Nonlinear Insulating Dielectric Medium, Involves Realizing Measurement of Dielectric Steady State Relaxation Polarizability. Patent CN111579909(A), CN111579909(B), 14 September 2020. [Google Scholar]
- Kwan, C.K. Dielectric Phenomena in Solids; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Guo, W.; Sun, Y.; Li, Z.; Han, Y.; Jia, H. Study on Nonlinear Dielectric Properties of Micro Silica. Energies 2023, 16, 2479. https://doi.org/10.3390/en16052479
Xue Y, Guo W, Sun Y, Li Z, Han Y, Jia H. Study on Nonlinear Dielectric Properties of Micro Silica. Energies. 2023; 16(5):2479. https://doi.org/10.3390/en16052479
Chicago/Turabian StyleXue, Yucui, Wenmin Guo, Yunlong Sun, Zhonghua Li, Yongsen Han, and Hongxu Jia. 2023. "Study on Nonlinear Dielectric Properties of Micro Silica" Energies 16, no. 5: 2479. https://doi.org/10.3390/en16052479
APA StyleXue, Y., Guo, W., Sun, Y., Li, Z., Han, Y., & Jia, H. (2023). Study on Nonlinear Dielectric Properties of Micro Silica. Energies, 16(5), 2479. https://doi.org/10.3390/en16052479