Overpressure Generation and Evolution in Deep Longmaxi Formation Shale Reservoir in Southern Sichuan Basin: Influences on Pore Development
Abstract
:1. Introduction
2. Geological Background
3. Samples and Analytical Methods
3.1. Overpressure Analysis Method
3.2. Basin Modeling Method
3.3. Fluid Inclusions Analysis Method
3.4. Pore Characteristics Analysis Method
4. Results
4.1. Well-Log Response Characteristics of Overpressure
4.2. Burial and Thermal Histories Modeling
4.3. Fluid Inclusion Analysis
4.3.1. Petrographic Observations
4.3.2. Raman Spectroscopy Analysis
4.3.3. Microthermometry and Trapping Pressure Calculation
4.4. Shale Reservoir Characteristics
4.4.1. TOC Content and Mineral Composition
4.4.2. Total Porosity and Organic Pores Characteristics
5. Discussion
5.1. Generation Mechanism for Strong Overpressure
5.2. Reconstruction of the Paleo-Pressure Evolution History
5.2.1. Paleo-Pressure Evolution during the Overpressure Generation Stage
5.2.2. Paleo-Pressure Evolution during the Overpressure Adjustment Stage
5.3. Influence of Pressure State on Pore Development
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunt, J.M. Generation and migration of petroleum from abnormally pressured fluid compartments. AAPG Bull. 1990, 74, 1–12. [Google Scholar]
- Warbrick, R.E.; Osborne, M.J. Mechanisms that generate abnormal pressure: An overview. In Abnormal Pressure in Hydrocarbon Environments: AAPG Memoir; Law, B.E., Ulmishek, G.F., Slavin, V.I., Eds.; AAPG: Tulsa, OK, USA, 1998; pp. 13–43. [Google Scholar]
- Guo, X.W.; He, S.; Liu, K.Y.; Song, G.Q.; Wang, X.J.; Shi, Z.S. Oil generation as the dominant overpressure mechanism in the cenozoic dongying depression, Bohai Bay Basin, China. AAPG Bull. 2010, 94, 1859–1881. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Li, J.; Xu, Z.Y. Advances in the origin of overpressures in sedimentary basins. Acta Pet. Sin. 2017, 38, 973–998. [Google Scholar] [CrossRef]
- Pang, X.Q.; Jia, C.Z.; Wang, W.Y. Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins. Petrol. Sci. 2015, 12, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Hao, F.; Zou, H.Y.; Gong, Z.S.; Yang, S.G.; Zeng, Z.P. Hierarchies of overpressure retardation of organic matter maturation: Case studies from petroleum basins in China. AAPG Bull. 2007, 91, 1467–1498. [Google Scholar] [CrossRef]
- Hunt, J.M.; Whelan, J.K.; Eglinton, L.B.; Cathles, L.M., III. Relation of Shale Porosities, Gas Generation, and Compaction to Deep Overpressures in the U.S. Gulf Coast. In Abnormal Pressures in Hydrocarbon Environments; Law, B.E., Ulmishek, G.F., Slavin, V.I., Eds.; AAPG: Tulsa, OK, USA, 1998; Volume 70, pp. 87–104. [Google Scholar]
- Lee, Y.; Deming, D. Overpressures in the Anadarko basin, southwestern Oklahoma: Static or dynamic? AAPG Bull. 2002, 86, 145–160. [Google Scholar]
- Stricker, S.; Jones, S.J.; Sathar, S.; Bowen, L.; Oxtoby, N. Exceptional reservoir quality in HPHT reservoir settings: Examples from the Skagerrak Formation of the Heron Cluster, North Sea, UK. Mar. Pet. Geol. 2016, 77, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Mosca, F.; Djordjevic, O.; Hantschel, T.; McCarthy, J.; Krueger, A.; Phelps, D.; Akintokunbo, T.; Joppen, T.; Koster, K.; Schupbach, M.; et al. Pore pressure prediction while drilling: Three-dimensional earth model in the Gulf of Mexico. AAPG Bull. 2018, 102, 691–708. [Google Scholar] [CrossRef]
- Wang, R.Y.; Nie, H.K.; Hu, Z.Q.; Liu, G.X.; Xi, B.B.; Liu, W.X. Controlling effect of pressure evolution on shale gas reservoir: A case study of the Wufeng-Longmaxi Formation in the Sichuan Basin. Nat. Gas Ind. 2020, 40, 1–11. [Google Scholar]
- Hua, Y.Q.; Guo, X.W.; Tao, Z.; He, S.; Dong, T.; Han, Y.J.; Yang, R. Mechanisms for overpressure generation in the bonan sag of Zhanhua depression, Bohai Bay Basin, China. Mar. Petrol. Geol. 2021, 128, 105032. [Google Scholar] [CrossRef]
- Dong, D.Z.; Gao, S.K.; Huang, J.L.; Guan, Q.Z.; Wang, S.F.; Wang, Y.M. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin. Nat. Gas Ind. 2015, 2, 9–23. [Google Scholar]
- Ma, Y.S.; Cai, X.Y.; Zhao, P.R. China’s shale gas exploration and development: Understanding and practice. Pet. Explor. Dev. 2018, 45, 589–603. [Google Scholar] [CrossRef]
- Jiang, Z.X.; Song, Y.; Tang, X.L.; Li, Z.; Wang, X.M.; Wang, G.Z.; Xue, Z.X.; Li, X.; Zhang, K.; Chang, J.Q.; et al. Controlling factors of marine shale gas differential enrichment in southern China. Pet. Explor. Dev. 2020, 47, 661–673. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, J.; He, S.; Zhao, J.; He, Z.; Wo, Y.; Feng, Y.; Li, W. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: Implications for shale gas accumulation. Mar. Petrol. Geol. 2019, 102, 844–859. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, X.F.; Wei, F.B.; Yan, J.H.; Wan, L. Overpressure in shale gas reservoirs of Wufeng-Longmaxi formations, Fuling area, southeastern Sichuan Basin. Petrol. Geol. Exp. 2019, 41, 333–340. [Google Scholar]
- Zeng, Y.; Hou, Y.G.; Hu, D.F.; He, S.; Liu, R.B.; Dong, T.; Yang, R.; Li, X.C.; Ye, Y.F. Characteristics of shale fracture veins and paleo-pressure evolution in normal pressure shale gas zone, Southeast Margin of Sichuan Basin. Journal of Earth Science 2022, 47, 1819–1833. [Google Scholar]
- Gao, J.; Li, H.L.; He, Z.L.; LI, S.J.; Liu, G.X.; Yuan, Y.S.; Li, Y.Q.; Li, T.Y.; He, S. Pressure evolution, enrichment and preservation of normal-pressure shale gas in the Pengshui area of eastern Chongqing. Nat. Gas Ind. 2022, 42, 124–135. [Google Scholar]
- Hu, D.F.; Wei, Z.H.; Li, Y.P.; Liu, Z.J.; Yuan, T.; Liu, X.J. Deep shale gas exploration in complex structure belt of the southeastern Sichuan Basin: Progress and breakthrough. Nat. Gas Ind. 2022, 42, 35–44. [Google Scholar]
- He, Z.L.; Nie, H.K.; Hu, D.F.; Jiang, T.X.; Wang, R.Y.; Zhang, Y.Y.; Zhang, G.R.; Lu, Z.Y. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery. Acta Pet. Sin. 2020, 41, 379–391. [Google Scholar]
- Liu, R.B. Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the south-eastern part of Sichuan Basin. Acta Sedimentol. Sin. 2015, 33, 817–827. [Google Scholar]
- Liu, H.L.; Wang, H.Y.; Fang, C.H.; Guo, W.; Sun, S.S. The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China. Earth Sci. Front. 2016, 23, 48–54. [Google Scholar]
- Chen, Z.P.; Liang, X.; Zhang, J.H.; Wang, G.C.; Liu, C.; Li, Z.F.; Zou, C. Genesis analysis of shale reservoir over-pressure of Longmaxi Formation in Zhaotong demonstration area, dianqianbei depression. Nat. Gas Geosci. 2016, 27, 442. [Google Scholar]
- Liu, D.D.; Guo, J.; Pan, Z.K.; Du, W.; Zhao, F.P.; Chen, Y.; Shi, F.L.; Song, Y.; Jiang, Z.X. Overpressure evolution process in shale gas reservoir: Evidence from the fluid inclusions in the fractures of Wufeng Formation-Longmaxi Formation in the southern Sichuan Basin. Nat. Gas Ind. 2021, 41, 12–22. [Google Scholar]
- Liang, Z.K.; Jiang, Z.X.; Wu, W.; Guo, J.; Wang, M.; Liu, D.D.; Nie, Z.; Xue, Z.X. Characteristics and geological significance of fluid inclusion of Wufeng-Longmaxi Formation in different tectonic units in Changning area, southern Sichuan. J. Cent. South Univ. (Sci. Technol.) 2022, 53, 3652–3665. [Google Scholar]
- Li, S.J.; Yuan, Y.S.; Sun, W.; Sun, D.S.; Jin, Z.J. The formation and destruction mechanism of shale gas overpressure and its main controlling factors in Silurian of Sichuan Basin. Nat. Gas Geosci. 2016, 27, 924–931. [Google Scholar]
- Wu, J.; Chen, X.Z.; Liu, W.P.; Wu, W.; Gao, Y.; Luo, C.; Deng, B.; Zhou, Z. Fluid activity and pressure evolution process of Wufeng-Longmaxi shales, Southern Sichuan Basin. J. Earth Sci. 2022, 47, 518–531. [Google Scholar]
- Zou, C.N.; Zhao, Q.; Cong, L.Z.; Wang, H.Y.; Shi, Z.H.; Wu, J.; Pan, S.Q. Development progress, potential and prospect of shale gas in China. Nat. Gas Ind. 2021, 41, 1–14. [Google Scholar]
- Chen, S.B.; Zhu, Y.M.; Chen, S.; Han, Y.F.; Fu, C.Q.; Fang, J.H. Hydrocarbon generation and shale gas accumulation in the Longmaxi Formation, southern Sichuan Basin, China. Mar. Petrol. Geol. 2017, 86, 248–258. [Google Scholar]
- Eaton, B.A. Graphical method predicting pressure worldwide. World Oil 1972, 185, 51–56. [Google Scholar]
- Liang, X.; Xu, J.L.; Wang, Y.; Fang, X.Y.; Zhao, L.; Wu, Y.J.; Deng, B. The shale gas enrichment factors of Longmaxi Formation under gradient basin-mountain boundary in South Sichuan Basin: Tectono-depositional differentiation and discrepant evolution. Chin. J. Geol. 2021, 56, 60–81. [Google Scholar]
- Sweeney, J.J.; Burnham, A.K. Evaluation of a simple model of vitrinite reflectance based on Chemical kinetics. AAPG Bull. 1990, 74, 1559–1570. [Google Scholar]
- Cao, H.Y.; Zhu, C.Q.; Qiu, N.S. Thermal evolution of lower Silurian Longmaxi Formaiton in the Eastern Sichuan Basin. J. Earth Sci. Environ. 2015, 37, 22–32. [Google Scholar]
- Qiu, D.F.; Li, S.J.; Yuan, Y.S.; Mao, X.P.; Zhou, Y.; Sun, D.S. Geohistory modeling and its petroleum geological significance of Middle-Upper Yangtze area. Pet. Geol. Recovery Effic. 2015, 22, 6–13. [Google Scholar]
- Zhang, J.L.; Qiao, S.H.; Lu, W.J.; Hu, Q.; Chen, S.G.; LIU, Y. An equation for determining methane densities in fluid inclusions with Raman shifts. J. Geochem. Explor. 2016, 171, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Møller, N.; Weare, J.H. An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000 °C and 0 to 8000 bar. Geochem. Cosmochim. Acta 1992, 56, 2605–2617. [Google Scholar] [CrossRef]
- Li, W.; He, S.; Zhang, B.Q.; He, Z.L.; Chen, M.F.; Zhang, D.W.; Li, T.Y.; Gao, J. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba anticline. Acta Pet. Sin. 2018, 39, 402–415. [Google Scholar]
- Yang, W.; He, S.; Su, A.; Iglauer, S.; Zhai, G.Y.; Zhou, Z.; Dong, T.; Tao, Z.; Wei, S.L. Paleo-Temperature and -Pressure Characteristics of Fluid Inclusions in Composite Veins of the Doushantuo Shale (Yichang Area, South China): Implications for the Preservation and Enrichment of Shale Gas. Energy Fuels 2021, 35, 4091–4105. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.K.; Luo, X.R.; Lei, Y.H.; Yu, L.; Cheng, M.; Wang, Y.S.; Wang, Z.L. Overpressure generation by disequilibrium compaction or hydrocarbon generation in the Paleocene Shahejie Formation in the Chezhen Depression: Insights from logging responses and basin modelling. Mar. Petrol. Geol. 2021, 133, 105258. [Google Scholar] [CrossRef]
- Li, C.; Luo, X.R.; Zhang, L.K.; Fan, C.W.; Xu, C.G.; Liu, A.Q.; Li, H.; Li, J.; Lei, Y.H. New understanding of overpressure responses and pore pressure prediction: Insights from the effect of clay mineral transformations on mudstone compaction. Eng. Geol. 2022, 297, 106493. [Google Scholar] [CrossRef]
- Osborne, M.J.; Swarbrick, R.E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bull. 1997, 81, 1023–1041. [Google Scholar]
- Satti, I.A.; Ghosh, D.; Yusoff, W.I.W. 3-D predrill overpressure prediction using prestack depth-migrated seismic velocity in a field of southwestern Malay Basin. Arab. J. Geosci. 2015, 8, 7387–7398. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, F.F.; Jiang, Y.L.; Zhao, M.; Chen, K.T.; Guo, Z.Y.; Wang, Y.Q. Mechanisms for overpressure generated by the undercompaction of paleogene strata in the Baxian depression of Bohai Bay Basin, China. Mar. Petrol. Geol. 2019, 99, 337–346. [Google Scholar] [CrossRef]
- Lahann, R.W.; Swarbrick, R.E. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis. Geofluids 2011, 11, 362–375. [Google Scholar] [CrossRef]
- Wu, J.; Liang, C.; Yang, R.C.; Hu, Z.Q.; Li, W.J.; Xie, J. The genetic relationship between paleoenvironment, mineral compositions and lithofacies in the Ordovician–Silurian Wufeng–Longmaxi sedimentary succession in the Sichuan Basin, SW China. J. Asian Earth Sci. 2022, 236, 105334. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, S.F.; Dong, D.Z.; Li, X.J.; Huang, J.L.; Zhang, C.C.; Guan, Q.Z. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan. Earth Sci. Front. 2016, 23, 119–133. [Google Scholar]
- Osborne, M.J.; Swarbrick, R.E. Diagenesis in North Sea HPHT clastic reservoirs—Consequences for porosity and overpressure prediction. Mar. Petrol. Geol. 1999, 16, 337–353. [Google Scholar] [CrossRef]
- Berg, R.R.; Gangi, A.F. Primary migration by oil-generation microfracturing in low-permeability source rocks: Application to the Austin Chalk, Texas. AAPG Bull. 1999, 83, 727–756. [Google Scholar]
- Tingay, M.R.P.; Morley, C.K.; Laird, A.; Limpornpipat, O.; Krisadasima, K.; Pabchanda, S.; Macintyre, H.R. Evidence for overpressure generation by kerogen –to-gas maturation in the northern Malay Basin. AAPG Bull. 2013, 97, 639–672. [Google Scholar] [CrossRef]
- Luo, X.R.; Vasseur, G. Geopressuring mechanism of organic matter cracking: Numerical modeling. AAPG Bull. 1996, 80, 856–874. [Google Scholar]
- Zhang, L.; Xiang, C.; Dong, Y.; Zhang, M.; Lv, Y.; Zhao, Z.; Long, H.; Chen, S. Abnormal pressure system and its origin in the Nanpu sag, Bohai Bay Basin. Oil Gas Geol. 2018, 39, 664–675. [Google Scholar]
- Tingay, M.R.P.; Hillis, R.R.; Swarbrick, R.E.; Morley, C.K.; Damit, A.R. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei. AAPG Bull. 2009, 93, 51–74. [Google Scholar] [CrossRef]
- Bowers, G.L. Detecting high overpressure. Lead. Edge 2002, 21, 174–177. [Google Scholar] [CrossRef]
- Tang, L.; Song, Y.; Zhao, Z.G.; Jiang, Z.X.; Jiang, S.; Chen, X.Z.; Li, Z.; Li, Q.W. Origin and evolution of overpressure in shale gas reservoirs of the Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation in the Sichuan Basin. Nat. Gas Ind. 2022, 42, 37–53. [Google Scholar]
- Qiu, N.S.; Liu, Y.F.; Liu, W.; Jia, J.K. Quantitative reconstruction of formation paleo-pressure in sedimentary basins and case studies. Sci. China Earth Sci. 2020, 63, 808–821. [Google Scholar] [CrossRef]
- Guo, X.W.; He, S.; Liu, K.Y.; Dong, T.T. A quantitative estimation model for the overpressure caused by natural gas generation and its influential factors. Earth Sci. J. China Univ. Geosci. 2013, 38, 1263–1270. [Google Scholar]
- Liu, W.; Qiu, N.S.; Xu, Q.C.; Liu, Y.F.; Shen, A.J.; Zhang, G.W. The evolution of pore-fluid pressure and its causes in the Sinian-Cambrian deep carbonate gas reservoirs in central Sichuan Basin, southwestern China. J. Petrol. Sci. Eng. 2018, 169, 96–109. [Google Scholar] [CrossRef]
- Ma, D.W.; Qiu, N.S.; Xu, W. Study on the genesis mechanism of abnormal low pressure in Sulige gas field in Ordos Basin. Geol. Sci. 2011, 46, 1055–1067. [Google Scholar]
- Wang, X.M.; Liu, L.F.; Wang, Y.; Sheng, Y.; Zheng, S.S.; Wu, W.W.; Luo, Z.H. Comparison of the pore structures of Lower Silurian Longmaxi Formation shales with different lithofacies in the southern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2020, 81, 103419. [Google Scholar] [CrossRef]
- Sun, W.J.B.; Zuo, Y.J.; Wu, Z.H.; Liu, H.; Zheng, L.J.; Wang, H.; Shui, Y.; Lou, Y.L.; Xi, S.J.; Li, T.T.; et al. Pore characteristics and evolution mechanism of shale in a complex tectonic area: Case study of the Lower Cambrian Niutitang Formation in northern Guizhou, southwest China. J. Petrol. Sci. Eng. 2020, 193, 107373. [Google Scholar] [CrossRef]
- Liu, S.G.; Jiao, K.; Zhang, J.C.; Ye, Y.H.; Xie, G.L.; Deng, B.; Ran, B.; Li, Z.W.; Wu, J.; Li, J.X.; et al. Research progress on the pore characteristics of deep shale gas reservoirs: An example from the Lower Paleozoic marine shale in the Sichuan Basin. Nat. Gas Ind. 2021, 41, 29–41. [Google Scholar]
- Liu, S.G.; Ye, Y.H.; Ran, B.; Jiang, L.; Li, Z.W.; Li, J.X.; Song, J.X.M.; Jiao, K.; Li, Z.Q.; Li, Y.W. Evolution and implications of shale pore structure characteristics under different preservation conditions. Reserve Eval. Dev. 2020, 10, 1–11. [Google Scholar]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2008, 92, 87–125. [Google Scholar] [CrossRef]
- Michael, B.; Xia, W.W.; John, S. Shale gas play screening and evaluation criteria. Chin. Petrol. Explor. 2009, 3, 51–64. [Google Scholar]
- Li, Y.X.; Qiao, D.W.; Jiang, W.L.; Zhang, C.H. Gas content of gas-bearing shale and its geological evaluation summary. Geol. Bull. China 2011, 30, 308–317. [Google Scholar]
- Sander, R.; Pan, Z.; Connell, L.D.; Camilleri, M.; Grigore, M.; Yang, Y. Controls on methane sorption capacity of Mesoproterozoic gas shales from the Beetaloo Subbasin, Australia and global shales. Int. J. Coal Geol. 2018, 199, 65–90. [Google Scholar] [CrossRef]
- Liu, A.; Fu, X.; Wang, K.; An, H.; Wang, G. Investigation of coalbed methane potential in low-rank coal reservoirs-Free and soluble gas contents. Fuel 2013, 112, 14–22. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiao, X.; Tian, H.; Pan, L. Modeling free gas content of the lower Paleozoic shales in the Weiyuan area of the Sichuan Basin, China. Mar. Pet. Geol. 2014, 56, 87–96. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Gasparik, M.; Bertier, P.; Gensterblum, Y.; Ghanizadeh, A.; Krooss, B.M.; Littke, R. Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol. 2014, 123, 34–51. [Google Scholar] [CrossRef]
- Baruch, E.T.; Kennedy, M.J.; Löhr, S.C.; Dewhurst, D.N. Feldspar dissolution-enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bull. 2015, 99, 1745–1770. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Liu, S.; Zhang, R. Methane adsorption measurements and modeling for organic-rich marine shale samples. Fuel 2016, 172, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Hao, F.; Lin, J.; Lu, Y.; Ma, Y.; Li, Q. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S11) shale, Jiaoshiba area, Eastern Sichuan Basin, China. Int. J. Coal Geol. 2017, 173, 40–50. [Google Scholar] [CrossRef]
Sample | Depth (m) | Host Mineral | Measure Point | Vd (cm−1) | Density (g/cm3) | Th | TP (MPa) | Pc |
---|---|---|---|---|---|---|---|---|
H-2 | 4028.5 | calcite | 1 | 2911.28 | 0.264 | 165 | 95.21 | 1.84 |
2 | 2911.28 | 0.264 | 165 | 95.21 | 1.84 |
Well Name | Depth (m) | TOC Content (%) | Siliceous Mineral Content (%) | Carbonate Mineral Content (%) | Clay Mineral Content (%) | Porosity (%) |
---|---|---|---|---|---|---|
L-2 | 4273 | 3.06 | 61.5 | 16.0 | 22.5 | 6.82 |
4278 | 2.78 | 73.2 | 7.2 | 19.6 | 5.77 | |
4282 | 2.75 | 62.4 | 7.0 | 30.6 | 7.03 | |
4288 | 1.78 | 57.0 | 10.6 | 32.4 | 4.67 | |
4297 | 1.86 | 63.8 | 6.2 | 30.0 | 4.54 | |
4301 | 2.11 | 58.5 | 13.0 | 28.5 | 5.99 | |
4306 | 2.53 | 55.5 | 11.7 | 32.8 | 5.74 | |
4312 | 4.14 | 66.1 | 13.5 | 20.4 | 5.15 | |
4314 | 5.79 | 70.4 | 13.2 | 16.4 | 5.34 | |
4320 | 5.15 | 62.4 | 11.4 | 26.3 | 4.61 | |
H-2 | 4044 | 2.05 | 40.7 | 16.0 | 43.3 | 5.25 |
4052 | 2.14 | 58.7 | 9.6 | 31.7 | 3.99 | |
4054 | 2.72 | 55.9 | 7.2 | 36.9 | 4.20 | |
4058 | 2.03 | 55.6 | 10.6 | 33.8 | 2.95 | |
4063 | 2.80 | 60.9 | 8.3 | 30.8 | 4.63 | |
4066 | 3.47 | 72.9 | 3.2 | 23.9 | 4.25 | |
4070 | 3.97 | 64.4 | 8.2 | 27.4 | 3.79 | |
4073 | 3.78 | 74.1 | 5.0 | 20.8 | 4.57 | |
4076 | 5.02 | 85.4 | 4.6 | 9.9 | 4.32 | |
4079 | 5.88 | 61.4 | 22.6 | 16.0 | 4.81 | |
Z--2 | 3863 | 1.73 | 43.1 | 16.3 | 40.6 | 1.92 |
3868 | 1.82 | 47.3 | 17.1 | 35.6 | 4.12 | |
3871 | 1.53 | 52.4 | 15.4 | 32.2 | 2.91 | |
3878 | 3.37 | 40.7 | 34.7 | 24.6 | 3.31 | |
3884 | 2.46 | 51.6 | 17.0 | 31.4 | 2.94 | |
3889 | 2.62 | 59.6 | 16.5 | 23.8 | 2.45 | |
3893 | 4.91 | 60.3 | 15.0 | 24.7 | 2.75 | |
3897 | 5.10 | 72.7 | 6.0 | 21.3 | 3.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Wei, L.; Sun, S.; Shi, Z.; Dong, D.; Gao, Z. Overpressure Generation and Evolution in Deep Longmaxi Formation Shale Reservoir in Southern Sichuan Basin: Influences on Pore Development. Energies 2023, 16, 2533. https://doi.org/10.3390/en16062533
Yin J, Wei L, Sun S, Shi Z, Dong D, Gao Z. Overpressure Generation and Evolution in Deep Longmaxi Formation Shale Reservoir in Southern Sichuan Basin: Influences on Pore Development. Energies. 2023; 16(6):2533. https://doi.org/10.3390/en16062533
Chicago/Turabian StyleYin, Jia, Lin Wei, Shasha Sun, Zhensheng Shi, Dazhong Dong, and Zhiye Gao. 2023. "Overpressure Generation and Evolution in Deep Longmaxi Formation Shale Reservoir in Southern Sichuan Basin: Influences on Pore Development" Energies 16, no. 6: 2533. https://doi.org/10.3390/en16062533
APA StyleYin, J., Wei, L., Sun, S., Shi, Z., Dong, D., & Gao, Z. (2023). Overpressure Generation and Evolution in Deep Longmaxi Formation Shale Reservoir in Southern Sichuan Basin: Influences on Pore Development. Energies, 16(6), 2533. https://doi.org/10.3390/en16062533