An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pyrolysis of PH Samples in Loose and Densified Forms
3.2. Pyrolysis of PH Samples with CTP, NL, and LDPE Additives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pradhan, P.; Mahajani, S.M.; Arora, A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018, 181, 215–232. [Google Scholar] [CrossRef]
- Rajput, S.P.; Jadhav, S.V.; Thorat, B.N. Methods to improve properties of fuel pellets obtained from different biomass sources: Effect of biomass blends and binders. Fuel Process. Technol. 2020, 199, 106255. [Google Scholar] [CrossRef]
- Dai, X.; Theppitak, S.; Yoshikawa, K. Pelletization of carbonized wood using organic binders with biomass gasification residue as additive. Energy Proc. 2019, 158, 509–515. [Google Scholar] [CrossRef]
- Espuelas, S.; Marcelino, S.; Echeverría, A.M.; del Castillo, J.M.; Seco, A. Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel 2020, 278, 118310. [Google Scholar] [CrossRef]
- Wang, T.; Tang, L.; Feng, X.; Xu, J.; Ding, L.; Chen, X. Influence of organic binders on the pyrolysis performance of rice straw pellets. J. Anal. Appl. Pyrolysis 2022, 161, 105366. [Google Scholar] [CrossRef]
- Plaza, M.G.; Durán, I.; Rubiera, F.; Pevida, C. CO2 adsorbent pellets produced from pine sawdust: Effect of coal tar pitch addition. Appl. Energy 2015, 144, 182–192. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, F.; Si, T.; Zhou, J.; Cen, K. Mechanical strength and combustion properties of biomass pellets prepared with coal tar residue as a binder. Fuel Process. Technol. 2018, 179, 229–237. [Google Scholar] [CrossRef]
- Ioannou, Z.; Simitzis, J. Production of carbonaceous adsorbents from agricultural by-products and novolac resin under a continuous countercurrent flow type pyrolysis operation. Bioresour. Technol. 2013, 129, 191–199. [Google Scholar] [CrossRef]
- Faliagas, A.; Sfyrakis, J.; Simitzis, J. Influence of resin content on the sorption properties of adsorbents produced from novolac-biomass composites. J. Mater. Sci. 1996, 31, 199–203. [Google Scholar] [CrossRef]
- Theodoropoulou, S.; Papadimitriou, D.; Zoumpoulakisa, L.; Simitzis, J. Optical properties of carbon materials formed by pyrolysis of novolac-resin/biomass composites. Diam. Relat. Mater. 2004, 13, 371–375. [Google Scholar] [CrossRef]
- Hassan, H.; Hameed, B.H.; Lim, J.K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions. Energy 2020, 191, 116545. [Google Scholar] [CrossRef]
- Ko, K.H.; Rawal, A.; Sahajwalla, V. Analysis of thermal degradation kinetics and carbon structure changes of co-pyrolysis between macadamia nut shell and PET using thermogravimetric analysis and 13C solid state nuclear magnetic resonance. Energy Convers. Manag. 2014, 86, 154–164. [Google Scholar] [CrossRef]
- Chen, W.; Shi, S.; Zhang, J.; Chen, M.; Zhou, X. Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization. Energy Convers. Manag. 2016, 112, 41–48. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, A.H.; Long, Q.Y.; Li, Q.H.; Zhang, Y.G. Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study. J. Anal. Appl. Pyrolysis 2014, 108, 19–25. [Google Scholar] [CrossRef]
- Jin, W.; Shen, D.; Liu, Q.; Xiao, R. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS. Polym. Degrad. Stab. 2016, 133, 65–74. [Google Scholar] [CrossRef]
- Xiong, S.; Zhuo, J.; Zhou, H.; Pang, R.; Yao, Q. Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. J. Anal. Appl. Pyrolysis 2015, 112, 66–73. [Google Scholar] [CrossRef]
- Alam, M.; Bhavanam, A.; Jana, A.; Viroja, J.S.; Peela, N.R. Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics. Renew. Energy 2019, 149, 1133–1145. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 2018, 133, 185–197. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ferdous, J.; Islam, M.S.; Islam, M.R.; Mustafi, N.N.; Haniu, H. Production of liquid fuel from co-pyrolysis of polythene waste and rice straw. Energy Proc. 2019, 160, 116–122. [Google Scholar] [CrossRef]
- Lu, P.; Huang, Q.; (Thanos) Bourtsalas, A.C.; Chi, Y.; Yan, J. Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride. Fuel 2018, 230, 359–367. [Google Scholar] [CrossRef]
- Yang, J.; Rizkiana, J.; Widayatno, W.B.; Karnjanakom, S.; Kaewpanha, M.; Hao, X.; Abudula, A.; Guanac, G. Fast co-pyrolysis of low density polyethylene and biomass residue for oil production. Energy Convers. Manag. 2016, 120, 422–429. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, W.; Chen, Y.; Yang, H.; Chen, H. Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects. Bioresour. Technol. 2019, 274, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Kelkar, A.; Bai, X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer. Fuel 2016, 166, 227–236. [Google Scholar] [CrossRef]
- Kumagai, S.; Fujita, K.; Kameda, T.; Yoshioka, T. Interactions of beech wood-polyethylene mixtures during co-pyrolysis. J. Anal. Appl. Pyrolysis 2016, 122, 531–540. [Google Scholar] [CrossRef]
- Dewangan, A.; Pradhan, D.; Singh, R.S. Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield. Fuel 2016, 185, 508–516. [Google Scholar] [CrossRef]
- Zubkova, V.; Strojwas, A. The influence of long-term storage on thermal behaviour of lower rank coal on the example of Polish coals. Part 2. The influence of expired ibuprofen (IB) and aspirin (AS) on changes in volume of long-term stored coal and on the composition of condensed material (CM) on the surface of grains. Fuel 2017, 204, 28–39. [Google Scholar] [CrossRef]
- Zubkova, V.; Strojwas, A.; Kaniewski, M.; Jany, B.R. The influence of the additives of expired paracetamol (PR) and naproxen (NP) on the thermal behaviour of high volatile bituminous coal (HVBC) and the composition of material extracted from the zones of its plastic layer. Fuel 2020, 273, 117752. [Google Scholar] [CrossRef]
- Bielecki, M.; Zubkova, V.; Strojwas, A. Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products. Energies 2022, 15, 4257. [Google Scholar] [CrossRef]
- Czaplicka, M.; Cieślik, E.; Komosiński, B.; Rachwał, T. Emission Factors for Biofuels and Coal Combustion in a Domestic Boiler of 18 kW. Atmosphere 2019, 10, 771. [Google Scholar] [CrossRef]
- Janoszka, K.; Czaplicka, M.; Klejnowski, K. Comparison of biomass burning tracer concentrations between two winter seasons in Krynica Zdrój. Air Qual. Atmos. Health 2020, 13, 379–385. [Google Scholar] [CrossRef]
- Fushimi, C.; Katayama, S.; Tsutsumi, A. Elucidation of interaction among cellulose, lignin and xylan during tar and gas evolution in steam gasification. J. Anal. Appl. Pyrolysis 2009, 86, 82–89. [Google Scholar] [CrossRef]
- Hilbers, T.J.; Wang, Z.; Pecha, B.; Westerhof, R.J.M.; Kersten, S.R.A.; Pelaez-Samaniego, M.R.; Garcia-Pereza, M. Cellulose-Lignin interactions during slow and fast pyrolysis. J. Anal. Appl. Pyrolysis 2015, 114, 197–207. [Google Scholar] [CrossRef]
- Liu, Q.; Zhong, Z.; Wang, S.; Luo, Z. Interactions of biomass components during pyrolysis: A TG-FTIR study. J. Anal. Appl. Pyrolysis 2011, 90, 213–218. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Hu, J.; Zhang, H.; Xiao, R. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 2016, 95, 55–63. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, B.; Liu, J.; Sun, Y.; Jiang, X. Influence of interactions between biomass components on physicochemical characteristics of char. J. Anal. Appl. Pyrolysis 2019, 144, 104704. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Martínez Cortizas, A. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim. Acta A 2016, 153, 63–70. [Google Scholar] [CrossRef]
- Zubkova, V.; Strojwas, A.; Bielecki, M.; Kieush, L.; Koverya, A. Comparative study of pyrolytic behavior of the biomass wastes originating in the Ukraine and potential application of such biomass. Part 1. Analysis of the course of pyrolysis process and the composition of formed products. Fuel 2019, 254, 115688. [Google Scholar] [CrossRef]
- Rocha, M.V.; Vinuesa, A.J.; Pierella, L.B.; Renzini, M.S. Enhancement of bio-oil obtained from co-pyrolysis of lignocellulose biomass and LDPE by using a natural zeolite. Therm. Sci. Eng. Prog. 2022, 19, 100654. [Google Scholar] [CrossRef]
- Marcilla, A.; Gómez-Siurana, A.; Valdés, F. Catalytic cracking of low-density polyethylene over H-Beta and HZSM-5 zeolites: Influence of the external surface. Kinetic model. Polym. Degrad. Stab. 2007, 92, 197–204. [Google Scholar] [CrossRef]
- Dubdub, I.; Al-Yaari, M. Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction. Polymers 2020, 12, 891. [Google Scholar] [CrossRef]
- Yang, H.; Liu, M.; Chen, Y.; Xin, S.; Zhang, X.; Wang, X.; Chen, H. Vapor-solid interaction among cellulose, hemicellulose and lignin. Fuel 2020, 263, 116681. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Hu, X.; Hu, S.; Xiang, J.; Zhang, L.; Zhang, S.; Min, Z.; Li, C.Z. Effects of volatile-char interactions on in situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part I. Roles of nascent char. Fuel 2014, 122, 60–66. [Google Scholar] [CrossRef]
- Gao, A.; Wang, Y.; Lin, G.; Li, B.; Hu, X.; Huang, Y.; Zhang, S.; Zhang, H. Volatile-char interactions during biomass pyrolysis: Reactor design toward product control. Renew. Energy 2022, 185, 1–7. [Google Scholar] [CrossRef]
- Hosoya, T.; Kawamoto, H.; Saka, S. Solid/liquid- and vapor-phase interactions between cellulose- and lignin-derived pyrolysis products. J. Anal. Appl. Pyrolysis 2009, 85, 237–246. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, Y.; Yang, H.; Xin, S.; Zhang, X.; Wang, X.; Chen, H. Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures. Fuel 2019, 248, 1–7. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Hu, X.; Xiang, J.; Hu, S.; Mourant, D.; Li, T.; Wu, L.; Li, C.Z. Effects of volatile-char interactions on in-situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part II. Roles of steam. Fuel 2015, 143, 555–562. [Google Scholar] [CrossRef]
- Cieślak-Golonka, M.; Starosta, J.; Wasilewski, M. Introduction to Coordination Chemistry, 2nd ed.; Scientific Publishing House PWN SA: Warsaw, Poland, 2013; pp. 158–184. (In Polish) [Google Scholar]
- Bielański, A. Fundamentals of Inorganic Chemistry, 2nd ed.; Academic Publishing PWN: Warsaw, Poland, 1994; pp. 720–721. (In Polish) [Google Scholar]
- Shen, Y.; Yu, S.; Yuan, R.; Wang, P. Biomass pyrolysis with alkaline-earth-metal additive for co-production of bio-oil and biochar-based soil amendment. Sci. Total Environ. 2020, 743, 140760. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G.; Gaus, P.L. Basic Inorganic Chemistry; Scientific Publishing House PWN SA: Warsaw, Poland, 1998; pp. 331–332. (In Polish) [Google Scholar]
- Huang, F.; Li, S.; Song, J.; Chen, L.; Zhang, X.; Shen, Y.; Xie, A. Complex calcium carbonate aggregates: Controlled crystallization and assembly via an additive-modified positive-microemulsion-route. CrystEngComm 2012, 14, 1277–1282. [Google Scholar] [CrossRef]
Elements | Cd [%] | Hd [%] | Nd [%] | Sd [%] | Ad [%] | %O a | HHV b [MJ·kg−1] |
---|---|---|---|---|---|---|---|
Amount | 40.99 ± 0.28 | 5.77 ± 0.01 | 0.03±0.00 | 0.00 | 9.59 ± 0.46 | 43.62% ± 0.23 | 16.40 ± 0.16 |
Elements | Si | P | S | Cl | K | Ca |
---|---|---|---|---|---|---|
Amount | 4210 ± 233 | 233 ± 94 | 1628 ± 75 | 475 ± 27 | 22,343 ± 176 | 15,052 ± 331 |
Samples | Material Condensable in Methanol | Material Condensable in Water |
---|---|---|
PH without additive | 0.87 ± 0.07 | 0.76 ± 0.04 |
PH with NL | 1.39 ± 0.09 | 1.32 ± 0.07 |
PH with CTP | 1.65 ± 0.11 | 1.52 ± 0.13 |
PH with LDPE | 1.67 ± 0.02 | 1.08 ± 0.03 |
Samples | Carboxylic Acids | Anhydrosugars | ||||
---|---|---|---|---|---|---|
CH3COO− | HCOO− | C2O42− | LG | MN | GA | |
without additives | 116 | 5.3 | <0.01 | 0.13 | 0.16 | 0.07 |
with NL | 123 | 5.7 | <0.01 | 0.17 | 0.22 | 0.13 |
with CTP | 119 | 5.6 | <0.01 | 0.20 | 0.23 | 0.13 |
with LDPE | 123 | 5.8 | <0.01 | 0.16 | 0.08 | 0.10 |
Samples | 370 °C | 465 °C | 520 °C | |
---|---|---|---|---|
AC=O PH/AC=O with add | Aalc-phen PH/Aalk-phen with add | AHC PH/AHC with add | AHC PH/AHC with add | |
With NL | 1.39 ± 0.02 | 1.75 ± 0.02 | 1.92 ± 0.03 | 2.85 ± 0.04 |
With CTP | 2.70 ± 0.13 | 4.38 ± 0.18 | 5.75 ± 0.19 | 14.25 ± 0.47 |
With LDPE | 1.64 ± 0.02 | 2.19 ± 0.02 | 0.92 ± 0.01 | 3.56 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecki, M.; Zubkova, V.; Strojwas, A. An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Pyrolysis. Energies 2023, 16, 2644. https://doi.org/10.3390/en16062644
Bielecki M, Zubkova V, Strojwas A. An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Pyrolysis. Energies. 2023; 16(6):2644. https://doi.org/10.3390/en16062644
Chicago/Turabian StyleBielecki, Marcin, Valentina Zubkova, and Andrzej Strojwas. 2023. "An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Pyrolysis" Energies 16, no. 6: 2644. https://doi.org/10.3390/en16062644
APA StyleBielecki, M., Zubkova, V., & Strojwas, A. (2023). An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Pyrolysis. Energies, 16(6), 2644. https://doi.org/10.3390/en16062644