A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System
Abstract
:1. Introduction
2. PCMs and Heat Pumps
3. Performance Improvement Methods of PCMs
3.1. Additives
3.1.1. PCMs with Carbon-Based Additives
3.1.2. PCMs with Metal-Based Additives
3.1.3. PCMs with Other Additives
3.2. Encapsulation
3.2.1. Work Principle of EPCMs
3.2.2. Encapsulation of PCMs
3.3. Eutectic PCMs
4. Conclusions and Perspectives
- When selecting PCMs for heat pump heating systems, the melting point is the first thing that should be considered, which is related to the performance of the heat pump and the temperature requirements of the thermal end of the building. Thermal conductivity and latent heat need to be focused on, which will affect the heat transfer efficiency between the PCMs and HTF and the heat storage capacity of the TES system, respectively. Meanwhile, some defects of PCMs need to be paid attention to, such as the supercooling, phase separation, and corrosion of inorganic PCMs, which are related to the working efficiency and life cycle of the TES system.
- Carbon- and metal-based additives are efficient thermal conductivity-enhancing materials. Carbon-based additives are classified as one-, two-, and three-dimensional materials. Overall, the three-dimensional carbon-based materials have the greatest enhancement effect on thermal conductivity, which can form a network heat transfer channel. Metal-based materials have high thermal conductivity and can be used as additives to improve the thermal conductivity of PCMs. However, the increase in additive content will inevitably reduce the latent heat of the composite PCMs, so it is necessary to adjust the additive mass fraction according to the actual situation, and finally obtain the ideal composite PCM. Nucleating and thickening agents are important materials to solve the problems of supercooling and phase separation of inorganic PCMs; consequently, the mass fraction of additives needs to be constantly adjusted. Melting point regulators are also used appropriately in SAT to give PCMs with a desired melting point.
- Encapsulation is a promising technology which can effectively solve the problem of supercooling and phase separation of inorganic PCMs, and avoid damage to PCMs. The mass ratio of the core–shell material must be considered, which will affect the thermal conductivity and latent heat of the EPCMs. In addition, when PCMs are used in heat pump heating systems, encapsulation makes it possible to use corrosive or toxic materials.
- By mixing two or more PCMs to make eutectic PCMs, the melting point and latent heat of the material can be arbitrarily adjusted to suit different heat pump heating scenarios. The thermophysical properties of eutectic PCMs can be predicted by simple correlation formulae.
- Through theoretical research and experimental methods, matching the operation characteristics of heat pumps and PCM energy storage characteristics, the optimal design parameters of PCM thermal physical characteristics can be obtained, and PCMs can be transformed by performance improvement methods.
- When selecting a PCM suitable for a heat pump heating system, the multi-criteria decision-making method is a scientific and efficient screening method, which can obtain the most appropriate PCM according to the needs of decision-makers, but early data statistics need to be given priority consideration.
- The efficient control strategy of a heat pump-coupled energy storage system is of great significance for the development of this technology. The use of advanced algorithms to constantly search for the optimal working point of the system, while meeting the energy consumption needs of users, reduce costs, and realize flexible interactions with the power grid, has huge development potential.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TES | Thermal energy storage |
PCMs | Phase change materials |
GHG | Greenhouse gases |
ET | Energy transition |
HP | Heat pump |
ASHP | Air source heat pump |
GSHP | Ground source heat pump |
DR | Demand response |
DSM | Demand-side management |
COP | Coefficient of performance |
SAT | Sodium acetate trihydrate |
HTF | Heat transfer fluid |
MD | Molecular dynamics |
CNTs | Carbon nanotubes |
EG | Expanded graphite |
CNFs | Carbon nanofibers |
HD | n-Hexadecanol |
PHP | High internal phase emulsion-templated polymer |
MWCNT | Multi-wall carbon nanotube |
MA-SA | Myristic–stearic acid |
GNPs | Graphene nanoplatelets |
MG | Multilayer-graphene |
DA | Dodecanoic acid |
HGA | Hybrid graphene aerogel |
GF | Graphene foam |
MA | Myristyl alcohol |
DSP | Disodium phosphate dodecahydrate |
CMC | Carboxyl methyl cellulose |
DHPD | Disodium hydrogen phosphate dodecahydrate |
FA | Formamide |
AC | Acetamide |
EPCMs | Encapsulated phase change materials |
STP | Sodium thiosulfate pentahydrate |
MEPCM | Microcapsule phase change material |
PECA | Poly(ethyl-2-cyanoacrylate) |
LA | Lauric acid |
References
- Salvia, M.; Reckien, D.; Pietrapertosa, F.; Eckersley, P.; Spyridaki, N.A.; Krook-Riekkola, A.; Olazabal, M.; Hurtado, S.D.G.; Simoes, S.G.; Geneletti, D.; et al. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 2021, 135, 110253. [Google Scholar] [CrossRef]
- De La Peña, L.; Guo, R.; Cao, X.; Ni, X.; Zhang, W. Accelerating the energy transition to achieve carbon neutrality. Resour. Conserv. Recycl. 2022, 177, 105957. [Google Scholar] [CrossRef]
- Huo, T.; Cai, W.; Zhang, W.; Wang, J.; Zhao, Y.; Zhu, X. How does income level impact residential-building heating energy consumption? Micro-level evidence from household surveys. Environ. Impact Assess. Rev. 2021, 91, 106659. [Google Scholar] [CrossRef]
- Sadeghi, H.; Ijaz, A.; Singh, R.M. Current status of heat pumps in Norway and analysis of their performance and payback time. Sustain. Energy Technol. Assessments 2022, 54, 102829. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Liu, J.; Li, Y.; Wang, M.; Luo, Y.; Ma, L.; Zhu, C.; Cai, W. Energy analysis and performance assessment of a hybrid deep borehole heat exchanger heating system with direct heating and coupled heat pump approaches. Energy Convers. Manag. 2023, 276, 116484. [Google Scholar] [CrossRef]
- Ma, L.; Wang, F.; Wang, Z.; Zhang, S.; Liu, Z.; Lou, Y. Experimental investigation on an air source heat pump system with coupled liquid-storage gas-liquid separator regarding heating and defrosting performance. Int. J. Refrig. 2022, 134, 176–188. [Google Scholar] [CrossRef]
- Xu, L.; Pu, L.; Zarrella, A.; Zhang, D.; Zhang, S. Experimental study on the thermal imbalance and soil temperature recovery performance of horizontal stainless-steel ground heat exchanger. Appl. Therm. Eng. 2022, 200, 117697. [Google Scholar] [CrossRef]
- Vivian, J.; Prataviera, E.; Cunsolo, F.; Pau, M. Demand Side Management of a pool of air source heat pumps for space heating and domestic hot water production in a residential district. Energy Convers. Manag. 2020, 225, 113457. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, J.; Wang, J.; Fu, Y.; Zhang, H.; Niu, J. Zero fluctuation: Electric-fluctuation-elimination heat pump system with water storage tank based on time-of-use tax. Energy Build. 2023, 279, 112703. [Google Scholar] [CrossRef]
- Qu, M.; Lu, M.; Li, Z.; Song, X.; Chen, J.; Ziviani, D.; Braun, J.E. Thermal energy storage based (TES-based) reverse cycle defrosting control strategy optimization for a cascade air source heat pump. Energy Build. 2020, 219, 110014. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems. Appl. Therm. Eng. 2013, 51, 155–165. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, C.Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 2012, 92, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Xiao, Q.; Xu, T.; Huang, G.; Wu, H.; Wang, D.; Liu, Y.; Zhang, H.; Lai, A.C. Thermal conductivity enhancement of a sodium acetate trihydrate–potassium chloride–urea/expanded graphite composite phase–change material for latent heat thermal energy storage. Energy Build. 2021, 231, 110615. [Google Scholar] [CrossRef]
- Ermel, C.; Bianchi, M.V.; Cardoso, A.P.; Schneider, P.S. Thermal storage integrated into air-source heat pumps to leverage building electrification: A systematic literature review. Appl. Therm. Eng. 2022, 215, 118975. [Google Scholar] [CrossRef]
- Osterman, E.; Stritih, U. Review on compression heat pump systems with thermal energy storage for heating and cooling of buildings. J. Energy Storage 2021, 39, 102569. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, H.; Fang, G. Review on thermal conductivity improvement of phase change materials with enhanced additives for thermal energy storage. J. Energy Storage 2022, 51, 104568. [Google Scholar] [CrossRef]
- Han, L.; Zhang, X.; Ji, J.; Ma, K. Research progress on the influence of nano-additives on phase change materials. J. Energy Storage 2022, 55, 105807. [Google Scholar] [CrossRef]
- Li, M.; Lin, Z.; Sun, Y.; Wu, F.; Xu, T.; Wu, H.; Zhou, X.; Wang, D.; Liu, Y. Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems. Renew. Energy 2020, 157, 670–677. [Google Scholar] [CrossRef]
- Pardiñas, Á.Á.; Alonso, M.J.; Diz, R.; Kvalsvik, K.H.; Fernández-Seara, J. State-of-the-art for the use of phase-change materials in tanks coupled with heat pumps. Energy Build. 2017, 140, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Moreno, P.; Solé, C.; Castell, A.; Cabeza, L.F. The use of phase change materials in domestic heat pump and air-conditioning systems for short term storage: A review. Renew. Sustain. Energy Rev. 2014, 39, 1–13. [Google Scholar] [CrossRef]
- Shen, J.; Qian, Z.; Xing, Z.; Yu, Y.; Ge, M. A review of the defrosting methods of air source heat pumps using heat exchanger with phase change material. Energy Procedia 2019, 160, 491–498. [Google Scholar] [CrossRef]
- Mesalhy, O.; Lafdi, K.; Elgafy, A.; Bowman, K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers. Manag. 2005, 46, 847–867. [Google Scholar] [CrossRef]
- Long, J.Y.; Zhu, D.S. Numerical and experimental study on heat pump water heater with PCM for thermal storage. Energy Build. 2008, 40, 666–672. [Google Scholar] [CrossRef]
- Agyenim, F.; Hewitt, N. The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation. Energy Build. 2010, 42, 1552–1560. [Google Scholar] [CrossRef]
- Kelly, N.J.; Tuohy, P.G.; Hawkes, A.D. Performance assessment of tariff-based air source heat pump load shifting in a UK detached dwelling featuring phase change-enhanced buffering. Appl. Therm. Eng. 2014, 71, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Wu, F.; Xu, T.; Huang, G.; Wu, H.; Zhou, X.; Wang, D.; Liu, Y.; Lai, A.C. Experimental investigation of the novel melting point modified Phase–Change material for heat pump latent heat thermal energy storage application. Energy 2021, 216, 119191. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, N.; Ding, Z. Investigation on the energy performance of using air-source heat pump to charge PCM storage tank. J. Energy Storage 2020, 28, 101270. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Wu, H.; Xu, T. Feasibility study of a PCM storage tank integrated heating system for outdoor swimming pools during the winter season. Appl. Therm. Eng. 2018, 134, 490–500. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Z.; Du, Y. Techno-economic optimization of open-air swimming pool heating system with PCM storage tank for winter applications. Renew. Energy 2020, 150, 878–890. [Google Scholar] [CrossRef]
- Zou, D.; Ma, X.; Liu, X.; Zheng, P.; Cai, B.; Huang, J.; Guo, J.; Liu, M. Experimental research of an air-source heat pump water heater using water-PCM for heat storage. Appl. Energy 2017, 206, 784–792. [Google Scholar] [CrossRef]
- Inkeri, E.; Tynjälä, T.; Nikku, M. Numerical modeling of latent heat thermal energy storage integrated with heat pump for domestic hot water production. Appl. Therm. Eng. 2022, 214, 118819. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, C.; Fan, Y.; Zhang, X.; Zhao, Y. Performance study of phase change charging/discharging processes of condensing heat storage in cold regions based on a mathematical model. Appl. Therm. Eng. 2021, 182, 115805. [Google Scholar] [CrossRef]
- Koşan, M.; Aktaş, M. Experimental investigation of a novel thermal energy storage unit in the heat pump system. J. Clean. Prod. 2021, 311, 127607. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Liu, C.; Li, H. Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater. Appl. Therm. Eng. 2018, 142, 644–655. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, Y.; Yu, M.; Jiang, L.; Zhang, X. Performance investigation on an air source heat pump system with latent heat thermal energy storage. Energy 2022, 239, 121898. [Google Scholar] [CrossRef]
- Minglu, Q.; Liang, X.; Deng, S.; Yiqiang, J. Improved indoor thermal comfort during defrost with a novel reverse-cycle defrosting method for air source heat pumps. Build. Environ. 2010, 45, 2354–2361. [Google Scholar] [CrossRef]
- Wenju, H.; Yiqiang, J.; Minglu, Q.; Long, N.; Yang, Y.; Shiming, D. An experimental study on the operating performance of a novel reverse-cycle hot gas defrosting method for air source heat pumps. Appl. Therm. Eng. 2011, 31, 363–369. [Google Scholar] [CrossRef]
- Liu, Z.; Fan, P.; Wang, Q.; Chi, Y.; Zhao, Z.; Chi, Y. Air source heat pump with water heater based on a bypass-cycle defrosting system using compressor casing thermal storage. Appl. Therm. Eng. 2018, 128, 1420–1429. [Google Scholar] [CrossRef]
- Qu, M.; Tang, Y.; Zhang, T.; Li, Z.; Chen, J. Experimental investigation on the multi-mode heat discharge process of a PCM heat exchanger during TES based reverse cycle defrosting using in cascade air source heat pumps. Appl. Therm. Eng. 2019, 151, 154–162. [Google Scholar] [CrossRef]
- Minglu, Q.; Rao, Z.; Jianbo, C.; Yuanda, C.; Xudong, Z.; Tongyao, Z.; Zhao, L. Experimental analysis of heat coupling during TES based reverse cycle defrosting method for cascade air source heat pumps. Renew. Energy 2020, 147, 35–42. [Google Scholar] [CrossRef]
- Hu, W.; Song, M.; Jiang, Y.; Yao, Y.; Gao, Y. A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting. Appl. Energy 2019, 236, 877–892. [Google Scholar] [CrossRef]
- Teamah, H.; Lightstone, M. Numerical study of the electrical load shift capability of a ground source heat pump system with phase change thermal storage. Energy Build. 2019, 199, 235–246. [Google Scholar] [CrossRef]
- Dogkas, G.; Konstantaras, J.; Koukou, M.K.; Vrachopoulos, M.G.; Pagkalos, C.; Stathopoulos, V.N.; Pandis, P.K.; Lymperis, K.; Coelho, L.; Rebola, A. Development and experimental testing of a compact thermal energy storage tank using paraffin targeting domestic hot water production needs. Therm. Sci. Eng. Prog. 2020, 19, 100573. [Google Scholar] [CrossRef]
- Hirmiz, R.; Teamah, H.; Lightstone, M.; Cotton, J. Analytical and numerical sizing of phase change material thickness for rectangular encapsulations in hybrid thermal storage tanks for residential heat pump systems. Appl. Therm. Eng. 2020, 170, 114978. [Google Scholar] [CrossRef]
- Benli, H.; Durmuş, A. Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Build. 2009, 41, 220–228. [Google Scholar] [CrossRef]
- Sivakumar, M.; Mahalingam, S.; Mohanraj, M. Energy, financial and environmental impact analysis of solar thermal heat pump systems using a direct expansion packed bed evaporator-collector. Sol. Energy 2022, 232, 154–168. [Google Scholar] [CrossRef]
- Wu, J.; Xian, T.; Liu, X. All-weather characteristic studies of a direct expansion solar integrated air source heat pump system based on PCMs. Sol. Energy 2019, 191, 34–45. [Google Scholar] [CrossRef]
- Yao, J.; Xu, H.; Dai, Y.; Huang, M. Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel. Sol. Energy 2020, 197, 279–291. [Google Scholar] [CrossRef]
- Kaygusuz, K. Experimental and theoretical investigation of a solar heating system with heat pump. Renew. Energy 2000, 21, 79–102. [Google Scholar] [CrossRef]
- Esen, M. Thermal performance of a solar-aided latent heat store used for space heating by heat pump. Sol. Energy 2000, 69, 15–25. [Google Scholar] [CrossRef]
- Han, Z.; Zheng, M.; Kong, F.; Wang, F.; Li, Z.; Bai, T. Numerical simulation of solar assisted ground-source heat pump heating system with latent heat energy storage in severely cold area. Appl. Therm. Eng. 2008, 28, 1427–1436. [Google Scholar] [CrossRef]
- Qi, Q.; Deng, S.; Jiang, Y. A simulation study on a solar heat pump heating system with seasonal latent heat storage. Sol. Energy 2008, 82, 669–675. [Google Scholar] [CrossRef]
- Kutlu, C.; Zhang, Y.; Elmer, T.; Su, Y.; Riffat, S. A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs. Renew. Energy 2020, 152, 601–612. [Google Scholar] [CrossRef]
- Döğüşcü, D.K.; Hekimoğlu, G.; Sarı, A. High internal phase emulsion templated-polystyrene/carbon nano fiber/hexadecanol composites phase change materials for thermal management applications. J. Energy Storage 2021, 39, 102674. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, C.; Hu, S.; Yu, X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Sol. Energy Mater. Sol. Cells 2011, 95, 1208–1212. [Google Scholar] [CrossRef]
- Kuziel, A.W.; Dzido, G.; Turczyn, R.; Jędrysiak, R.G.; Kolanowska, A.; Tracz, A.; Zięba, W.; Cyganiuk, A.; Terzyk, A.P.; Boncel, S. Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials. J. Energy Storage 2021, 36, 102396. [Google Scholar] [CrossRef]
- Tang, Y.; Alva, G.; Huang, X.; Su, D.; Liu, L.; Fang, G. Thermal properties and morphologies of MA–SA eutectics/CNTs as composite PCMs in thermal energy storage. Energy Build. 2016, 127, 603–610. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, Q.; Gan, Y.; Li, Q.; Liu, C.; Sun, W. Effect of Wax Composition and Shear Force on Wax Aggregation Behavior in Crude Oil: A Molecular Dynamics Simulation Study. Molecules 2022, 27, 4432. [Google Scholar] [CrossRef]
- Klochko, L.; Noel, J.; Sgreva, N.R.; Leclerc, S.; Metivier, C.; Lacroix, D.; Isaiev, M. Thermophysical properties of n-hexadecane: Combined molecular dynamics and experimental investigations. Int. Commun. Heat Mass Transf. 2022, 137, 106234. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, T.; Zhao, C.; Ding, Y. Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs). Int. J. Heat Mass Transf. 2022, 182, 122017. [Google Scholar] [CrossRef]
- Zou, D.; Ma, X.; Liu, X.; Zheng, P.; Hu, Y. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int. J. Heat Mass Transf. 2018, 120, 33–41. [Google Scholar] [CrossRef]
- Lin, Y.; Cong, R.; Chen, Y.; Fang, G. Thermal properties and characterization of palmitic acid/nano silicon dioxide/graphene nanoplatelet for thermal energy storage. Int. J. Energy Res. 2020, 44, 5621–5633. [Google Scholar] [CrossRef]
- Liu, X.; Rao, Z. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochim. Acta 2017, 647, 15–21. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Luo, A.; Liu, Z.; Zhang, X. Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials. Appl. Therm. Eng. 2020, 166, 114639. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, C.; Zhou, L.; Wu, C. Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton. Surfaces Interfaces 2021, 26, 101338. [Google Scholar] [CrossRef]
- Atinafu, D.G.; Wang, C.; Dong, W.; Chen, X.; Du, M.; Gao, H.; Wang, G. In-situ derived graphene from solid sodium acetate for enhanced photothermal conversion, thermal conductivity, and energy storage capacity of phase change materials. Sol. Energy Mater. Sol. Cells 2020, 205, 110269. [Google Scholar] [CrossRef]
- Yang, J.; Qi, G.Q.; Bao, R.Y.; Yi, K.; Li, M.; Peng, L.; Cai, Z.; Yang, M.B.; Wei, D.; Yang, W. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater. 2018, 13, 88–95. [Google Scholar] [CrossRef]
- Huang, X.; Lin, Y.; Alva, G.; Fang, G. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol. Energy Mater. Sol. Cells 2017, 170, 68–76. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, C. Numerical and experimental studies on the heat transfer performance of copper foam filled with paraffin. Energies 2017, 10, 902. [Google Scholar] [CrossRef] [Green Version]
- Ferfera, R.S.; Madani, B. Thermal characterization of a heat exchanger equipped with a combined material of phase change material and metallic foams. Int. J. Heat Mass Transf. 2020, 148, 119162. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, M.; Fan, J.; Li, L.; Xu, T.; Yuan, W. Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material. Sol. Energy Mater. Sol. Cells 2019, 199, 91–98. [Google Scholar] [CrossRef]
- Li, T.; Wu, D.; He, F.; Wang, R. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int. J. Heat Mass Transf. 2017, 115, 148–157. [Google Scholar] [CrossRef]
- Wen, R.; Zhu, X.; Yang, C.; Sun, Z.; Zhang, L.; Xu, Y.; Qiao, J.; Wu, X.; Min, X.; Huang, Z. A novel composite phase change material from lauric acid, nano-Cu and attapulgite: Preparation, characterization and thermal conductivity enhancement. J. Energy Storage 2022, 46, 103921. [Google Scholar] [CrossRef]
- Tang, F.; Cao, L.; Fang, G. Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage. Energy Build. 2014, 80, 352–357. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Wang, C.; Zhu, R.; Sheng, N.; Zhu, C.; Rao, Z. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3. J. Energy Storage 2021, 42, 103028. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Y.; Liu, Y.; Liu, C.; Lin, L. Thermal properties of the mixed n-octadecane/Cu nanoparticle nanofluids during phase transition: A molecular dynamics study. Materials 2017, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Adibi, M.; Shahgholi, M.; Tlili, I.; Sajadi, S.M.; Abdollahi, A.; Li, Z.; Karimipour, A. Phase change process in a porous Carbon-Paraffin matrix with different volume fractions of copper oxide Nanoparticles: A molecular dynamics study. J. Mol. Liq. 2022, 366, 120296. [Google Scholar] [CrossRef]
- Fu, W.; Zou, T.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Thermal properties and thermal conductivity enhancement of composite phase change material using sodium acetate trihydrate–urea/expanded graphite for radiant floor heating system. Appl. Therm. Eng. 2018, 138, 618–626. [Google Scholar] [CrossRef]
- Chandel, S.; Agarwal, T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew. Sustain. Energy Rev. 2017, 67, 581–596. [Google Scholar] [CrossRef]
- Salunkhe, P.B.; Shembekar, P.S. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew. Sustain. Energy Rev. 2012, 16, 5603–5616. [Google Scholar] [CrossRef]
- Jacob, R.; Bruno, F. Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew. Sustain. Energy Rev. 2015, 48, 79–87. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y.; Darkwa, J. The micro-/nano-PCMs for thermal energy storage systems: A state of art review. Int. J. Energy Res. 2019, 43, 5572–5620. [Google Scholar] [CrossRef]
- Radouane, N. A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications. Energies 2022, 15, 8271. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Li, Y.; Rao, Z. Preparation and characterization of sodium thiosulfate pentahydrate/silica microencapsulated phase change material for thermal energy storage. Rsc Adv. 2017, 7, 7238–7249. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Huang, L.; Liang, X.; Wang, S.; Wei, H.; Gao, X.; Zhang, Z. Facilitated synthesis and thermal performances of novel SiO2 coating Na2HPO4·7H2O microcapsule as phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2020, 206, 110257. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Yu, F. Preparation and characterization of microencapsulated phase change materials containing inorganic hydrated salt with silica shell for thermal energy storage. Sol. Energy Mater. Sol. Cells 2019, 200, 110004. [Google Scholar] [CrossRef]
- Fu, W.; Zou, T.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage. Sol. Energy Mater. Sol. Cells 2019, 193, 149–156. [Google Scholar] [CrossRef]
- Sami, S.; Sadrameli, S.; Etesami, N. Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. Appl. Therm. Eng. 2018, 130, 1416–1424. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y. Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage. Energy Built Environ. 2020, 1, 410–416. [Google Scholar] [CrossRef]
- Chen, W.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Polyurethane macro-encapsulation for CH3COONa· 3H2O-Na2S2O3· 5H2O/Melamine sponge to fabricate form-stable composite phase change material. Chem. Eng. J. 2021, 410, 128308. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S.; Peng, F. Self diffusion and heat capacity of n-alkanes based phase change materials: A molecular dynamics study. Int. J. Heat Mass Transf. 2013, 64, 581–589. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S.; Peng, F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int. J. Heat Mass Transf. 2013, 66, 575–584. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, R.; Ansu, A.; Goyal, R.; Sarı, A.; Tyagi, V. A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Sol. Energy Mater. Sol. Cells 2021, 223, 110955. [Google Scholar] [CrossRef]
- Da Cunha, J.P.; Eames, P. Thermal energy storage for low and medium temperature applications using phase change materials–a review. Appl. Energy 2016, 177, 227–238. [Google Scholar] [CrossRef] [Green Version]
Type of PCMs | Advantages | Disadvantages |
---|---|---|
Organic PCMs | No supercooling | Low thermal conductivity |
No phase segregation | Flammability | |
Chemically stable | Low phase change enthalpy | |
Availability in large temperature range | More expensive | |
Compatibility with other materials | Low heat capacity | |
Low vapor pressure | High volumetric expansion | |
Inorganic PCMs | High thermal conductivity | High supercooling |
Greater phase change enthalpy | Phase segregation | |
Less costly | Corrosive | |
Lower volumetric expansion | Chemical instability | |
Compatibility with other materials | Low heat capacity | |
Non-flammable | ||
Eutectic PCMs | Sharp melting temperature | Lack of thermophysical properties |
High volumetric thermal storage density | Low total latent heat capacity | |
No phase segregation | Costly | |
Low supercooling |
Ref. | PCMs | ( C) | (kJ/kg) | (W/(m·K)) | Functions |
---|---|---|---|---|---|
[24] | Paraffin | 56.03 | 254.9 | - | Combined with condenser |
[25] | RT58 | 51–63 | - | - | Combined with condenser |
[26] | Hydrated salt | 48 | 210 | 0.45 | Combined with condenser |
[27] | SAT | 47.8 | 219.8 | - | Combined with condenser |
[19] | SAT | 47.8 | 242 | - | Combined with condenser |
[14] | SAT | 47.5 | 200.3 | 1.48 | Combined with condenser |
[28] | Paraffin | 44 | 174.12 | 0.13 | Combined with condenser |
[29] | SAT | 58 | 266 | 0.43 | Combined with condenser |
[30] | SAT | 58 | 266 | 0.43 | Combined with condenser |
[31] | Paraffin | 43 | 255 | 0.2 | Combined with condenser |
[32] | Stearic acid | 69 | 157.5 | 18.9 | Combined with condenser |
[33] | Paraffin | 40–44 | 210 | 0.2 | Combined with condenser |
[34] | RT42 | 38–43 | 165 | 0.2 | Combined with condenser |
[35] | Paraffin | 52–54 | 140 | 5.38 | Combined with condenser |
[36] | Paraffin | 46.7–47.2 | 144 | 0.29 | Combined with condenser |
[37] | CaCl·6HO | 29 | 190.8 | 1.088 | Defrosting |
[38] | CaCl·6HO | 29 | - | - | Defrosting |
[39] | Paraffin | 48 | 103 | - | Defrosting |
[40] | Paraffin | 6.17–9.43 | 134.9–136.1 | 0.2 | Defrosting |
[41] | Paraffin | 6.17–8.19 | 134.9–136.1 | 0.2 | Defrosting |
[42] | CaCl·6HO | 29 | 176 | 1.09 | Defrosting |
[43] | Lauric acid | 42 | 178 | 0.147 | Connected to the condenser |
[44] | Paraffin | 53 | 237.5 | 0.22 | Connected to the condenser |
[45] | Palmitic acid | 57.8–61.8 | 200 | 0.28 | Connected to the condenser |
[46] | CaCl·6HO | 32–45 | 190 | - | Connected to the condenser |
[47] | Paraffin | 51 | 162 | 0.85 | Provides stable temperature |
[48] | CaCl·6HO | 29 | 151.6 | 3.328 | Provides stable temperature |
[49] | DSP | 37 | 265 | 0.514 | Connected to the condenser |
[50] | CaCl·6HO | 29 | 170 | - | Provides stable temperature |
[51] | CaCl·6HO | 29.7–29.85 | 187.49 | 1.008 | Provides stable temperature |
[52] | CaCl·6HO | 29.9 | 187.49 | 1.09 | Provides stable temperature |
[53] | CaCl·6HO | 29 | 187.49 | 1.088 | Provides stable temperature |
[54] | SAT | 58 | 250 | 0.8 | Connected to the condenser |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Li, Y.; Wang, F.; Wang, Z.; Xia, Q.; Zhang, Y.; Liu, J.; Liu, B.; Cai, W. A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System. Energies 2023, 16, 2676. https://doi.org/10.3390/en16062676
Zhou C, Li Y, Wang F, Wang Z, Xia Q, Zhang Y, Liu J, Liu B, Cai W. A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System. Energies. 2023; 16(6):2676. https://doi.org/10.3390/en16062676
Chicago/Turabian StyleZhou, Cong, Yizhen Li, Fenghao Wang, Zeyuan Wang, Qing Xia, Yuping Zhang, Jun Liu, Boyang Liu, and Wanlong Cai. 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System" Energies 16, no. 6: 2676. https://doi.org/10.3390/en16062676
APA StyleZhou, C., Li, Y., Wang, F., Wang, Z., Xia, Q., Zhang, Y., Liu, J., Liu, B., & Cai, W. (2023). A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System. Energies, 16(6), 2676. https://doi.org/10.3390/en16062676